首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Wildlife density estimates are important to accurately formulate population management objectives and understand the relationship between habitat characteristics and a species’ abundance. Despite advances in density and abundance estimation methods, management of common game species continues to be challenged by a lack of reliable population estimates. In Washington, USA, statewide American black bear (Ursus americanus) abundance estimates are predicated on density estimates derived from research in the 1970s and are hypothesized to be a function of precipitation and vegetation, with higher densities in western Washington. To evaluate current black bear density and landscape relationships in Washington, we conducted a 4-year capture-recapture study in 2 areas of the North Cascade Mountains using 2 detection methods, non-invasive DNA collection and physical capture and deployment of global positioning system (GPS) collars. We integrated GPS telemetry from collared bears with spatial capture-recapture (SCR) data and created a SCR-resource selection model to estimate density as a function of spatial covariates and test the hypothesis that density is higher in areas with greater vegetative food resources. We captured and collared 118 bears 132 times and collected 7,863 hair samples at hair traps where we identified 537 bears from 1,237 detections via DNA. The most-supported model in the western North Cascades depicted a negative relationship between black bear density and an index of human development. We estimated bear density at 20.1 bears/100 km2, but density varied from 13.5/100 km2 to 27.8 bears/100 km2 depending on degree of human development. The model best supported by the data in the eastern North Cascades estimated an average density of 19.2 bears/100 km2, which was positively correlated with primary productivity, with resulting density estimates ranging from 7.1/100 km2 to 33.6 bears/100 km2. The hypothesis that greater precipitation and associated vegetative production in western Washington supports greater bear density compared to eastern Washington was not supported by our data. In western Washington, empirically derived average density estimates (including cubs) were nearly 50% lower than managers expected prior to our research. In eastern Washington average black bear density was predominantly as expected, but localized areas of high primary productivity supported greater than anticipated bear densities. Our findings underscore the importance that black bear density is not likely uniform and management risk may be increased if an average density is applied at too large a scale. Disparities between expected and empirically derived bear density illustrate the need for more rigorous monitoring to understand processes that affect population numbers throughout the jurisdiction, and suggest that management plans may need to be reevaluated to determine if current harvest strategies are achieving population objectives. © 2019 The Wildlife Society.  相似文献   

2.
Abstract: We explored whether genetic sampling would be feasible to provide a region-wide population estimate for American black bears (Ursus americanus) in the southern Appalachians, USA. Specifically, we determined whether adequate capture probabilities (p > 0.20) and population estimates with a low coefficient of variation (CV < 20%) could be achieved given typical agency budget and personnel constraints. We extracted DNA from hair collected from baited barbed-wire enclosures sampled over a 10-week period on 2 study areas: a high-density black bear population in a portion of Great Smoky Mountains National Park and a lower density population on National Forest lands in North Carolina, South Carolina, and Georgia. We identified individual bears by their unique genotypes obtained from 9 microsatellite loci. We sampled 129 and 60 different bears in the National Park and National Forest study areas, respectively, and applied closed mark-recapture models to estimate population abundance. Capture probabilities and precision of the population estimates were acceptable only for sampling scenarios for which we pooled weekly sampling periods. We detected capture heterogeneity biases, probably because of inadequate spatial coverage by the hair-trapping grid. The logistical challenges of establishing and checking a sufficiently high density of hair traps make DNA-based estimates of black bears impractical for the southern Appalachian region. Alternatives are to estimate population size for smaller areas, estimate population growth rates or survival using mark-recapture methods, or use independent marking and recapturing techniques to reduce capture heterogeneity.  相似文献   

3.
We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N=?73.5, 95% CI?=?64-94 in 2006; N=?50.4, 95% CI?=?49-59 in 2008) and black bears (N=?62.6, 95% CI?=?51-89 in 2006; N=?81.8, 95% CI?=?72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ=?0.93, 95% CI?=?0.74-1.17) and females (λ=?0.90, 95% CI?=?0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.  相似文献   

