首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Background

Selenium is an essential trace element in mammals due to its presence in proteins in the form of selenocysteine (Sec). Human genome codes for 25 Sec-containing protein genes, and mouse and rat genomes for 24.

Methodology/Principal Findings

We characterized the selenoproteomes of 44 sequenced vertebrates by applying gene prediction and phylogenetic reconstruction methods, supplemented with the analyses of gene structures, alternative splicing isoforms, untranslated regions, SECIS elements, and pseudogenes. In total, we detected 45 selenoprotein subfamilies. 28 of them were found in mammals, and 41 in bony fishes. We define the ancestral vertebrate (28 proteins) and mammalian (25 proteins) selenoproteomes, and describe how they evolved along lineages through gene duplication (20 events), gene loss (10 events) and replacement of Sec with cysteine (12 events). We show that an intronless selenophosphate synthetase 2 gene evolved in early mammals and replaced functionally the original multiexon gene in placental mammals, whereas both genes remain in marsupials. Mammalian thioredoxin reductase 1 and thioredoxin-glutathione reductase evolved from an ancestral glutaredoxin-domain containing enzyme, still present in fish. Selenoprotein V and GPx6 evolved specifically in placental mammals from duplications of SelW and GPx3, respectively, and GPx6 lost Sec several times independently. Bony fishes were characterized by duplications of several selenoprotein families (GPx1, GPx3, GPx4, Dio3, MsrB1, SelJ, SelO, SelT, SelU1, and SelW2). Finally, we report identification of new isoforms for several selenoproteins and describe unusually conserved selenoprotein pseudogenes.

Conclusions/Significance

This analysis represents the first comprehensive survey of the vertebrate and mammal selenoproteomes, and depicts their evolution along lineages. It also provides a wealth of information on these selenoproteins and their forms.  相似文献   

2.
3.

Background

Despite selenium''s toxicity in plants at higher levels, crops supply most of the essential dietary selenium in humans. In plants, inorganic selenium can be assimilated into selenocysteine, which can replace cysteine in proteins. Selenium toxicity in plants has been attributed to the formation of non-specific selenoproteins. However, this paradigm can be challenged now that there is increasingly abundant evidence suggesting that selenium-induced oxidative stress also contributes to toxicity in plants.

Scope

This Botanical Briefing summarizes the evidence indicating that selenium toxicity in plants is attributable to both the accumulation of non-specific selenoproteins and selenium-induced oxidative stress. Evidence is also presented to substantiate the claim that inadvertent selenocysteine replacement probably impairs or misfolds proteins, which supports the malformed selenoprotein hypothesis. The possible physiological ramifications of selenoproteins and selenium-induced oxidative stress are discussed.

Conclusions

Malformed selenoproteins and oxidative stress are two distinct types of stress that drive selenium toxicity in plants and could impact cellular processes in plants that have yet to be thoroughly explored. Although challenging, deciphering whether the extent of selenium toxicity in plants is imparted by selenoproteins or oxidative stress could be helpful in the development of crops with fortified levels of selenium.  相似文献   

4.

Background

The movement of mobile elements among species by horizontal transposon transfer (HTT) influences the evolution of genomes through the modification of structure and function. Helitrons are a relatively new lineage of DNA-based (class II) transposable elements (TEs) that propagate by rolling-circle replication, and are capable of acquiring host DNA. The rapid spread of Helitrons among animal lineages by HTT is facilitated by shuttling in viral particles or by unknown mechanisms mediated by close organism associations (e.g. between hosts and parasites).

Results

A non-autonomous Helitron independently annotated as BmHel-2 from Bombyx mori and the MITE01 element from Ostrinia nubilalis was predicted in the genomes of 24 species in the insect Order Lepidoptera. Integrated Helitrons retained ≥ 65% sequence identity over a 250 bp consensus, and were predicted to retain secondary structures inclusive of a 3′-hairpin and a 5′-subterminal inverted repeat. Highly similar Hel-2 copies were predicted in the genomes of insects and associated viruses, which along with a previous documented case of real-time virus-insect cell line transposition suggests that this Helitron has likely propagated by HTT.

