首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Depolarization of circularly polarized light scattered from biological tissues depends on structural changes in cell nuclei, which can provide valuable information for differentiating cancer tissues concealed in healthy tissues. In this study, we experimentally verified the possibility of cancer identification using scattering of circularly polarized light. We investigated the polarization of light scattered from a sliced biological tissue with various optical configurations. A significant difference between circular polarizations of light scattered from cancerous and healthy tissues is observed, which is sufficient to distinguish a cancerous region. The line-scanning experiments along a region incorporating healthy and cancerous parts indicate step-like behaviors in the degree of circular polarization corresponding to the state of tissues, whether cancerous or normal. An oblique and perpendicular incidence induces different resolutions for identifying cancerous tissues, which indicates that the optical arrangement can be selected according to the priority of resolution.  相似文献   

2.
The current gold standard diagnostic test for colorectal cancer remains histological inspections of endoluminal neoplasia in biopsy specimens. However, biopsy site selection requires visual inspection of the bowel, typically with a white‐light endoscope. Therefore, this technique is poorly suited to detect small or innocuous‐appearing lesions. We hypothesize that an alternative modality—multiwavelength spatial frequency domain imaging (SFDI)—would be able to differentiate various colorectal neoplasia from normal tissue. In this ex vivo study of human colorectal tissues, we report the optical absorption and scattering signatures of normal, adenomatous polyp and cancer specimens. An abnormal vs. normal adaptive boosting (AdaBoost) classifier is trained to dichotomize tissue based on SFDI imaging characteristics, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.95 is achieved. We conclude that AdaBoost‐based multiwavelength SFDI can differentiate abnormal from normal colorectal tissues, potentially improving endoluminal screening of the distal gastrointestinal tract in the future.  相似文献   

3.
We report a reconstruction method to achieve high spatial resolution for hyperspectral imaging of chromophore features in skin in vivo. The method utilizes an established structure‐adaptive normalized convolution algorithm to reconstruct high spatial resolution of hyperspectral images from snapshot low‐resolution hyperspectral image sequences captured by a snapshot spectral camera. The reconstructed images at chromophore‐sensitive wavebands are used to map the skin features of interest. We demonstrate the method experimentally by mapping the blood perfusion and melanin features (moles) on the facial skin. The method relaxes the constrains of the relatively low spatial resolution in the snapshot hyperspectral camera, making it more usable in imaging applications.  相似文献   

4.
Many of the most important resolution improvements in optical microscopy techniques are based on the reduction of scattering effects. The main benefit of polarimetry-based imaging to this end is the discrimination between scattering phenomena originating from complex systems and the experimental noise. The determination of the coherency matrix elements from the experimental Mueller matrix can take advantage of scattering measurements to obtain additional information on the structural organization of a sample. We analyze the contrast mechanisms extracted from (a) the coherency matrix elements, (b) its eigenvalues and (c) the indices of polarimetric purity at different stages of zebrafish embryos, based on previous work using Mueller matrix optical scanning microscopy. We show that the use of the coherency matrix and related decompositions leads to an improvement in the imaging contrast, without requiring any complicated algebraic operations or any a priori knowledge of the sample, in contrast to standard polarimetric methods.  相似文献   

5.
Structured illumination microscopy (SIM) is a well‐established method for optical sectioning and super‐resolution. The core of structured illumination is using a periodic pattern to excite image signals. This work reports a method for estimating minor pattern distortions from the raw image data and correcting these distortions during SIM image processing. The method was tested with both simulated and experimental image data from two‐photon Bessel light‐sheet SIM. The results proves the method is effective in challenging situations, where strong scattering background exists, signal‐to‐noise ratio (SNR) is low and the sample structure is sparse. Experimental results demonstrate restoring synaptic structures in deep brain tissue, despite the presence of strong light scattering and tissue‐induced SIM pattern distortion.  相似文献   