4.
The Central Georgia Bear Population (CGP) is the least abundant and most isolated of Georgia's 3 American black bear (Ursus americanus) populations. Beginning in 2011, changes to regulations governing harvest of the CGP resulted in an increase in female bear harvest, creating concern that future harvest could be an important influence on population viability. Hence, our objective was to assess viability of the CGP under various levels of female mortality. During 2012–2016, we used barbed-wire hair snares to collect bear hair samples from within the range of the CGP in Georgia, USA. We used microsatellite genotyping to identify individual bears and created robust-design, spatial detection histories for all female bears detected. We fit open population spatial capture-recapture (SCR) models to the detection histories in a Bayesian framework. We used the Widely Applicable Information Criterion (WAIC) to rank models that varied with respect to sources of variation in detection probability, survival, and per capita recruitment, and used the model with the lowest WAIC to forecast dynamics of the CGP 50 years into the future under various levels of female mortality. We assessed the 50-year extinction probability under a continuation of mortality levels documented during 2012–2016, and under incremental increases in female mortality above this baseline. The top model included density-dependent per capita recruitment, annual variation in detection probability, and a trap-level behavioral response. Abundance increased from 106 (95% CI = 86–132) females in 2012 to 136 (95% CI = 113–161) females in 2013 and remained relatively stable thereafter. Annual female survival was 0.75 (95% CI = 0.69–0.82) and did not vary among years. The per capita recruitment rate decreased over time as density increased, and was 0.49 (95% CI = 0.33–0.66) during the first time interval and 0.29 (95% CI = 0.20–0.38) during the final time interval. Annual growth rate () was 1.28 (95% CI = 1.07–1.52) between 2012 and 2013 but decreased throughout the study, ending at 1.04 (95% CI = 0.93–1.17). Forecasts indicated continuation of the female mortality levels experienced from 2012–2016 were sustainable over 50 years, with the estimated extinction risk being <0.001%. Increasing annual harvest by 5 females introduced a negligible increase in the 50-year probability of extinction, but harvesting an additional 10 females/year caused extinction risk to rise to 1.15%. We recommend that harvest regulations are structured such that mortality rates remain at current levels or do not increase by more than an annual average of 5 females above levels observed during our study. Furthermore, we recommend that managers continue to monitor the population so that harvest regulations and population models can be refined over time. © 2020 The Wildlife Society.  相似文献   

5.
ABSTRACT DNA-based mark-recapture has become a methodological cornerstone of research focused on bear species. The objective of such studies is often to estimate population size; however, doing so is frequently complicated by movement of individual bears. Movement affects the probability of detection and the assumption of closure of the population required in most models. To mitigate the bias caused by movement of individuals, population size and density estimates are often adjusted using ad hoc methods, including buffering the minimum polygon of the trapping array. We used a hierarchical, spatial capture-recapture model that contains explicit components for the spatial-point process that governs the distribution of individuals and their exposure to (via movement), and detection by, traps. We modeled detection probability as a function of each individual's distance to the trap and an indicator variable for previous capture to account for possible behavioral responses. We applied our model to a 2006 hair-snare study of a black bear (Ursus americanus) population in northern New York, USA. Based on the microsatellite marker analysis of collected hair samples, 47 individuals were identified. We estimated mean density at 0.20 bears/km2. A positive estimate of the indicator variable suggests that bears are attracted to baited sites; therefore, including a trap-dependence covariate is important when using bait to attract individuals. Bayesian analysis of the model was implemented in WinBUGS, and we provide the model specification. The model can be applied to any spatially organized trapping array (hair snares, camera traps, mist nests, etc.) to estimate density and can also account for heterogeneity and covariate information at the trap or individual level.  相似文献   