Conclusions

These findings provide evidence that insect virus may mediate the HTT of Helitron-like TEs. This movement may facilitate the shuttling of DNA elements among insect genomes. Further sampling is required to determine the putative role of HTT in insect genome evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1318-6) contains supplementary material, which is available to authorized users.  相似文献   

5.
SK Behura  DW Severson 《PloS one》2012,7(8):e43111

Background

Codon bias is a phenomenon of non-uniform usage of codons whereas codon context generally refers to sequential pair of codons in a gene. Although genome sequencing of multiple species of dipteran and hymenopteran insects have been completed only a few of these species have been analyzed for codon usage bias.

Methods and Principal Findings

Here, we use bioinformatics approaches to analyze codon usage bias and codon context patterns in a genome-wide manner among 15 dipteran and 7 hymenopteran insect species. Results show that GAA is the most frequent codon in the dipteran species whereas GAG is the most frequent codon in the hymenopteran species. Data reveals that codons ending with C or G are frequently used in the dipteran genomes whereas codons ending with A or T are frequently used in the hymenopteran genomes. Synonymous codon usage orders (SCUO) vary within genomes in a pattern that seems to be distinct for each species. Based on comparison of 30 one-to-one orthologous genes among 17 species, the fruit fly Drosophila willistoni shows the least codon usage bias whereas the honey bee (Apis mellifera) shows the highest bias. Analysis of codon context patterns of these insects shows that specific codons are frequently used as the 3′- and 5′-context of start and stop codons, respectively.

Conclusions

Codon bias pattern is distinct between dipteran and hymenopteran insects. While codon bias is favored by high GC content of dipteran genomes, high AT content of genes favors biased usage of synonymous codons in the hymenopteran insects. Also, codon context patterns vary among these species largely according to their phylogeny.  相似文献   

6.

Background

Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy.

Methodology/Principal Findings

A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI''s Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans.

Conclusions/Significance

Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans.  相似文献   

7.
8.

Background

Multipartite mitochondrial genomes are very rare in animals but have been found previously in two insect orders with highly rearranged genomes, the Phthiraptera (parasitic lice), and the Psocoptera (booklice/barklice).

Results

We provide the first report of a multipartite mitochondrial genome architecture in a third order with highly rearranged genomes: Thysanoptera (thrips). We sequenced the complete mitochondrial genomes of two divergent members of the Scirtothrips dorsalis cryptic species complex. The East Asia 1 species has the single circular chromosome common to animals while the South Asia 1 species has a genome consisting of two circular chromosomes. The fragmented South Asia 1 genome exhibits extreme chromosome size asymmetry with the majority of genes on the large, 14.28 kb, chromosome and only nad6 and trnC on the 0.92 kb mini-circle chromosome. This genome also features paralogous control regions with high similarity suggesting a very recent origin of the nad6 mini-circle chromosome in the South Asia 1 cryptic species.

Conclusions

Thysanoptera, along with the other minor paraenopteran insect orders should be considered models for rapid mitochondrial genome evolution, including fragmentation. Continued use of these models will facilitate a greater understanding of recombination and other mitochondrial genome evolutionary processes across eukaryotes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1672-4) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.

Background

Insects belong to a class that accounts for the majority of animals on earth. With over one million identified species, insects display a huge diversity and occupy extreme environments. At present, there are dozens of fully sequenced insect genomes that cover a range of habitats, social behavior and morphologies. In view of such diverse collection of genomes, revealing evolutionary trends and charting functional relationships of proteins remain challenging.

Results

We analyzed the relatedness of 17 complete proteomes representative of proteomes from insects including louse, bee, beetle, ants, flies and mosquitoes, as well as an out-group from the crustaceans. The analyzed proteomes mostly represented the orders of Hymenoptera and Diptera. The 287,405 protein sequences from the 18 proteomes were automatically clustered into 20,933 families, including 799 singletons. A comprehensive analysis based on statistical considerations identified the families that were significantly expanded or reduced in any of the studied organisms. Among all the tested species, ants are characterized by an exceptionally high rate of family gain and loss. By assigning annotations to hundreds of species-specific families, the functional diversity among species and between the major clades (Diptera and Hymenoptera) is revealed. We found that many species-specific families are associated with receptor signaling, stress-related functions and proteases. The highest variability among insects associates with the function of transposition and nucleic acids processes (collectively coined TNAP). Specifically, the wasp and ants have an order of magnitude more TNAP families and proteins relative to species that belong to Diptera (mosquitoes and flies).