6.
Combining serum albumin via adsorption‐exfoliation on hydroxyapatite particles (HAp) with surface‐enhanced Raman scattering (SERS), we developed a novel quantitative analysis of albumin method from blood serum for cancers screening applications. The quantitatively analysis obtained by our HAp method had a good linear relationship from 1 to 10 g/dL, and the lower limit of detection was less than the albumin prognostic factor for disease (3.5 g/dL). Serum albumin was adsorbed and exfoliated by HAp from serum samples of liver cancer patients, breast cancer patients and healthy volunteers and mixed with silver colloids to perform SERS spectral analysis. Based on the PLS‐SVM algorithm, the diagnostic accuracies of liver cancer patients and breast cancer patients were 100% and 96.68%, respectively. Moreover, this algorithm successfully predicted the unidentified subjects with a diagnostic accuracy of 93.75%. This exploratory work demonstrated that HAp‐adsorbed‐exfoliated serum proteins combined with SERS spectroscopy has great potential for cancer screening.  相似文献   

7.
As an important biomedical imaging method, endoscopic optical coherence tomography (OCT) is necessary to check its performance regularly. The ordinary plane phantoms are only able to evaluate part of image tangent to the probe. In this research, a spatial resolution estimate method of the endoscope OCT system is proposed. The annular phantom, made by uniformly distributing golden scattered microparticles in polydimethylsiloxane (PDMS), can provide dynamic scanning imaging evaluation of endoscopic OCT system, closer to its actual working status. The point spread function analysis method is used to analyze the imaging results of the annular phantom with the endoscopic OCT system. And many scattered particles are statistically analyzed to determine the spatial resolution of the endoscope OCT system. The method is low in cost, simple and convenient. It is valuable for the development of test standards for endoscope OCT systems.  相似文献   

8.
X‐ray‐induced luminescence computed tomography (XLCT) is an emerging molecular imaging. Challenges in improving spatial resolution and reducing the scan time in a whole‐body field of view (FOV) still remain for practical in vivo applications. In this study, we present a novel XLCT technique capable of obtaining three‐dimensional (3D) images from a single snapshot. Specifically, a customed two‐planar‐mirror component is integrated into a cone beam XLCT imaging system to obtain multiple optical views of an object simultaneously. Furthermore, a compressive sensing based algorithm is adopted to improve the efficiency of 3D XLCT image reconstruction. Numerical simulations and experiments were conducted to validate the single snapshot X‐ray‐induced luminescence computed tomography (SS‐XLCT). The results show that the 3D distribution of the nanophosphor targets can be visualized much faster than conventional cone beam XLCT imaging method that was used in our comparisons while maintaining comparable spatial resolution as in conventional XLCT imaging. SS‐XLCT has the potential to harness the power of XLCT for rapid whole‐body in vivo molecular imaging of small animals.  相似文献   

9.
In this study, the temporal dynamic changes in optical properties of gold nanorods (GNR) embedded tumor phantom, during photothermal interaction, are reported for plasmonic photothermal therapeutics. Tumor mimicking bilayer phantoms were prepared by using 1% agarose incorporated with 0.1% coffee powder, 0.3% intralipid solution as epidermis layer; 3% intralipid solution and 0.3% human hemoglobin (Hb) powder as dermis layer. On incorporating GNRs of concentrations 10, 20, and 40 μg/ml within the phantom, the absorption coefficients increases 4–8 times, while there is minimal change in the reduced scattering coefficients. Further the absorption coefficient increased by ~8% with the incorporation of GNRs of concentration 40 μg/ml, while no considerable dynamic change in the optical properties is observed for the phantom embedded with GNRs of concentrations 10, and 20 μg/ml. The discussed results are useful for the selection of GNRs dose for pre-treatment planning of plasmonic photothermal cancer therapeutics.  相似文献   

10.
iSERS (SERS=surface‐enhanced Raman scattering) microscopy is an emerging Raman‐based staining technique for the selective localization of target proteins on cells and tissues using antibody‐ SERS nanotag conjugates. In this contribution we demonstrate the feasibility of iSERS for imaging of programmed cell death‐ligand 1 (PD‐L1), an important predictive biomarker, on single SkBr‐3 breast cancer cells. Further details can be found in the article by Elzbieta Stepula, Matthias König, Xin‐Ping Wang, et al. ( e201960034 ).

