首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We have analyzed the surface polarity of both the cation-independent (CI-MPR) and the cation-dependent (CD-MPR) mannose 6-phosphate receptors in the epithelial Madin-Darby canine kidney (MDCK) cell line grown on polycarbonate filters. The surface localization was studied by plasma membrane domain-specific surface labeling methods and by confocal microscopy using MPR-specific antibodies. The CI-MPR was shown to be exclusively present on the basolateral cell surface. In contrast, the CD-MPR was expressed neither apically nor basolaterally. However, an intracellular pool of CD-MPR could be detected. In MDCKII-RCAr cells, cell surface CI-MPR was shown to recycle between the basolateral plasma membrane and the trans-Golgi network. After exogalactosylation, cell surface CI-MPR acquired sialic acid residues in a time-dependent manner. Furthermore, the basolateral CI-MPR was shown to be functional. Lysosomal enzymes, bearing the mannose 6-phosphate recognition marker, were taken up from the basolateral medium and endocytosed into the cells. Uptake of lysosomal enzymes from the apical side was insignificant and not MPR mediated. These results extend previous immunoelectron microscopic studies on the intracellular polarity of the CI-MPR (Parton, R. G., Prydz, K., Bomsel, M., Simons, K., and Griffiths, G. (1989) J. Cell Biol. 109, 3259-3272) which showed that the CI-MPR was present in basolateral early endosomes and in late endosomes but absent from apical early endosomes.  相似文献   

2.
We have previously shown that two serine residues present in two conserved regions of the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) cytoplasmic domain are phosphorylated in vivo (residues 2421 and 2492 of the full length bovine CI-MPR precursor). In this study, we have used CHO cells to investigate the phosphorylation state of these two serines along the different steps of the CI-MPR exocytic and endocytic recycling pathways. Transport and phosphorylation of the CI-MPR in the biosynthetic pathway were examined using deoxymannojirimycin (dMM), a specific inhibitor of the cis-Golgi processing enzyme alpha-mannosidase I which leads to the accumulation of N-linked high mannose oligosaccharides on glycoproteins. Upon removal of dMM, normal processing to complex-type oligosaccharides (galactosylation and then sialylation) occurs on the newly synthesized glycoproteins, including the CI-MPR which could then be purified and analyzed on lectin affinity columns. Phosphorylation of the newly synthesized CI-MPR was concomitant with the sialylation of its oligosaccharides and appeared as a major albeit transient modification. Phosphorylation of the cell surface CI-MPR was examined during its endocytosis as well as its return to the Golgi using antibody tagging and exogalactosylation. The cell surface CI-MPR was not phosphorylated when it entered clathrin-coated pits or when it moved to the early and late endosomes. In contrast, the surface CI-MPR was phosphorylated when it had been resialylated upon its return to the trans-Golgi network. Subcellular fractionation experiments showed that the phosphorylated CI- MPR and the corresponding kinase were found in clathrin-coated vesicles. Collectively, these results indicate that phosphorylation of the two serines in the CI-MPR cytoplasmic domain is associated with a single step of transport of its recycling pathways and occurs when this receptor is in the trans-Golgi network and/or has left this compartment via clathrin-coated vesicles.  相似文献   