6.
The frequency of black bear (Ursus americanus) sightings, vehicle collisions, and nuisance incidents in the coastal region of South Carolina has increased over the past 4 decades. To develop the statewide Black Bear Management and Conservation Strategy, the South Carolina Department of Natural Resources needed reliable information for the coastal population. Because no such data were available, we initiated a study to determine population density and genetic structure of black bears. We selected 2 study areas that were representative of the major habitat types in the study region: Lewis Ocean Bay consisted primarily of Carolina Bays and pocosin habitats, whereas Carvers Bay was representative of extensive pine plantations commonly found in the region. We established hair snares on both study areas to obtain DNA from hair samples during 8 weekly sampling periods in 2008 and again in 2009. We used genotypes to obtain capture histories of sampled bears. We estimated density using spatially explicit capture–recapture (SECR) models and used information-theoretic procedures to fit parameters for capture heterogeneity and behavioral responses and to test if density and model parameters varied by year. Model-averaged density was 0.046 bears/km2 (SE = 0.011) for Carvers Bay and 0.339 bears/km2 (SE = 0.056) for Lewis Ocean Bay. Next, we sampled habitat covariates for all locations in the SECR sampling grid to derive spatially explicit estimates of density based on habitat characteristics. Addition of habitat covariates had substantial support, and accounted for differences in density between Carvers Bay and Lewis Ocean Bay; black bear density showed a negative association with the area of pine forests (4.5-km2 scale) and a marginal, positive association with the area of pocosin habitat (0.3-km2 scale). Bear density was not associated with pine forest at a smaller scale (0.3-km2), nor with major road density or an index of largest patch size. Predicted bear densities were low throughout the coastal region and only a few larger areas had high predicted densities, most of which were centered on public lands (e.g., Francis Marion National Forest, Lewis Ocean Bay). We sampled a third bear population in the Green Swamp area of North Carolina for genetic structure analyses and found no evidence of historic fragmentation among the 3 sampled populations. Neither did we find evidence of more recent barriers to gene exchange; with the exception of 1 recent migrant, Bayesian population assignment techniques identified only a single population cluster that incorporated all 3 sampled areas. Bears in the region may best be managed as 1 population. If the goal is to maintain or increase bear densities, demographic connectivity of high-density areas within the low-density landscape matrix is a key consideration and managers would need to mitigate potential impacts of planned highway expansions and anticipated development. Because the distribution of black bears in coastal South Carolina is not fully known, the regional map of potential black bear density can be used to identify focal areas for management and sites that should be surveyed for occupancy or where more intensive studies are needed. © 2012 The Wildlife Society.  相似文献   

7.
The northern bobwhite (Colinus virginianus) is an ecologically and economically valuable species in the United States. Managers rely on autumn density estimates to set harvest regulations, balancing the interests of hunters and long-term bobwhite population viability. Spatial capture-recapture (SCR) is a useful framework for estimating population size and modeling spatial variation in density. We used SCR to quantify the effect of landscape structure on spatial variation in density for a population of bobwhites on the Di-Lane Wildlife Management Area in Waynesboro, Georgia, USA. Without additional telemetry or nesting data, we were also able to estimate a spatially explicit metric of productivity. To sample the population, we deployed a fixed array of 395, 262, and 268 funnel traps in 2016, 2017, and 2018, respectively. We estimated age structure, with the highest density of juveniles (0.32 birds/ha, 95% CI = 0.28–0.37) and adults (0.10 birds/ha, 95% CI = 0.08–0.12) estimated in 2016. In our top model, density was negatively related to the proportion of closed canopy hardwoods. To increase bobwhite density on the landscape, managers should reduce the amount of closed canopy hardwood forest. Furthermore, the spatially explicit age ratio we estimated could be used to target management towards increasing the recruitment of chicks into the autumn population. An SCR approach may require additional logistical and financial resources relative to other data collection methods, but it makes modeling spatial variation in density straightforward and can be used to gather data to simultaneously understand population structure, vital rates, and movement. © 2021 The Wildlife Society.  相似文献   