  相似文献   


11.
Polarization-sensitive optical coherence tomography (PS-OCT) enables three-dimensional imaging of biological tissues based on the inherent contrast provided by scattering and polarization properties. In fibrous tissue such as the white matter of the brain, PS-OCT allows quantitative mapping of tissue birefringence. For the popular PS-OCT layout using a single circular input state, birefringence measurements are based on a straight-forward evaluation of phase retardation data. However, the accuracy of these measurements strongly depends on the signal-to-noise ratio (SNR) and is prone to mapping artifacts when the SNR is low. Here we present a simple yet effective approach for improving the accuracy of PS-OCT phase retardation and birefringence measurements. By performing a noise bias correction of the detected OCT signal amplitudes, the impact of the noise floor on retardation measurements can be markedly reduced. We present simulation data to illustrate the influence of the noise bias correction on phase retardation measurements and support our analysis with real-world PS-OCT image data.  相似文献   

12.
Collagen fibers are a primary load-bearing component of connective tissues and are therefore central to tissue biomechanics and pathophysiology. Understanding collagen architecture and behavior under dynamic loading requires a quantitative imaging technique with simultaneously high spatial and temporal resolutions. Suitable techniques are thus rare and often inaccessible. In this study, we present instant polarized light microscopy (IPOL), in which a single snapshot image encodes information on fiber orientation and retardance, thus fulfilling the requirement. We utilized both simulation and experimental data from collagenous tissues of chicken tendon, sheep eye, and porcine heart to evaluate the effectiveness of IPOL as a quantitative imaging technique. We demonstrate that IPOL allows quantitative characterization of micron-scale collagen fiber architecture at full camera frame rates (156 frames/second herein).  相似文献   

13.
Transparency is widespread in nature, ranging from transparent insect wings to ocular tissues that enable you to read this text, and transparent marine vertebrates. And yet, cells and tissue models in biology are usually strongly light scattering and optically opaque, precluding deep optical microscopy. Here we describe the directed evolution of cultured mammalian cells toward increased transparency. We find that mutations greatly diversify the optical phenotype of Chinese Hamster Ovary cells, a cultured mammalian cell line. Furthermore, only three rounds of high-throughput optical selection and competitive growth are required to yield fit cells with greatly improved transparency. Based on 15 monoclonal cell lines derived from this directed evolution experiment, we find that the evolved transparency frequently goes along with a reduction of nuclear granularity and physiological shifts in gene expression profiles. In the future this optical plasticity of mammalian cells may facilitate genetic clearance of living tissues for in vivo microscopy.  相似文献   

14.
Cover     
ON THE COVER: Nereocystis luetkeana, seen here in Port Renfrew, British Columbia, is a canopy-forming kelp that is common in the nearshore waters of the Northeast Pacific. It exhibits pronounced morphological plasticity across hydrodynamic gradients that allows it to minimize drag experienced in flow while maximizing light interception. Photo credit: L. Coleman

  相似文献   


15.
Polarization‐resolved second‐harmonic generation (P‐SHG) microscopy is a technique capable of characterizing nonlinear optical properties of noncentrosymmetric biomaterials by extracting the nonlinear susceptibility tensor components ratio , with z‐axis parallel and x‐axis perpendicular to the C6 symmetry axis of molecular fiber, such as a myofibril or a collagen fiber. In this paper, we present two P‐SHG techniques based on incoming and outgoing circular polarization states for a fast extraction of : A dual‐shot configuration where the SHG circular anisotropy generated using incident right‐ and left‐handed circularly‐polarized light is measured; and a single‐shot configuration for which the SHG circular anisotropy is measured using only one incident circular polarization state. These techniques are used to extract the of myosin fibrils in the body wall muscles of Drosophila melanogaster larva. The results are in good agreement with values obtained from the double Stokes‐Mueller polarimetry. The dual‐ and single‐shot circular anisotropy measurements can be used for fast imaging that is independent of the in‐plane orientation of the sample. They can be used for imaging of contracting muscles, or for high throughput imaging of large sample areas.  相似文献   