3.
《The Journal of cell biology》1993,121(5):997-1010
Multiple immunolabeling of cryosections was performed to compare the subcellular distributions of the two mannose 6-phosphate receptors (MPRs) involved in the intracellular targeting of lysosomal enzymes: the cation-dependent (CD) and cation-independent (CI) MPR. In two cell types, the human hepatoma cell line HepG2 and BHK cells double transfected with cDNA's encoding for the human CD-MPR and CI-MPR, we found the two receptors at the same sites: the trans-Golgi reticulum (TGR), endosomes, electron-dense cytoplasmic vesicles, and the plasma membrane. In the TGR the two receptors colocalized and were concentrated to the same extent in the same HA I-adaptor positive coated buds and vesicles. Endosomes were identified by the presence of exogenous tracers. The two MPR codistributed to the same endosomes, but semiquantitative analysis showed a relative enrichment of the CI-MPR in endosomes containing many internal vesicles. Two endosomal subcompartments were discerned, the central vacuole and the associated tubules and vesicles (ATV). We found an enrichment of CD-MPR over CI- MPR in the ATV. Lateral segregation of the two receptors within the plane of membranes was also detected on isolated organelles. Double immunolabeling for the CD-MPR and the asialoglycoprotein receptor, which mainly recycles between endosomes and the plasma membrane, revealed that these two receptors were concentrated in different subpopulations of endosomal ATV. The small GTP-binding protein rab4, which has been shown to mediate recycling from endosomes to the plasma membrane, was localized at the cytosolic face of many endosomal ATV. Quantitative analysis of double-immunolabeled cells revealed only a limited codistribution of the MPRs and rab4 in ATV. These data suggest that the two MPRs exit the TGR via the same coated vesicles, but that upon arrival in the endosomes CD-MPR is more rapidly than CI-MPR, segregated into ATV which probably are destined to recycle MPRs to TGR.  相似文献   

4.
Although the distribution of the cation-independent mannose 6-phosphate receptor (CI-MPR) has been well studied, its intracellular itinerary and trafficking kinetics remain uncertain. In this report, we describe the endocytic trafficking and steady-state localization of a chimeric form of the CI-MPR containing the ecto-domain of the bovine CI-MPR and the murine transmembrane and cytoplasmic domains expressed in a CHO cell line. Detailed confocal microscopy analysis revealed that internalized chimeric CI-MPR overlaps almost completely with the endogenous CI-MPR but only partially with individual markers for the trans-Golgi network or other endosomal compartments. After endocytosis, the chimeric receptor first enters sorting endosomes, and it then accumulates in the endocytic recycling compartment. A large fraction of the receptors return to the plasma membrane, but some are delivered to the trans-Golgi network and/or late endosomes. Over the course of an hour, the endocytosed receptors achieve their steady-state distribution. Importantly, the receptor does not start to colocalize with late endosomal markers until after it has passed through the endocytic recycling compartment. In CHO cells, only a small fraction of the receptor is ever detected in endosomes bearing substrates destined for lysosomes (kinetically defined late endosomes). These data demonstrate that CI-MPR takes a complex route that involves multiple sorting steps in both early and late endosomes.  相似文献   

5.
The 300 kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46 kDa cation-dependent MPR (CD-MPR) are key components of the lysosomal enzyme targeting system that bind newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases and divert them from the secretory pathway. Previous studies have mapped two high-affinity Man-6-P binding sites of the CI-MPR to domains 1-3 and 9 and one low-affinity site to domain 5 within its 15-domain extracytoplasmic region. A structure-based sequence alignment predicts that domain 5 contains the four conserved residues (Gln, Arg, Glu, Tyr) identified as essential for Man-6-P binding by the CD-MPR and domains 1-3 and 9 of the CI-MPR. Here we show by surface plasmon resonance (SPR) analyses of constructs containing single amino acid substitutions that these conserved residues (Gln-644, Arg-687, Glu-709, Tyr-714) are critical for carbohydrate recognition by domain 5. Furthermore, the N-glycosylation site at position 711 of domain 5, which is predicted to be located near the binding pocket, has no influence on the carbohydrate binding affinity. Endogenous ligands for the MPRs that contain solely phosphomonoesters (Man-6-P) or phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester, Man-P-GlcNAc) were generated by treating the lysosomal enzyme acid alpha-glucosidase (GAA) with recombinant GlcNAc-phosphotransferase and uncovering enzyme (N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase). SPR analyses using these modified GAAs demonstrate that, unlike the CD-MPR or domain 9 of the CI-MPR, domain 5 exhibits a 14-18-fold higher affinity for Man-P-GlcNAc than Man-6-P, implicating this region of the receptor in targeting phosphodiester-containing lysosomal enzymes to the lysosome.  相似文献   