8.
Wildlife agencies face difficult situations when orphaned or injured American black bear (Ursus americanus) cubs (<12 months old) or yearlings (≥12 and <24 months old) are captured. One option is bear rehabilitation, the care and feeding of cubs or yearlings in a semi-natural environment, followed by release. Unfortunately, the survival and movements of bears released from rehabilitation facilities are often poorly documented and the ultimate reasons for success or failure poorly understood. Our goal was to assess survival and post-release conflict of orphaned bear cubs and yearlings following release from a rehabilitation facility, Appalachian Bear Rescue (ABR), in Townsend, Tennessee, USA, from 2015–2016. We predicted that rehabilitated bears would survive at similar rates, die from similar causes, and engage in similar conflict behavior to wild conspecifics. We equipped 42 black bear cubs and yearlings from ABR with global positioning system-collars and released them in Great Smoky Mountains National Park or Cherokee National Forest, Tennessee and North Carolina, USA. Estimated annual survival using known-fate methods for all released bears was 0.93 ± 0.06 [SE]). Survival for 13 bears released as cubs was 0.64 ± 0.14, whereas none of the bears released as yearlings died within 1 year after release (n = 29). Survival of rehabilitated bears was similar to or higher than published rates for wild conspecifics. Three of 42 bears (7.1%) released from ABR engaged in conflict behavior up to 1 year following release, and those had spent time involved in conflict behavior with their mothers (e.g., approaching humans) prior to being orphaned. Despite not having the typical post-natal experience with their mothers, the bears in our study appeared to behave and survive similarly to their wild conspecifics. Rehabilitation is effective for managing orphaned or injured bears. Best survival occurred for bears released as yearlings; however, managers can maximize cub survival through fall releases when plentiful wild foods are available. © 2019 The Authors. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

9.
ABSTRACT Estimating black bear (Ursus americanus) population size is a difficult but important requirement when justifying harvest quotas and managing populations. Advancements in genetic techniques provide a means to identify individual bears using DNA contained in tissue and hair samples, thereby permitting estimates of population abundance based on established mark-capture-recapture methodology. We expand on previous noninvasive population-estimation work by geographically extending sampling areas (36,848 km2) to include the entire Northern Lower Peninsula (NLP) of Michigan, USA. We selected sampling locations randomly within biologically relevant bear habitat and used barbed wire hair snares to collect hair samples. Unlike previous noninvasive studies, we used tissue samples from harvested bears as an additional sampling occasion to increase recapture probabilities. We developed subsampling protocols to account for both spatial and temporal variance in sample distribution and variation in sample quality using recently published quality control protocols using 5 microsatellite loci. We quantified genotyping errors using samples from harvested bears and estimated abundance using statistical models that accounted for genotyping error. We estimated the population of yearling and adult black bears in the NLP to be 1,882 bears (95% CI = 1,389-2,551 bears). The derived population estimate with a 15% coefficient of variation was used by wildlife managers to examine the sustainability of harvest over a large geographic area.  相似文献   

10.
We used tetracycline biomarking, augmented with genetic methods to estimate the size of an American black bear (Ursus americanus) population on an island in Southeast Alaska. We marked 132 and 189 bears that consumed remote, tetracycline-laced baits in 2 different years, respectively, and observed 39 marks in 692 bone samples subsequently collected from hunters. We genetically analyzed hair samples from bait sites to determine the sex of marked bears, facilitating derivation of sex-specific population estimates. We obtained harvest samples from beyond the study area to correct for emigration. We estimated a density of 155 independent bears/100 km2, which is equivalent to the highest recorded for this species. This high density appears to be maintained by abundant, accessible natural food. Our population estimate (approx. 1,000 bears) could be used as a baseline and to set hunting quotas. The refined biomarking method for abundance estimation is a useful alternative where physical captures or DNA-based estimates are precluded by cost or logistics. © 2011 The Wildlife Society.  相似文献   

