首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Explicit solvent molecular dynamics (MD) simulations were carried out for three RNA kissing–loop complexes. The theoretical structure of two base pairs (2 bp) complex of H3 stem–loop of Moloney murine leukemia virus agrees with the NMR structure with modest violations of few NMR restraints comparable to violations present in the NMR structure. In contrast to the NMR structure, however, MD shows relaxed intermolecular G-C base pairs. The core region of the kissing complex forms a cation-binding pocket with highly negative electrostatic potential. The pocket shows nanosecond-scale breathing motions coupled with oscillations of the whole molecule. Additional simulations were carried out for 6 bp kissing complexes of the DIS HIV-1 subtypes A and B. The simulated structures agree well with the X-ray data. The subtype B forms a novel four-base stack of bulged-out adenines. Both 6 bp kissing complexes have extended cation-binding pockets in their central parts. While the pocket of subtype A interacts with two hexacoordinated Mg2+ ions and one sodium ion, pocket of subtype B is filled with a string of three delocalized Na+ ions with residency times of individual cations 1–2 ns. The 6 bp complexes show breathing motions of the cation-binding pockets and loop major grooves.  相似文献   

2.
Four different molecular dynamics (MD) simulations have been performed for ordered DNA decamers, d(5′-ATGCAGTCAG)·d(5′-TGACTGCATC). The counterions were the two natural polyamines spermidine3+ (Spd3+) and putrescine2+ (Put2+), the synthetic polyamine diaminopropane2+ (DAP2+) and Na+. The simulation set-up corresponds to an infinite array of parallel DNA mimicking the state in oriented DNA fibers or crystals. This work describes general properties of polyamine and Na+ binding to DNA. Simulated diffusion coefficients show satisfactory agreement with experimental NMR diffusion data of comparable systems. The interaction of the polyamines with DNA is dynamic in character and the cations mostly form short-lived contacts with the electronegative binding sites of DNA. Polyamines, Na+ and water interact most frequently with the charged phosphate atoms with preference for association from the minor groove side with O1P over O2P. There is a strong anti-correlation in the cation binding to the electronegative groups of DNA, i.e. the presence of a cation near one of the DNA sites repels other cations from binding to this and to the other sites separated by <7.5 Å from each other. In contrast to the other polyamines, DAP2+ is able to form ‘bridges’ connecting neighboring phosphate groups along the DNA strand. A small fraction of DAP2+ and Put2+ can be found in the major grooves, while Spd3+ is absent there. The results of the MD simulations reveal principal differences in the polyamine–DNA interactions between the natural (Spd3+, Put2+ and spermine4+) and synthetic (DAP2+) polyamines.  相似文献   

3.
Binding of monovalent and divalent cations to two adenine–adenine platform structures from the Tetrahymena group I intron ribozyme has been studied using continuum solvent models based on the generalised Born and the finite-difference Poisson–Boltzmann approaches. The adenine–adenine platform RNA motif forms an experimentally characterised monovalent ion binding site important for ribozyme folding and function. Qualitative agreement between calculated and experimental ion placements and binding selectivity was obtained. The inclusion of solvation effects turned out to be important to obtain low energy structures and ion binding placements in agreement with the experiment. The calculations indicate that differences in solvation of the isolated ions contribute to the calculated ion binding preference. However, Coulomb attraction and van der Waals interactions due to ion size differences and RNA conformational adaptation also influence the calculated ion binding affinity. The calculated alkali ion binding selectivity for both platforms followed the order K+ > Na+ > Rb+ > Cs+ > Li+ (Eisenman series VI) in the case of allowing RNA conformational relaxation during docking. With rigid RNA an Eisenman series V was obtained (K+ > Rb+ > Na+ > Cs+ > Li+). Systematic energy minimisation docking simulations starting from several hundred initial placements of potassium ions on the surface of platform containing RNA fragments identified a coordination geometry in agreement with the experiment as the lowest energy binding site. The approach could be helpful to identify putative ion binding sites in nucleic acid structures determined at low resolution or with experimental methods that do not allow identification of ion binding sites.  相似文献   