6.
The 300-kDa cation-independent mannose 6-phosphate receptor (CI-MPR) and the 46-kDa cation-dependent MPR (CD-MPR) are type I integral membrane glycoproteins that play a critical role in the intracellular delivery of newly synthesized mannose 6-phosphate (Man-6-P)-containing acid hydrolases to the lysosome. The extracytoplasmic region of the CI-MPR contains 15 contiguous domains, and the two high affinity ( approximately 1 nm) Man-6-P-binding sites have been mapped to domains 1-3 and 9, with essential residues localized to domains 3 and 9. Domain 5 of the CI-MPR exhibits significant sequence homology to domains 3 and 9 as well as to the CD-MPR. A structure-based sequence alignment was performed that predicts that domain 5 contains the four conserved key residues (Gln, Arg, Glu, and Tyr) identified as essential for carbohydrate recognition by the CD-MPR and domains 3 and 9 of the CI-MPR, but lacks two cysteine residues predicted to form a disulfide bond within the binding pocket. To determine whether domain 5 harbors a carbohydrate-binding site, a construct that encodes domain 5 alone (Dom5His) was expressed in Pichia pastoris. Microarray analysis using 30 different oligosaccharides demonstrated that Dom5His bound specifically to a Man-6-P-containing oligosaccharide (pentamannosyl 6-phosphate). Frontal affinity chromatography showed that the affinity of Dom5His for Man-6-P was approximately 300-fold lower (K(i) = 5.3 mm) than that observed for domains 1-3 and 9. The interaction affinity for the lysosomal enzyme beta-glucuronidase was also much lower (K(d) = 54 microm) as determined by surface plasmon resonance analysis. Taken together, these results demonstrate that the CI-MPR contains a third Man-6-P recognition site that is located in domain 5 and that exhibits lower affinity than the carbohydrate-binding sites present in domains 1-3 and 9.  相似文献   

7.
Mannose 6-phosphate receptor dependent secretion of lysosomal enzymes.   总被引:13,自引:2,他引:11       下载免费PDF全文
BHK and mouse L cells transfected with the cDNA for the human 46 kd mannose 6-phosphate receptor (MPR 46) secrete excessive amounts of newly synthesized mannose 6-phosphate containing polypeptides. The secretion is dependent on the amount, the recycling and the affinity for ligands of MPR 46. Incubation of transfected cells with antibodies blocking the binding site of MPR 46 reduces the secretion, and cotransfection with the cDNA for the human 300 kd mannose 6-phosphate (MPR 300) restores it to normal values. These results indicate that the two mannose 6-phosphate receptors compete for binding of newly synthesized ligands. In contrast to ligands bound to MPR 300, those bound to the MPR 46 are transported to and released at a site, e.g. early endosomes or plasma membrane, from where they can exit into the medium. Since antibodies blocking the binding site of MPR 46 reduce secretion also in non-transfected BHK and mouse L cells, at least part of the basal secretion of M6P-containing polypeptides is mediated by the endogenous MPR 46.  相似文献   

8.
Thyroglobulin has been shown to be phosphorylated and to carry the mannose 6-phosphate (M6P) signal in terminal position. In order to investigate whether the cation-independent mannose 6-phosphate receptor (CI-MPR) can possibly play a role in the transport of thyroglobulin the localization of the receptor was analyzed in thyroid follicle cells. The immunocytochemical observations showed that the CI-MPR is primarily located in elements of the endocytic pathway such as coated pits and endosomes. This localization of the CI-MPR in thyrocytes differs from the receptor sites in other cell types by the rare occurrence of the CI-MPR in cisternae of the Golgi complex. The observations are interpreted as an indication that the relatively small amount of receptor in the Golgi complex might be occupied primarily by lysosomal hydrolases. The CI-MPR in thyrocytes might, therefore, be unable to bind and to convey thyroglobulin efficiently. The receptor is, however, a binding site for thyroglobulin at the apical plasma membrane and may, therefore, be involved in the binding of thyroglobulin and its transfer from the follicle lumen to lysosomes.  相似文献   