Conclusions

An unsupervised clustering methodology combined with a comparative functional analysis unveiled proteomic signatures in the major clades of winged insects. We propose that the expansion of TNAP families in Hymenoptera potentially contributes to the accelerated genome dynamics that characterize the wasp and ants.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1771-2) contains supplementary material, which is available to authorized users.  相似文献   

11.

Background

Prostaglandins (PGs) mediate insect immune responses to infections and invasions. Although the presence of PGs has been confirmed in several insect species, their biosynthesis in insects remains a conundrum because orthologs of the mammalian cyclooxygenases (COXs) have not been found in the known insect genomes. PG-mediated immune reactions have been documented in the beet armyworm, Spodoptera exigua. The purpose of this research is to identify the source of PGs in S. exigua.

Principal Findings

Peroxidases (POXs) are a sister group of COX genes. Ten putative POXs (SePOX-A ∼ SePOX-J) were expressed in S. exigua. Expressions of SePOX-F and -H were induced by bacterial challenge and expressed in the hemocytes and the fat body. RNAi of each POX was performed by hemocoelic injection of their specific double-stranded RNAs. dsPOX-F or, separately, dsPOX-H, but not the other eight dsRNA constructs, specifically suppressed hemocyte-spreading behavior and nodule formation; these two reactions were also inhibited by aspirin, a COX inhibitor. PGE2, but not arachidonic acid, treatment rescued the immunosuppression. Sequence analysis indicated that both POX genes were clustered with peroxinectin (Pxt) and their cognate proteins shared some conserved domains corresponding to the Pxt of Drosophila melanogaster.

Conclusions

SePOX-F and -H are Pxt-like genes associated with PG biosynthesis in S. exigua.  相似文献   

12.

Background

The correct taxonomic assignment of bacterial genomes is a primary and challenging task. With the availability of whole genome sequences, the gene content based approaches appear promising in inferring the bacterial taxonomy. The complete genome sequencing of a bacterial genome often reveals a substantial number of unique genes present only in that genome which can be used for its taxonomic classification.

Results

In this study, we have proposed a comprehensive method which uses the taxon-specific genes for the correct taxonomic assignment of existing and new bacterial genomes. The taxon-specific genes identified at each taxonomic rank have been successfully used for the taxonomic classification of 2,342 genomes present in the NCBI genomes, 36 newly sequenced genomes, and 17 genomes for which the complete taxonomy is not yet known. This approach has been implemented for the development of a tool ‘Microtaxi’ which can be used for the taxonomic assignment of complete bacterial genomes.

Conclusion

The taxon-specific gene based approach provides an alternate valuable methodology to carry out the taxonomic classification of newly sequenced or existing bacterial genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1542-0) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

The widespread use of genome sequencing provided evidences for the high degree of conservation in innate immunity signalling pathways across animal phyla. However, the functioning and evolutionary history of immune-related genes remains unknown for most invertebrate species. A striking observation coming from the analysis of the pea aphid Acyrthosiphon pisum genome is the absence of important conserved genes known to be involved in the antimicrobial responses of other insects. This reduction in antibacterial immune defences is thought to be related to their long-term association with beneficial symbiotic bacteria and to facilitate symbiont maintenance. An additional possibility to avoid elimination of mutualistic symbionts is a fine-tuning of the host immune response. To explore this hypothesis we investigated the existence and potential involvement of immune regulators in aphid agonistic and antagonistic interactions.

Results

In contrast to the limited antibacterial arsenal, we showed that the pea aphid Acyrthosiphon pisum expresses 5 members of Macrophage Migration Inhibitory Factors (ApMIF), known to be key regulators of the innate immune response. In silico searches for MIF members in insect genomes followed by phylogenetic reconstruction suggest that evolution of MIF genes in hemipteran species has been shaped both by differential losses and serial duplications, raising the question of the functional importance of these genes in aphid immune responses. Expression analyses of ApMIFs revealed reduced expression levels in the presence, or during the establishment of secondary symbionts. By contrast, ApMIFs expression levels significantly increased upon challenge with a parasitoid or a Gram-negative bacteria. This increased expression in the presence of a pathogen/parasitoid was reduced or missing, in the presence of facultative symbiotic bacteria.