4.
Characterization of the thermodynamics of DNA– drug interactions is a very useful part in rational drug design. Isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC) and UV melting experiments have been used to analyze the multivalent (intercalation plus minor groove) binding of the antitumor antibiotic chartreusin to DNA. Using DNA UV melting studies in the presence of the ligand and the binding enthalpy determined by ITC, we determined that the binding constant for the interaction was 3.6 × 105 M–1 at 20°C, in a solution containing 18 mM Na+. The DNA–drug interaction was enthalpy driven, with a ΔHb of –7.07 kcal/mol at 20°C. Binding enthalpies were determined by ITC in the 20–35°C range and used to calculate a binding-induced change in heat capacity (ΔCp) of –391 cal/mol K. We have obtained a detailed thermodynamic profile for the interaction of this multivalent drug, which makes possible a dissection of ΔGobs into the component free energy terms. The hydrophobic transfer of the chartreusin chromophore from the solution to the DNA intercalating site is the main contributor to the free energy of binding.  相似文献   

5.
C 2 domains are well characterized as Ca 2+/phospholipid-binding modules, but little is known about how they mediate protein–protein interactions. In neurons, a Munc13–1 C 2A-domain/RIM zinc-finger domain (ZF) heterodimer couples synaptic vesicle priming to presynaptic plasticity. We now show that the Munc13–1 C 2A domain homodimerizes, and that homodimerization competes with Munc13–1/RIM heterodimerization. X-ray diffraction studies guided by nuclear magnetic resonance (NMR) experiments reveal the crystal structures of the Munc13–1 C 2A-domain homodimer and the Munc13–1 C 2A-domain/RIM ZF heterodimer at 1.44 Å and 1.78 Å resolution, respectively. The C 2A domain adopts a β-sandwich structure with a four-stranded concave side that mediates homodimerization, leading to the formation of an eight-stranded β-barrel. In contrast, heterodimerization involves the bottom tip of the C 2A-domain β-sandwich and a C-terminal α-helical extension, which wrap around the RIM ZF domain. Our results describe the structural basis for a Munc13–1 homodimer–Munc13–1/RIM heterodimer switch that may be crucial for vesicle priming and presynaptic plasticity, uncovering at the same time an unexpected versatility of C 2 domains as protein–protein interaction modules, and illustrating the power of combining NMR spectroscopy and X-ray crystallography to study protein complexes.  相似文献   

6.
We report two new structures of the quadruplex d(TGGGGT)4 obtained by single crystal X-ray diffraction. In one of them a thymine tetrad is found. Thus the yeast telomere sequences d(TG1–3) might be able to form continuous quadruplex structures, involving both guanine and thymine tetrads. Our study also shows substantial differences in the arrangement of thymines when compared with previous studies. We find five different types of organization: (i) groove binding with hydrogen bonds to guanines from a neighbour quadruplex; (ii) partially ordered groove binding, without any hydrogen bond; (iii) stacked thymine triads, formed at the 3′ends of the quadruplexes; (iv) a thymine tetrad between two guanine tetrads. Thymines are stabilized in pairs by single hydrogen bonds. A central sodium ion interacts with two thymines and contributes to the tetrad structure. (v) Completely disordered thymines which do not show any clear location in the crystal. The tetrads are stabilized by either Na+ or Tl+ ions. We show that by using MAD methods, Tl+ can be unambiguously located and distinguished from Na+. We can thus determine the preference for either ion in each ionic site of the structure under the conditions used by us.  相似文献   

7.
The bulge region of HIV-1 TAR RNA binds metal ions in solution   总被引:4,自引:1,他引:3       下载免费PDF全文
Binding of Mg2+, Ca2+ and Co(NH3)63+ ions to the HIV-1 TAR RNA in solution was analysed by 19F NMR spectroscopy, metal ion-induced RNA cleavages and Brownian dynamics (BD) simulations. Chemically synthesised 29mer oligoribonucleotides of the TAR sequence labelled with 5-fluorouridine (FU) were used for 19F NMR-monitored metal ion titration. The chemical shift changes of fluorine resonances FU-23, FU-25 and FU-40 upon titration with Mg2+ and Ca2+ ions indicated specific, although weak, binding at the bulge region with the dissociation constants (Kd) of 0.9 ± 0.6 and 2.7 ± 1.7 mM, respectively. Argininamide, inducing largest 19F chemical shifts changes at FU-23, was used as a reference ligand (Kd = 0.3 ± 0.1 mM). In the Pb2+-induced TAR RNA cleavage experiment, strong and selective cleavage of the C24-U25 phosphodiester bond was observed, while Mg2+ and Ca2+ induced cuts at all 3-nt residues of the bulge. The inhibition of Pb2+-specific TAR cleavage by di- and trivalent metal ions revealed a binding specificity [in the order Co(NH3)63+ > Mg2+ > Ca2+] at the bulge site. A BD simulation search of potential magnesium ion sites within the NMR structure of HIV-1 TAR RNA was conducted on a set of 20 conformers (PDB code 1ANR). For most cases, the bulge region was targeted by magnesium cations.  相似文献   