9.
The rat insulin-like growth factor II (IGF-II) receptor develops transmembrane signaling functions by directly coupling to a guanine nucleotide-binding protein (G protein) having a 40-kDa alpha subunit, Gi-2, whereas recent studies have indicated that the IGF-II receptor is a molecule identical to the cation-independent mannose 6-phosphate receptor (CI-MPR), a receptor implicated in lysosomal enzyme sorting. In this study, by using vesicles reconstituted with the clonal human CI-MPR and G proteins, we indicated that the CI-MPR could stimulate guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding and GTPase activities of Gi proteins in response to IGF-II. The stimulatory effect of IGF-II on Gi-2 depended on the reconstituted amount of the CI-MPR; it could not be found in vesicles reconstituted with Gi-2 alone; and it was also observed on Gi-1 reconstituted with the CI-MPR in phospholipid vesicles. Of interest, such stimulatory effect was not reproduced by Man-6-P in CI-MPR vesicles reconstituted with either G protein. Furthermore, the affinity for Man-6-P-mediated beta-glucuronidase binding to several kinds of native cell membranes was not reduced by 100 microM GTP gamma S. Instead, however, Man-6-P dose-dependently inhibited IGF-II-induced Gi-2 activation with an IC50 of 6 microM in vesicles reconstituted with the CI-MPR and Gi-2. The action of 100 nM IGF-II was completely abolished by 1 mM Man-6-P. Such an inhibitory effect of Man-6-P was reproduced by 4000 times lower concentrations of beta-glucuronidase or similar concentrations of fructose 1-phosphate, but not by mannose or glucose 6-phosphate. These results indicate that the human CI-MPR has two distinct signaling functions that positively or negatively regulate the activity of Gi-2 in response to the binding of IGF-II or Man-6-P.  相似文献   

10.
In higher eukaryotes, the transport of soluble lysosomal enzymes involves the recognition of their mannose 6-phosphate signal by two receptors: the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor (CD-MPR). It is not known why these two different proteins are present in most cell types. To investigate their relative function in lysosomal enzyme targeting, we created cell lines that lack either or both MPRs. This was accomplished by mating CD-MPR-deficient mice with Thp mice that carry a CI-MPR deleted allele. Fibroblasts prepared from embryos that lack the two receptors exhibit a massive missorting of multiple lysosomal enzymes and accumulate undigested material in their endocytic compartments. Fibroblasts that lack the CI-MPR, like those lacking the CD-MPR, exhibit a milder phenotype and are only partially impaired in sorting. This demonstrates that both receptors are required for efficient intracellular targeting of lysosomal enzymes. More importantly, comparison of the phosphorylated proteins secreted by the different cell types indicates that the two receptors may interact in vivo with different subgroups of hydrolases. This observation may provide a rational explanation for the existence of two distinct mannose 6-phosphate binding proteins in mammalian cells.  相似文献   

11.
The endocytic trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR) involves multiple sorting steps. A cluster of acidic amino acids followed by a dileucine motif in the cytoplasmic tail has been proposed to mediate receptor sorting from the trans Golgi network (TGN) to late endosomes. Mutations in this motif impair lysosomal enzyme sorting by preventing association of CI-MPR with coat proteins. The role of the acidic cluster/dileucine motif in the post-endocytic transport of the receptor was examined using the CI-MPR mutants, AC01 and D160E (Chen HJ, Yuan J, Lobel P. J Biol Chem 1997;272:7003-7012). Following internalization, wild type (WT) CI-MPR is transported through sorting endosomes into the endocytic recycling compartment (ERC), after which it traffics to the TGN and other organelles. However, the mutants localize mostly to the ERC and only a small portion reaches the TGN, suggesting that the sorting of the CI-MPR mutants from the ERC into the TGN is severely impaired. We observed no defect in receptor internalization or in the rate of tail mutant recycling to the cell surface compared to the WT. These results demonstrate that the acidic cluster/dileucine motif of CI-MPR is critical for receptor sorting at early stages of intracellular transport following endocytosis.  相似文献   