11.
The quality and availability of resources are known to influence spatial patterns of animal density. In Yellowstone National Park, relationships between the availability of resources and the distribution of grizzly bears (Ursus arctos) have been explored but have yet to be examined in American black bears (Ursus americanus). We conducted non-invasive genetic sampling during 2017–2018 (mid-May to mid-July) and applied spatially explicit capture-recapture models to estimate density of black bears and examine associations with landscape features. In both years, density estimates were higher in forested vegetation communities, which provide food resources and thermal and security cover preferred by black bears, compared with non-forested areas. In 2017, density also varied by sex, with female densities being higher than males. Based on our estimates, the northern range of Yellowstone National Park supports one of the highest densities of black bears (20 black bears/100 km2) in the northern Rocky Mountains (6–12 black bears/100 km2 in other regions). Given these high densities, black bears could influence other wildlife populations more than previously thought, such as through displacement of sympatric predators from kills. Our study provides the first spatially explicit estimates of density for black bears within an ecosystem that contains the majority of North America's large mammal species. Our density estimates provide a baseline that can be used for future research and management decisions of black bears, including efforts to reduce human–bear conflicts.  相似文献   

12.
ABSTRACT Noninvasive genetic sampling has become a popular method for obtaining population parameter estimates for black (Ursus americanus) and brown (U. arctos) bears. These estimates allow wildlife managers to develop appropriate management strategies for populations of concern. Black bear populations at Great Dismal Swamp (GDSNWR), Pocosin Lakes (PLNWR), and Alligator River (ARNWR) National Wildlife Refuges in coastal Virginia and North Carolina, USA, were perceived by refuge biologists to be at or above cultural and perhaps biological carrying capacity, but managers had no reliable abundance estimates upon which to base population management. We derived density estimates from 3,150 hair samples collected noninvasively at each of the 3 refuges, using 6–7 microsatellite markers to obtain multilocus genotypes for individual bears. We used Program MARK to calculate population estimates from capture histories at each refuge. We estimated densities using both traditional buffer strip methods and Program DENSITY. Estimated densities were some of the highest reported in the literature and ranged from 0.46 bears/km2 at GDSNWR to 1.30 bears/km2 at PLNWR. Sex ratios were male-biased at all refuges. Our estimates can be directly utilized by biologists to develop effective strategies for managing and maintaining bears at these refuges, and noninvasive methods may also be effective for monitoring bear populations over the long term.  相似文献   

13.
There is a long and contentious history of brown bear (Ursus arctos) harvest management in Alaska, USA, the state that hosts the largest brown bear population in North America. In the mid-1990s, the Alaska Board of Game set the population objective for brown bears in Game Management Unit 13 A, located in interior southcentral Alaska, to be reduced by 50% to improve survival of moose (Alces alces) calves. The Board began further liberalizing brown bear harvest regulations for the unit beginning in regulatory year 1995, though adult females and their dependent offspring (i.e., cubs <2 yrs old) were protected. To evaluate progress toward this abundance objective, we captured and collared bears between 2006 and 2011 and conducted a capture-mark-resight density survey during summer 2011 for comparison to a similar baseline survey conducted in 1998. We report the results of the density survey and vital rates estimated from resight histories of collared bears and harvest information spanning from 1985 (10 years before establishment of the population objective) to 2012. There was a 25–40% reduction in abundance between 1998 and 2011. Population growth rates derived from density estimates and a matrix population projection model indicated that the population declined by 2.3–4.2% annually. We estimated harvest rates to be 8–15% annually, but harvest composition data indicated no changes in skull size, age distribution, or overall sex ratio. There was evidence of an increase in the proportion of older females in the harvest. Demographic analysis indicated high reproductive output and recruitment, potentially indicating a density-dependent compensatory response to reduced population size. Despite 13 years of harvest rates in excess of what had previously been considered to be sustainable for this population, the objective of reducing bear abundance by 50% had not been achieved as of 2011. The protection of females and dependent offspring in our study population appears to be a sufficient safeguard against a precipitous population decline while still permitting progress toward the population objective through high harvest on other segments of the population. © 2020 The Wildlife Society.  相似文献   