8.
High precision ultrasonic and densimetric techniques have been used to study the interaction of Ni2+ ions with right-handed poly[d(G-C)]·poly[d(G-C)], poly-[d(A-C)]·poly[d(G-T)] and poly[d(A-T)]·poly[d(A-T)] in 5 mM CsCl, 0.2 mM HEPES, pH 7.5 at 20°C. From these measurements the changes in the apparent molar volume and the apparent molar adiabatic compressibility due to the interaction have been obtained. The volume effects of the binding, calculated per mole of Ni2+ ions, range from 11.7 to 23.9 cm3 mol–1 and the compressibility effects range from 19.3 × 10–4 to 43.1 × 10–4 cm3 mol–1 bar–1. These data are interpreted in terms of dehydration of the polynucleotides and Ni2+ ions, i.e. the release of water molecules from the hydration shells of the molecules. An increase in G+C content gives an increase in volume and compressibility effects, indicating a rise in the extent of dehydration. The dehydration effects of Ni2+ binding to poly[d(G-C)]·poly[d(G-C)] are approximately twice those of poly[d(A-T)]·poly[d(A-T)]. The volume and compressibility effects of Ni2+–EDTA complex formation have also been measured and used as a model system for quantitative estimation. These values revealed that Ni2+ ions can coordinate two atomic groups of poly[d(G-C)]·poly[d(G-C)], while in the case of the Ni2+–poly[d(A-T)]·poly[d(A-T)] complex volume and compressibility effects correspond to one direct or two indirect (through water) contacts.  相似文献   

9.
The HIV-1 type dimerization initiation signal (DIS) loop was used as a starting point for the analysis of the stability of Watson–Crick (WC) base pairs in a tertiary structure context. We used ultraviolet melting to determine thermodynamic parameters for loop–loop tertiary interactions and compared them with regular secondary structure RNA helices of the same sequences. In 1 M Na+ the loop–loop interaction of a HIV-1 DIS type pairing is 4 kcal/mol more stable than its sequence in an equivalent regular and isolated RNA helix. This difference is constant and sequence independent, suggesting that the rules governing the stability of WC base pairs in the secondary structure context are also valid for WC base pairs in the tertiary structure context. Moreover, the effect of ion concentration on the stability of loop–loop tertiary interactions differs considerably from that of regular RNA helices. The stabilization by Na+ and Mg2+ is significantly greater if the base pairing occurs within the context of a loop–loop interaction. The dependence of the structural stability on salt concentration was defined via the slope of a Tm/log [ion] plot. The short base-paired helices are stabilized by 8°C/log [Mg2+] or 11°C/log [Na+], whereas base-paired helices forming tertiary loop–loop interactions are stabilized by 16°C/log [Mg2+] and 26°C/log [Na+]. The different dependence on ionic strength that is observed might reflect the contribution of specific divalent ion binding to the preformation of the hairpin loops poised for the tertiary kissing loop–loop contacts.  相似文献   

10.
Magnesium ions strongly influence the structure and biochemical activity of RNA. The interaction of Mg2+ with an equimolar mixture of poly(rA) and poly(rU) has been investigated by UV spectroscopy, isothermal titration calorimetry, ultrasound velocimetry and densimetry. Measurements in dilute aqueous solutions at 20°C revealed two differ ent processes: (i) Mg2+ binding to unfolded poly(rA)·poly(rU) up to [Mg2+]/[phosphate] = 0.25; and (ii) poly(rA)·2poly(rU) triplex formation at [Mg2+]/[phosphate] between 0.25 and 0.5. The enthalpies of these two different processes are favorable and similar to each other, ~–1.6 kcal mol–1 of base pairs. Volume and compressibility effects of the first process are positive, 8 cm3 mol–1 and 24 × 10–4 cm3 mol–1 bar–1, respectively, and correspond to the release of water molecules from the hydration shells of Mg2+ and the polynucleotides. The triplex formation is also accompanied by a positive change in compressibility, 14 × 10–4 cm3 mol–1 bar–1, but only a small change in volume, 1 cm3 mol–1. A phase diagram has been constructed from the melting experiments of poly(rA)·poly(rU) at a constant K+ concentration, 140 mM, and various amounts of Mg2+. Three discrete regions were observed, corresponding to single-, double- and triple-stranded complexes. The phase boundary corresponding to the transition between double and triple helical conformations lies near physiological salt concentrations and temperature.  相似文献   