12.
It is well established that dynamin is involved in clathrin-dependent endocytosis, but relatively little is known about possible intracellular functions of this GTPase. Using confocal imaging, we found that endogenous dynamin was associated with the plasma membrane, the trans-Golgi network, and a perinuclear cluster of cation-independent mannose 6-phosphate receptor (CI-MPR)-containing structures. By electron microscopy (EM), it was shown that these structures were late endosomes and that the endogenous dynamin was preferentially localized to tubulo-vesicular appendices on these late endosomes. Upon induction of the dominant-negative dynK44A mutant, confocal microscopy demonstrated a redistribution of the CI-MPR in mutant-expressing cells. Quantitative EM analysis of the ratio of CI-MPR to lysosome-associated membrane protein-1 in endosome profiles revealed a higher colocalization of the two markers in dynK44A-expressing cells than in control cells. Western blot analysis showed that dynK44A-expressing cells had an increased cellular procathepsin D content. Finally, EM revealed that in dynK44A-expressing cells, endosomal tubules containing CI-MPR were formed. These results are in contrast to recent reports that dynamin-2 is exclusively associated with endocytic structures at the plasma membrane. They suggest instead that endogenous dynamin also plays an important role in the molecular machinery behind the recycling of the CI-MPR from endosomes to the trans-Golgi network, and we propose that dynamin is required for the final scission of vesicles budding from endosome tubules.  相似文献   

13.
Endocytosis of human spleen beta-glucuronidase by human fibroblasts can be completely impaired by the competitive inhibitor mannose 6-phosphate or by pretreatment with acid phosphatase or endoglycosidases H or F. However, endocytosis of bovine spleen and liver beta-glucuronidase is partially impaired by the same treatments, suggesting that the bovine enzyme contains two endocytosis recognition markers located in separate enzyme domains. The mannose 6-phosphate recognition marker seems to be responsible for approximately 23% of the bovine enzyme endocytosis. The existence of two lysosomal endocytosis systems in human fibroblasts is supported by the following facts: (a) the rate of endocytosis of mannose 6-phosphate-containing human beta-glucuronidase was not affected by the presence of high levels of the bovine enzyme (which has only the other marker). (b) Anti-215K mannose 6-phosphate receptor antibodies selectively impair the endocytosis of the beta-glucuronidase containing mannose 6-phosphate. (c) Weak bases exert a differential effect on human and bovine endocytosis. beta-Glucuronidase internalized by either system is targeted to secondary lysosomes of human beta-glucuronidase-deficient fibroblasts, where it is able to degrade accumulated glycosaminoglycans. These results suggest that human fibroblasts have two different and independent endocytic systems for targeting of acid hydrolases to lysosomes.  相似文献   