Conclusions

This work provides evidence that while aphid’s antibacterial arsenal is reduced, other immune genes widely absent from insect genomes are present, diversified and differentially regulated during antagonistic or agonistic interactions.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-762) contains supplementary material, which is available to authorized users.  相似文献   

14.
Diversity in protein glycosylation among insect species   总被引:1,自引:0,他引:1  

Background

A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster.

Methodology/Principal Findings

In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin) affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum), the silkworm (Bombyx mori), the honeybee (Apis mellifera), the fruit fly (D. melanogaster) and the pea aphid (Acyrthosiphon pisum). To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans.

Conclusions/Significance

The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed.  相似文献   

15.

Background

Taxa that harbor natural phenotypic variation are ideal for ecological genomic approaches aimed at understanding how the interplay between genetic and environmental factors can lead to the evolution of complex traits. Lasioglossum albipes is a polymorphic halictid bee that expresses variation in social behavior among populations, and common-garden experiments have suggested that this variation is likely to have a genetic component.

Results

We present the L. albipes genome assembly to characterize the genetic and ecological factors associated with the evolution of social behavior. The de novo assembly is comparable to other published social insect genomes, with an N50 scaffold length of 602 kb. Gene families unique to L. albipes are associated with integrin-mediated signaling and DNA-binding domains, and several appear to be expanded in this species, including the glutathione-s-transferases and the inositol monophosphatases. L. albipes has an intact DNA methylation system, and in silico analyses suggest that methylation occurs primarily in exons. Comparisons to other insect genomes indicate that genes associated with metabolism and nucleotide binding undergo accelerated evolution in the halictid lineage. Whole-genome resequencing data from one solitary and one social L. albipes female identify six genes that appear to be rapidly diverging between social forms, including a putative odorant receptor and a cuticular protein.

Conclusions

L. albipes represents a novel genetic model system for understanding the evolution of social behavior. It represents the first published genome sequence of a primitively social insect, thereby facilitating comparative genomic studies across the Hymenoptera as a whole.  相似文献   

16.

Background

Triatomine bugs are the insect vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. These insects are known to aggregate inside shelters during daylight hours and it has been demonstrated that within shelters, the aggregation is induced by volatiles emitted from bug feces. These signals promote inter-species aggregation among most species studied, but the chemical composition is unknown.

Methodology/Principal Findings

In the present work, feces from larvae of the three species were obtained and volatile compounds were identified by solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). We identified five compounds, all present in feces of all of the three species: Triatoma infestans, Panstrongylus megistus and Triatoma brasiliensis. These substances were tested for attractivity and ability to recruit insects into shelters. Behaviorally active doses of the five substances were obtained for all three triatomine species. The bugs were significantly attracted to shelters baited with blends of 160 ng or 1.6 µg of each substance.

Conclusions/Significance

Common compounds were found in the feces of vectors of Chagas disease that actively recruited insects into shelters, which suggests that this blend of compounds could be used for the development of baits for early detection of reinfestation with triatomine bugs.  相似文献   

17.

Background

Insects are of interest not only as the most numerous and diverse group of animals but also as highly efficient bio-machines varying greatly in size. They are the main human competitors for crop, can transmit various diseases, etc. However, little study of insects with modern nanotechnology tools has been done.

Methodology/Principal Findings

Here we applied an atomic force microscopy (AFM) method to study stimulation of ladybird beetles with light. This method allows for measuring of the internal physiological responses of insects by recording surface oscillations in different parts of the insect at sub-nanometer amplitude level and sub-millisecond time. Specifically, we studied the sensitivity of ladybird beetles to light of different wavelengths. We demonstrated previously unknown blindness of ladybird beetles to emerald color (∼500nm) light, while being able to see UV-blue and green light. Furthermore, we showed how one could study the speed of the beetle adaptation to repetitive flashing light and its relaxation back to the initial stage.

Conclusions

The results show the potential of the method in studying insects. We see this research as a part of what might be a new emerging area of “nanophysiology” of insects.  相似文献   

18.