11.
The quadruplex structures of the human telomere sequences AG3(T2AG3)3 I and (T2AG3)4 II were investigated in the presence of Na+ and K+ ions, through the cross-linking of adenines and guanines by the cis- and trans-[Pt(NH3)2(H2O)2](NO3)2 complexes 1 and 2. The bases involved in chelation of the cis- and trans-Pt(NH3)2 moieties were identified by chemical and 3′-exonuclease digestions of the products isolated after denaturing gel electrophoresis. These are the four adenines of each sequence and four out of the 12 guanines. Two largely different structures have been reported for I: A from NMR data in Na+ solution and B from X-ray data of a K+-containing crystal. Structure A alone agrees with our conclusions about the formation of the A1–G10, A13–G22, A1–A13 platinum chelates at the top of the quadruplex and A7–A19, G4–A19 and A7–G20 at the bottom, whether the Na+ or K+ ion is present. At variance with a recent proposal that structures A and B could be the major species in Na+ and K+ solutions, respectively, our results suggest that structure A exists predominantly in the presence of both ions. They also suggest that covalent platinum cross-linking of a human telomere sequence could be used to inhibit telomerase.  相似文献   

12.
DNA curvature at A tracts containing a non-polar thymine mimic   总被引:1,自引:1,他引:0       下载免费PDF全文
We report the first experimental probing of electrostatic interactions on the pyrimidine side of a bent A tract. Although the curvature of short A tracts (A4–A6) has long been studied, its physical origins remain under debate. Current hypotheses include the influence of major-groove hydrogen bonds between propeller-twisted base pairs, electrostatic effects of closely associated minor-groove cations, effects of minor-groove solvation, and stacking effects at the junctions adjacent to the A tract. We investigated this problem through the substitution of thymidines in A5 tracts by difluorotoluene deoxynucleoside (F), a non-polar molecule of the same size and shape which lacks hydrogen bonding and metal-ion complexing capabilities. Ligation experiments with phased A tracts demonstrated that F substitution has asymmetric effects on the bend angle. The strongest effects occurred at the second and third thymines where curvature was reduced from 19.8° to 5.3° and 9.6°, respectively. Moderate effects were observed with substitutions at positions 1 and 4, while substitution at position 5 had no effect on bend angle. The results support the hypothesis that highly localized electrostatic interactions are a principal cause of A-tract curvature. Furthermore, they are most consistent with the notion that local metal-ion complexation at O2 of thymine is a strong component of these interactions.  相似文献   

13.
Metal ions, and magnesium in particular, are known to be involved in RNA folding by stabilizing secondary and tertiary structures, and, as cofactors, in RNA enzymatic activity. We have conducted a systematic crystallographic analysis of cation binding to the duplex form of the HIV-1 RNA dimerization initiation site for the subtype-A and -B natural sequences. Eleven ions (K+, Pb2+, Mn2+, Ba2+, Ca2+, Cd2+, Sr2+, Zn2+, Co2+, Au3+ and Pt4+) and two hexammines [Co (NH3)6]3+ and [Ru (NH3)6]3+ were found to bind to the DIS duplex structure. Although the two sequences are very similar, strong differences were found in their cation binding properties. Divalent cations bind almost exclusively, as Mg2+, at ‘Hoogsteen’ sites of guanine residues, with a cation-dependent affinity for each site. Notably, a given cation can have very different affinities for a priori equivalent sites within the same molecule. Surprisingly, none of the two hexammines used were able to efficiently replace hexahydrated magnesium. Instead, [Co (NH3)4]3+ was seen bound by inner-sphere coordination to the RNA. This raises some questions about the practical use of [Co (NH3)6]3+ as a [Mg (H2O)6]2+ mimetic. Also very unexpected was the binding of the small Au3+ cation exactly between the Watson–Crick sites of a G-C base pair after an obligatory deprotonation of N1 of the guanine base. This extensive study of metal ion binding using X-ray crystallography significantly enriches our knowledge on the binding of middleweight or heavy metal ions to RNA, particularly compared with magnesium.  相似文献   