14.
The mammalian cation-independent mannose 6-phosphate receptor (CI-MPR) binds mannose 6-phosphate-bearing glycoproteins and insulin-like growth factor (IGF)-II. However, the CI-MPR from the opossum has been reported to bind bovine IGF-II with low affinity (Dahms, N. M., Brzycki-Wessell, M. A., Ramanujam, K. S., and Seetharam, B. (1993) Endocrinology 133, 440-446). This may reflect the use of a heterologous ligand, or it may represent the intrinsic binding affinity of this receptor. To examine the binding of IGF-II to a marsupial CI-MPR in a homologous system, we have previously purified kangaroo IGF-II (Yandell, C. A., Francis, G. L., Wheldrake, J. F., and Upton, Z. (1998) J. Endocrinol. 156, 195-204), and we now report the purification and characterization of the CI-MPR from kangaroo liver. The interaction of the kangaroo CI-MPR with IGF-II has been examined by ligand blotting, radioreceptor assay, and real-time biomolecular interaction analysis. Using both a heterologous and homologous approach, we have demonstrated that the kangaroo CI-MPR has a lower binding affinity for IGF-II than its eutherian (placental mammal) counterparts. Furthermore, real-time biomolecular interaction analysis revealed that the kangaroo CI-MPR has a higher affinity for kangaroo IGF-II than for human IGF-II. The cDNA sequence of the kangaroo CI-MPR indicates that there is considerable divergence in the area corresponding to the IGF-II binding site of the eutherian receptor. Thus, the acquisition of a high-affinity binding site for regulating IGF-II appears to be a recent event specific to the eutherian lineage.  相似文献   

15.
A kinase activity of purified bovine brain clathrin-coated vesicles phosphorylates the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) with high efficiency (Km approximately 50-100 nM). The kinase copurifies in gel filtration, adsorption on hydroxylapatite, and ion exchange chromatography with the HAI assembly proteins which are part of the coat of Golgi-derived clathrin-coated vesicles. The kinase is associated to the 47-kDa subunit of the complex and exhibits properties similar to a casein kinase II: it uses either ATP or GTP as substrate and its activity is stimulated by poly-L-lysine and inhibited by heparin. Using different domains of the CI-MPR as potential substrates, we show that the phosphorylation is restricted to its cytoplasmic domain. Inhibition studies using synthetic peptides and two-dimensional mapping of the tryptic phosphopeptides indicate that this posttranslational modification occurs on serines 2421 and 2492 of the full-length bovine CI-MPR precursor, residues which are located in typical casein-kinase II recognition sequences. Labeling of Madin-Darby bovine kidney cells followed by immunoprecipitation of the CI-MPR and analysis of the corresponding tryptic phosphopeptides shows that the same serines are phosphorylated in vivo.  相似文献   

16.
Up to 4% of the human 46-kDa mannose 6-phosphate receptor (MPR46) expressed in Madin-Darby canine kidney (MDCK) cells are localized at the cell surface. At steady state, the expression of MPR46 on the apical surface of filter-grown MDCK cells is about sixfold lower than on the basolateral surface. The cytoplasmic domain of the MPR46 is phosphorylated on serine 56 at low stoichiometry. By expressing mutant MPR46 we have shown that the MPR46 phosphorylation site is required for delivery to the plasma membrane. In addition, mutant MPR46 expressed in MPR-deficient mouse embryonic fibroblasts were not detected at the cell surface and their ability to sort newly synthesized cathepsin D was not altered. Since the loss of MPR46 phosphorylation correlates with the lack of cell surface expression, phosphorylation of serine 56 may either function as a direct plasma membrane targeting signal or inhibit MPR46 recycling from endosomes to Golgi, resulting in trafficking to the cell surface.  相似文献   

17.
Using a semiquantitative immunogold technique on ultrathin cryosections, the in situ subcellular distributions of the cation-dependent, 46-kDa mannose 6-phosphate receptor (small MPR) and of the cation-independent, 270-kDa mannose 6-phosphate receptor (large MPR) were for the first time compared. U937 cells were chosen because of their relatively high content of both receptor species. Of each receptor, about 12% occurred at the cell surface, 2% in the Golgi stack, and about 25% in vacuoles resembling endosomal vacuoles. About half of both receptors was found in tubules, presumably belonging to endosomes and trans-Golgi reticulum. It was concluded that the distribution of the small and large MPR were roughly similar. The only exception was formed by electron-dense vesicles occurring in the trans-Golgi region and surrounding endosomes. Dense vesicles contained significantly less small MPR (7%) than large MPR (12%).  相似文献   