Background

Rapid advances in next-generation sequencing technologies facilitate genetic association studies of an increasingly wide array of rare variants. To capture the rare or less common variants, a large number of individuals will be needed. However, the cost of a large scale study using whole genome or exome sequencing is still high. DNA pooling can serve as a cost-effective approach, but with a potential limitation that the identity of individual genomes would be lost and therefore individual characteristics and environmental factors could not be adjusted in association analysis, which may result in power loss and a biased estimate of genetic effect.

Methods

For case-control studies, we propose a design strategy for pool creation and an analysis strategy that allows covariate adjustment, using multiple imputation technique.

Results

Simulations show that our approach can obtain reasonable estimate for genotypic effect with only slight loss of power compared to the much more expensive approach of sequencing individual genomes.

Conclusion

Our design and analysis strategies enable more powerful and cost-effective sequencing studies of complex diseases, while allowing incorporation of covariate adjustment.  相似文献   

19.

Background and Aims

Natural and anthropogenic disturbances can act as stresses on tree vigour. According to Manion''s conceptual model of tree disease, the initial vigour of trees decreases as a result of predisposing factors that render these trees more vulnerable to severe inciting stresses, stresses that can then cause final vigour decline and subsequent tree death. This tree disease model was tested in sugar maple (Acer saccharum) by assessing the roles of natural and anthropogenic disturbances in tree decline and death.

Methods

Radial growth data from 377 sugar maple trees that had undergone both defoliations by insects and partial harvest were used to estimate longitudinal survival probabilities as a proxy for tree vigour. Radial growth rates and survival probabilities were compared among trees subjected to different levels of above- and below-ground disturbances, between periods of defoliation and harvest, and between live and dead trees.

Key Results

Manion''s tree disease model correctly accounts for vigour decline and tree death in sugar maple; tree growth and vigour were negatively affected by a first defoliation, predisposing these trees to death later during the study period due to a second insect outbreak that initiated a final vigour decline. This decline was accelerated by the partial harvest disturbance in 1993. Even the most severe anthropogenic disturbances from partial harvest did not cause, unlike insect defoliation, any growth or vigour declines in live sugar maple.

Conclusions

Natural disturbances acted as predisposing and inciting stresses in tree sugar maple decline and death. Anthropogenic disturbances from a partial harvest at worst accelerated a decline in trees that were already weakened by predisposing and inciting stresses (i.e. repeated insect defoliations). Favourable climatic conditions just before and after the partial harvest may have alleviated possible negative effects on growth resulting from harvesting.Key words: Manion, tree disease model, disturbance, Acer saccharum, tree mortality, tree vigour  相似文献   

20.

Background and Aims

Pollen-collecting bees are among the most important pollinators globally, but are also the most common pollen thieves and can significantly reduce plant reproduction. The pollination efficiency of pollen collectors depends on the frequency of their visits to female(-phase) flowers, contact with stigmas and deposition of pollen of sufficient quantity and quality to fertilize ovules. Here we investigate the relative importance of these components, and the hypothesis that floral and inflorescence characteristics mediate the pollination role of pollen collection by bees.

Methods

For ten Aloe species that differ extensively in floral and inflorescence traits, we experimentally excluded potential bird pollinators to quantify the contributions of insect visitors to pollen removal, pollen deposition and seed production. We measured corolla width and depth to determine nectar accessibility, and the phenology of anther dehiscence and stigma receptivity to quantify herkogamy and dichogamy. Further, we compiled all published bird-exclusion studies of aloes, and compared insect pollination success with floral morphology.

Key Results

Species varied from exclusively insect pollinated, to exclusively bird pollinated but subject to extensive pollen theft by insects. Nectar inaccessibility and strong dichogamy inhibited pollination by pollen-collecting bees by discouraging visits to female-phase (i.e. pollenless) flowers. For species with large inflorescences of pollen-rich flowers, pollen collectors successfully deposited pollen, but of such low quality (probably self-pollen) that they made almost no contribution to seed set. Indeed, considering all published bird-exclusion studies (17 species in total), insect pollination efficiency varied significantly with floral shape.

Conclusions

Species-specific floral and inflorescence characteristics, especially nectar accessibility and dichogamy, control the efficiency of pollen-collecting bees as pollinators of aloes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号