14.
Molecular models of six anthracycline antibiotics and their complexes with 32 distinct DNA octamer sequences were created and analyzed using HINT (Hydropathic INTeractions) to describe binding. The averaged binding scores were then used to calculate the free energies of binding for comparison with experimentally determined values. In parsing our results based on specific functional groups of doxorubicin, our calculations predict a free energy contribution of –3.6 ± 1.1 kcal mol–1 (experimental –2.5 ± 0.5 kcal mol–1) from the groove binding daunosamine sugar. The net energetic contribution of removing the hydroxyl at position C9 is –0.7 ± 0.7 kcal mol–1 (–1.1 ± 0.5 kcal mol–1). The energetic contribution of the 3′ amino group in the daunosamine sugar (when replaced with a hydroxyl group) is –3.7 ± 1.1 kcal mol–1 (–0.7 ± 0.5 kcal mol–1). We propose that this large discrepancy may be due to uncertainty in the exact protonation state of the amine. The energetic contribution of the hydroxyl group at C14 is +0.4 ± 0.6 kcal mol–1 (–0.9 ± 0.5 kcal mol–1), largely due to unfavorable hydrophobic interactions between the hydroxyl oxygen and the methylene groups of the phosphate backbone of the DNA. Also, there appears to be considerable conformational uncertainty in this region. This computational procedure calibrates our methodology for future analyses where experimental data are unavailable.  相似文献   

15.
Surface plasmon resonance (BIACORE) was used to determine the kinetic values for formation of the HIV TAR–TAR* (‘kissing hairpin’) RNA complex. The TAR component was also synthesized with the modified nucleoside 2-thiouridine at position 7 in the loop and the kinetics and equilibrium dissociation constants compared with the unmodified TAR hairpin. The BIACORE data show an equilibrium dissociation constant of 1.58 nM for the complex containing the s2U modified TAR hairpin, which is 8-fold lower than for the parent hairpin (12.5 nM). This is a result of a 2-fold faster ka (4.14 × 105 M–1 s–1 versus 2.1 × 105 M–1 s–1) and a 4-fold slower kd (6.55 × 10–4 s–1 versus 2.63 × 10–3 s–1). 1H NMR imino spectra show that the secondary structure interactions involved in complex formation are retained in the s2U-modified complex. Magnesium has been reported to significantly stabilize the TAR–TAR* complex and we found that Mn2+ and Ca2+ are also strongly stabilizing, while Mg2+ exhibited the greatest effect on the complex kinetics. The stabilizing effects of 2-thiouridine indicate that this base modification may be generally useful as an antisense RNA modification for oligonucleotide therapeutics which target RNA loops.  相似文献   

16.
Calcium-dependent lectin I from Pseudomonas aeruginosa (PA-IL) binds specifically to oligosaccharides presenting an α-galactose residue at their nonreducing end, such as the disaccharides αGal1–2βGalOMe, αGal1–3βGalOMe, and αGal1–4βGalOMe. This provides a unique model for studying the effect of the glycosidic linkage of the ligands on structure and thermodynamics of the complexes by means of experimental and theoretical tools. The structural features of PA-IL in complex with the three disaccharides were established by docking and molecular dynamics simulations and compared with those observed in available crystal structures, including PA-IL·αGal1–2βGalOMe complex, which was solved at 2.4 Å resolution and reported herein. The role of a structural bridge water molecule in the binding site of PA-IL was also elucidated through molecular dynamics simulations and free energy calculations. This water molecule establishes three very stable hydrogen bonds with O6 of nonreducing galactose, oxygen from Pro-51 main chain, and nitrogen from Gln-53 main chain of the lectin binding site. Binding free energies for PA-IL in complex with the three disaccharides were investigated, and the results were compared with the experimental data determined by titration microcalorimetry. When the bridge water molecule was included in the free energy calculations, the simulations predicted the correct binding affinity trends with the 1–2-linked disaccharide presenting three times stronger affinity ligand than the other two. These results highlight the role of the water molecule in the binding site of PA-IL and indicate that it should be taken into account when designing glycoderivatives active against P. aeruginosa adhesion.  相似文献   