14.
Reliable population and density estimates are the cornerstone of effective conservation and management planning, as conservation priorities often arise in relation to population numbers. Despite increased public interest and costly conservation programs limited information on brown bear (Ursus arctos, Linnaeus, 1758) abundance and density in Greece exists. We carried out systematic non-invasive genetic sampling using hair traps on power poles, as part of a capture-mark-recapture study design in order to rigorously estimate abundance and density of the Pindos bear population in Greece. From 2007–2010 we identified 211 and estimated a mean of 182.3 individuals in four sampling areas; bear densities ranged from 10.0 to 54 bears/1000 km2. These results indicate an important population recovery of this large carnivore in Greece in recent years; a conservative population estimate would place the population size in the entire country >450 individuals. Considering the results of the study and the increased negative interactions between humans and bears recorded currently in Greece, we suggest that systematic genetic monitoring using power poles should continue in order to collect the necessary information that will enable the definition of an effective Action Plan for the long-term conservation of this species.  相似文献   

15.
Global biodiversity is decreasing rapidly. Parks and protected lands, while designed to conserve wildlife, often cannot provide the habitat protection needed for wide‐ranging animals such as the American black bear (Ursus americanus). Conversely, private lands are often working landscapes (e.g., farming) that have high human footprints relative to protected lands. In southwestern Alberta, road densities are highest on private lands and black bears can be hunted year‐round. On protected lands, road densities are lowest, and hunting is prohibited. On public lands under the jurisdiction of the provincial government (Crown lands), seasonal hunting is permitted. Population estimates are needed to calculate sustainable harvest levels and to monitor population trends. In our study area, there has never been a robust estimate of black bear density and spatial drivers of black bear density are poorly understood. We used non‐invasive genetic sampling and indices of habitat productivity and human disturbance to estimate density and abundance for male and female black bears in 2013 and 2014 using two methods: spatially explicit capture–recapture (SECR) and resource‐selection functions (RSF). Land tenure best explained spatial variation in black bear density. Black bear densities for females and males were highest on parkland and lowest on Crown lands. Sex ratios were female‐biased on private lands, likely a result of lower harvests and movement of females out of areas with high male density. Synthesis and application: Both SECR and RSF methods clearly indicate spatial structuring of black bear density, with a strong influence based on how lands are managed. Land tenure influences the distribution of available foods and risk from humans. We emphasize the need for improved harvest reporting, particularly for non‐licensed hunting on private land, to estimate the extent of black bear harvest mortality.  相似文献   

16.
Habitat fragmentation and loss contribute to isolation of wildlife populations and increased extinction risks for various species, including many large carnivores. We studied a small and isolated population of American black bears (Ursus americanus) that is of conservation concern in central Georgia, USA (i.e., central Georgia bear population [CGBP]). Our goal was to evaluate the potential for demographic and genetic interchange from neighboring bear populations to the CGBP. To evaluate resource selection and movement potential, we used 35,487 global positioning system locations collected every 20 minutes from 2012 to 2014 from 33 male bears in the CGBP. We then developed a step selection function model based on conditional logistic regression. Male bears chose steps that avoided crops, roads, and human developments and were closer to forests and woody wetlands than expected based on availability. We used a geographic information system to simulate 300 bear movement paths from nearby bear populations in northern Florida, northern Georgia, and southern Georgia to estimate the potential for immigration to the CGBP. Only 4 simulated movement paths from the nearby populations intersected the CGBP. The creation of a hypothetical 1-km-wide corridor between the southern Georgia population and the CGBP produced only minor improvements in interchange. Our findings suggest that demographic connectivity between the CGBP and surrounding bear populations may be limited, and coupled with previous works showing genetic isolation in the CGBP, that creation of corridors may have only marginal effects on restoring gene flow, at least in the near term. Management actions such as translocation and the establishment of stepping stone populations may be needed to increase the genetic diversity and demographic stability of bears in the CGBP. © 2021 The Wildlife Society.  相似文献   