18.
It has been reported that an accumulation of cholesterol within late endosomes/lysosomes in Niemann-Pick type C (NPC) fibroblasts and U18666A-treated cells causes impairment of retrograde trafficking of the cation-independent mannose 6-phosphate/IGF-II receptor (MPR300) from late endosomes to the trans-Golgi network (TGN). In apparent conflict with these results, here we show that as in normal fibroblasts, MPR300 localizes exclusively to the TGN in NPC fibroblasts as well as in normal fibroblasts treated with U18666A. This localization can explain why several lysosomal properties and functions, such as intracellular lysosomal enzyme activity and localization, the biosynthesis of cathepsin D, and protein degradation, are all normal in NPC fibroblasts. These results, therefore, suggest that the accumulation of cholesterol in late endosomes/lysosomes does not affect the retrieval of MPR300 from endosomes to the TGN. Furthermore, treatment of normal and NPC fibroblasts with chloroquine, which inhibits membrane traffic from early endosomes to the TGN, resulted in a redistribution of MPR300 to EEA1 and internalized transferrin-positive, but LAMP-2-negative, early-recycling endosomes. We propose that in normal and NPC fibroblasts, MPR300 is exclusively targeted from the TGN to early endosomes, from where it rapidly recycles back to the TGN without being delivered to late endosomes. This notion provides important insights into the definition of late endosomes, as well as the biogenesis of lysosomes.  相似文献   

19.
A receptor that binds the lysosomal enzyme alpha-mannosidase via mannose 6-phosphate moieties (mannose 6-phosphate receptor) was purified from Swarm-rat chondrosarcoma and bovine liver microsomal membranes. Receptor-reconstituted liposomes were prepared by dialysis of taurodeoxycholate-dispersed lipids with purified mannose 6-phosphate receptor. Liposomes appeared by electron microscopy as 60-120 nm unilamellar vesicles. Receptor-reconstituted liposomes retained the ability to bind alpha-mannosidase specifically. Binding was saturable with an apparent Kd of 1 nM and was competitively inhibited by mannose 6-phosphate (Ki 2mM). Liposomes containing entrapped 125I-bovine serum albumin were used to demonstrate that treatment with 0.045% taurodeoxycholate rendered liposomes permeable to macromolecules without solubilizing the membrane. Receptor orientation in the liposome membrane was established by measuring binding of ligand to intact and detergent-treated liposomes. Unlike coated vesicles, which contain cryptic mannose 6-phosphate receptors [Campbell, Fine, Squicciarini & Rome (1983) J. Biol. Chem. 258, 2526-2533], treatment of liposomes with detergent revealed no additional cryptic binding sites. In addition, treatment of liposomes with 0.75% trypsin abolished total receptor binding activity. The results suggest that the receptor is inserted with its binding site facing the outside of the liposome.  相似文献   

20.
Oculocerebrorenal syndrome of Lowe is caused by mutation of OCRL1, a phosphatidylinositol 4,5-bisphosphate 5-phosphatase localized at the Golgi apparatus. The cellular role of OCRL1 is unknown, and consequently the mechanism by which loss of OCRL1 function leads to disease is ill defined. Here, we show that OCRL1 is associated with clathrin-coated transport intermediates operating between the trans-Golgi network (TGN) and endosomes. OCRL1 interacts directly with clathrin heavy chain and promotes clathrin assembly in vitro. Interaction with clathrin is not, however, required for membrane association of OCRL1. Overexpression of OCRL1 results in redistribution of clathrin and the cation-independent mannose 6-phosphate receptor (CI-MPR) to enlarged endosomal structures that are defective in retrograde trafficking to the TGN. Depletion of cellular OCRL1 also causes partial redistribution of a CI-MPR reporter to early endosomes. These findings suggest a role for OCRL1 in clathrin-mediated trafficking of proteins from endosomes to the TGN and that defects in this pathway might contribute to the Lowe syndrome phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号