17.
Energetics of echinomycin binding to DNA   总被引:5,自引:3,他引:2       下载免费PDF全文
Differential scanning calorimetry and UV thermal denaturation have been used to determine a complete thermodynamic profile for the bis-intercalative interaction of the peptide antibiotic echinomycin with DNA. The new calorimetric data are consistent with all previously published binding data, and afford the most rigorous and direct determination of the binding enthalpy possible. For the association of echinomycin with DNA, we found ΔG° = –7.6 kcal mol–1, ΔH = +3.8 kcal mol–1 and ΔS = +38.9 cal mol–1 K–1 at 20°C. The binding reaction is clearly entropically driven, a hallmark of a process that is predominantly stabilized by hydrophobic interactions, though a deeper analysis of the free energy contributions suggests that direct molecular recognition between echinomycin and DNA, mediated by hydrogen bonding and van der Waals contacts, also plays an important role in stabilizing the complex.  相似文献   

18.
The observation of light metal ions in nucleic acids crystals is generally a fortuitous event. Sodium ions in particular are notoriously difficult to detect because their X-ray scattering contributions are virtually identical to those of water and Na+…O distances are only slightly shorter than strong hydrogen bonds between well-ordered water molecules. We demonstrate here that replacement of Na+ by K+, Rb+ or Cs+ and precise measurements of anomalous differences in intensities provide a particularly sensitive method for detecting alkali metal ion-binding sites in nucleic acid crystals. Not only can alkali metal ions be readily located in such structures, but the presence of Rb+ or Cs+ also allows structure determination by the single wavelength anomalous diffraction technique. Besides allowing identification of high occupancy binding sites, the combination of high resolution and anomalous diffraction data established here can also pinpoint binding sites that feature only partial occupancy. Conversely, high resolution of the data alone does not necessarily allow differentiation between water and partially ordered metal ions, as demonstrated with the crystal structure of a DNA duplex determined to a resolution of 0.6 Å.  相似文献   

19.
Scanning force spectroscopy was used to measure the mechanical properties of double stranded RNA molecules in comparison with DNA. We find that, similar to the B–S transition in DNA, RNA molecules are stretched from the assumed A′ conformation to a stretched conformation by applying a defined force (plateau force). The force depends on the G + C content of the RNA and is distinct from that required for the B–S transition of a homologous DNA molecule. After the conformational change, DNA can be further extended by a factor of 0.7 ± 0.2 (S-factor) before melting occurs and the binding of the molecule to the cantilever is finally disrupted. For RNA, the S-factor was higher (1.0 ± 0.2) and more variable. Experiments to measure secondary structures in single stranded RNA yielded a large number of different force-distance curves, suggesting disruption and stretching of various secondary structures. Oriented attachment of the molecules to the substrate, a defined pick-up point and an increased resolution of the instrument could provide the means to analyse RNA secondary structures by scanning force spectroscopy.  相似文献   

20.
Caveolin induces membrane curvature and drives the formation of caveolae that participate in many crucial cell functions such as endocytosis. The central portion of caveolin-1 contains two helices (H1 and H2) connected by a three-residue break with both N- and C-termini exposed to the cytoplasm. Although a U-shaped configuration is assumed based on its inaccessibility by extracellular matrix probes, caveolin structure in a bilayer remains elusive. This work aims to characterize the structure and dynamics of caveolin-1 (D82–S136; Cav182–136) in a DMPC bilayer using NMR, fluorescence emission measurements, and molecular dynamics simulations. The secondary structure of Cav182–136 from NMR chemical shift indexing analysis serves as a guideline for generating initial structural models. Fifty independent molecular dynamics simulations (100 ns each) are performed to identify its favorable conformation and orientation in the bilayer. A representative configuration was chosen from these multiple simulations and simulated for 1 μs to further explore its stability and dynamics. The results of these simulations mirror those from the tryptophan fluorescence measurements (i.e., Cav182–136 insertion depth in the bilayer), corroborate that Cav182–136 inserts in the membrane with U-shaped conformations, and show that the angle between H1 and H2 ranges from 35 to 69°, and the tilt angle of Cav182–136 is 27 ± 6°. The simulations also reveal that specific faces of H1 and H2 prefer to interact with each other and with lipid molecules, and these interactions stabilize the U-shaped conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号