17.
Abstract We developed a snare for collection of black bear (Ursus americanus) hair that obtained a unique hair sample at each snare site, improved the quantity of collected hair compared to barbed-wire corrals, and was easy to deploy over a wide range of topographical features and habitat conditions. This device allowed us to implement intensive sampling methodology needed in mark-recapture experiments with minimal effort. By improving the quantity of hair collected, we also lowered the potential for bear identification errors at the lab. During 2003–2004, bears in 2 study areas triggered snares 1,104 times, which resulted in the collection of 981 hair samples. Of the samples we collected, 79% (775) produced valid genetic data. In 2003, 454 samples identified 79 genetically distinct individuals, and 321 samples identified 86 genetically distinct individuals in 2004. Analysis of capture-recapture data indicated that capture probabilities were affected by heterogeneity among individuals and behavioral responses, but showed little evidence of time effects. Consequently, we used the Pollock and Otto (1983) estimator for model Mbh to estimate abundance with reasonably good precision (CV: 12–14%). Density on the Steamboat and Toketee, Oregon, USA, study areas over the 2-year period averaged 19 bears/100 km2 and 22 bears/100 km2, respectively. Average capture and recapture probabilities over the 2 years of the study were 30% and 63%, respectively, indicating a trap-prone behavioral response. Knowledge of bear densities on the Steamboat and Toketee study areas will enable managers to set hunting quotas, advise land management agencies on habitat issues, and create a baseline database to assist in the long-term monitoring of bear trends in a changing landscape.  相似文献   

18.
Borchers DL  Efford MG 《Biometrics》2008,64(2):377-385
Live-trapping capture-recapture studies of animal populations with fixed trap locations inevitably have a spatial component: animals close to traps are more likely to be caught than those far away. This is not addressed in conventional closed-population estimates of abundance and without the spatial component, rigorous estimates of density cannot be obtained. We propose new, flexible capture-recapture models that use the capture locations to estimate animal locations and spatially referenced capture probability. The models are likelihood-based and hence allow use of Akaike's information criterion or other likelihood-based methods of model selection. Density is an explicit parameter, and the evaluation of its dependence on spatial or temporal covariates is therefore straightforward. Additional (nonspatial) variation in capture probability may be modeled as in conventional capture-recapture. The method is tested by simulation, using a model in which capture probability depends only on location relative to traps. Point estimators are found to be unbiased and standard error estimators almost unbiased. The method is used to estimate the density of Red-eyed Vireos (Vireo olivaceus) from mist-netting data from the Patuxent Research Refuge, Maryland, U.S.A. Estimates agree well with those from an existing spatially explicit method based on inverse prediction. A variety of additional spatially explicit models are fitted; these include models with temporal stratification, behavioral response, and heterogeneous animal home ranges.  相似文献   

19.
Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal’s home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786–1.071) for females, 0.844 (0.703–0.975) for males, and 0.882 (0.779–0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758–1.024) for females, 0.825 (0.700–0.948) for males, and 0.863 (0.771–0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth rates suggest that Banff National Park’s population of grizzly bears requires continued conservation-oriented management actions.  相似文献   

20.
Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered not significant. However, because we now understand that polar bear demography can also be influenced by progressive change in the environment, and some populations have increased to greater densities than historically lower numbers, a broader suite of factors should be considered in demographic studies and management. We analyzed 35 years of capture and harvest data from the polar bear (Ursus maritimus) subpopulation in Davis Strait, including data from a new study (2005–2007), to quantify its current demography. We estimated the population size in 2007 to be 2,158 ± 180 (SE), a likely increase from the 1970s. We detected variation in survival, reproductive rates, and age-structure of polar bears from geographic sub-regions. Survival and reproduction of bears in southern Davis Strait was greater than in the north and tied to a concurrent dramatic increase in breeding harp seals (Pagophilus groenlandicus) in Labrador. The most supported survival models contained geographic and temporal variables. Harp seal abundance was significantly related to polar bear survival. Our estimates of declining harvest recovery rate, and increasing total survival, suggest that the rate of harvest declined over time. Low recruitment rates, average adult survival rates, and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait polar bears. Low reproductive rates may reflect negative effects of greater densities or worsening ice conditions. © 2013 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号