16.
Human skin equivalents (HSEs) are three‐dimensional living models of human skin that are prepared in vitro by seeding cells onto an appropriate scaffold. They recreate the structure and biological behaviour of real skin, allowing the investigation of processes such as keratinocyte differentiation and interactions between the dermal and epidermal layers. However, for wider applications, their optical and mechanical properties should also replicate those of real skin. We therefore conducted a pilot study to investigate the optical properties of HSEs. We compared Monte Carlo simulations of (a) real human skin and (b) two‐layer optical models of HSEs with (c) experimental measurements of transmittance through HSE samples. The skin layers were described using a hybrid collection of optical attenuation coefficients. A linear relationship was observed between the simulations and experiments. For samples thinner than 0.5 mm, an exponential increase in detected power was observed due to fewer instances of absorption and scattering.   相似文献   

17.
White light phase-shifting interference microscopy (WL-PSIM) is a prominent technique for high-resolution quantitative phase imaging (QPI) of industrial and biological specimens. However, multiple interferograms with accurate phase-shifts are essentially required in WL-PSIM for measuring the accurate phase of the object. Here, we present single-shot phase-shifting interferometric techniques for accurate phase measurement using filtered white light (520±36 nm) phase-shifting interference microscopy (F-WL-PSIM) and deep neural network (DNN). The methods are incorporated by training the DNN to generate (a) four phase-shifted frames and (b) direct phase from a single interferogram. The training of network is performed on two different samples i.e., optical waveguide and MG63 osteosarcoma cells. Further, performance of F-WL-PSIM+DNN framework is validated by comparing the phase map extracted from network generated and experimentally recorded interferograms. The current approach can further strengthen QPI techniques for high-resolution phase recovery using a single frame for different biomedical applications.  相似文献   

18.
We present a novel all-fiber probe with 710-μm outside diameter for combined optical coherence tomography and pH detection. In cancer surgery, a significant challenge is how to completely remove the malignant tumor without cutting too much normal tissue. The difference between cancer tissue and normal tissue not only lies in morphology and structure but also in tissue pH, where malignant tissue has a lower pH. This dual-modality probe combined optical coherence tomography and pH detection of biological tissue, is expected to determine whether the tissue is cancerous quickly and accurately. The probe utilizes a typical three-segment structure (double-clad fiber - no-core fiber - graded-index fiber). We obtained a lateral resolution of ~10.6 μm, a working distance of ~506 μm and a pH measurement accuracy of 0.01 pH unit for the probe. The performance of the all-fiber probe was verified through an ex vivo experiment using the porcine brain specimen.  相似文献   

19.
Stimulated Raman scattering (SRS) microscopy is a nonlinear optical imaging method for visualizing chemical content based on molecular vibrational bonds. However, the imaging speed and sensitivity are currently limited by the noise of the light beam probing the Raman process. In this paper, we present a fast non-average denoising and high-precision Raman shift extraction method, based on a self-reinforcing signal-to-noise ratio (SNR) enhancement algorithm, for SRS spectroscopy and microscopy. We compare the results of this method with the filtering methods and the reported experimental methods to demonstrate its high efficiency and high precision in spectral denoising, Raman peak extraction and image quality improvement. We demonstrate a maximum SNR enhancement of 10.3 dB in fixed tissue imaging and 11.9 dB in vivo imaging. This method reduces the cost and complexity of the SRS system and allows for high-quality SRS imaging without use of special laser, complicated system design and Raman tags.  相似文献   

20.
Structured light have made deep impacts on modern biotechnology and clinical practice, with numerous optical systems and lasers currently being used in medicine to treat disease. We demonstrate a new concept of fiber-based optical hook scalpel. The subwavelength photonic hook is obtained in the vicinity of a shaped fiber tip with asymmetric radiation. A 1550 nm continuous-wave source, commonly used for medical imaging, has been required. Photonic hook with a lateral feature size less than the half-wavelength is achieved using a hemispherical shaped fiber tip with metallic mask. This breakthrough is carried out in ambient air by using a 4-μm-diameter fiber with a shaped tip. A good correlation is observed between the computed intensity distribution of photonic hook and the tip sizes. Photonic hook generated with a shaped fiber tip, easier to manipulate, shows far-reaching benefits for potential applications such as ophthalmic laser surgery, super-resolution microscopy, photolithography and material processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号