首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S R Stone  P J Braun  J Hofsteenge 《Biochemistry》1987,26(15):4617-4624
The contributions of various regions of human alpha-thrombin to the formation of the tight complex with hirudin have been assessed by using derivatives of thrombin. alpha-Thrombin in which the active-site serine was modified with diisopropyl fluorophosphate was able to bind hirudin, but its affinity for hirudin was decreased by 10(3)-fold compared to unmodified alpha-thrombin. Modification of the active-site histidine with D-Phe-Pro-Arg-CH2Cl resulted in a form of thrombin with a 10(6)-fold reduced affinity for hirudin. gamma-Thrombin is produced by proteolytic cleavage of alpha-thrombin in two surface loops corresponding to residues 65-83 and 146-150 in alpha-chymotrypsin [Berliner, L. J. (1984) Mol. Cell. Biochem. 61, 159-172; Birktoft, J. J., & Blow, D. M. (1972) J. Mol. Biol. 68, 187-240]. The gamma-thrombin-hirudin complex had a dissociation constant that was 10(6)-fold higher than that of alpha-thrombin. Treatment of alpha-thrombin with pancreatic elastase resulted in a form of thrombin only cleaved in the loop corresponding to residues 146-150 in alpha-chymotrypsin, and this form of thrombin had only a slightly reduced affinity for hirudin. By using limited proteolysis with trypsin, it was possible to isolate beta-thrombin which contained a single cleavage in the loop corresponding to residues 65-83 in alpha-chymotrypsin. This form of thrombin had a 100-fold decrease in affinity for hirudin. Kinetic analysis of the binding of hirudin to beta-thrombin indicated that the 100-fold decrease in affinity was predominantly due to a decrease in the rate of association of the two molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The activation of human platelets by alpha-thrombin is mediated at least in part by cleavage of protease-activated G-protein-coupled receptors, PAR-1 and PAR-4. Platelet glycoprotein Ibalpha also has a high affinity binding site for alpha-thrombin, and this interaction contributes to platelet activation through a still unknown mechanism. In the present study the hypothesis that GpIbalpha may contribute to platelet activation by modulating the hydrolysis of PAR-1 on the platelet membrane was investigated. Gel-filtered platelets from normal individuals were stimulated by alpha-thrombin, and the kinetics of PAR-1 hydrolysis by enzyme was followed with flow cytometry using an anti-PAR-1 monoclonal antibody (SPAN 12) that recognizes only intact PAR-1 molecules. This strategy allowed measurement of the apparent k(cat)/K(m) value for thrombin hydrolysis of PAR-1 on intact platelets, which was equal to 1.5 +/- 0.1 x 10(7) m(-1) sec(-1). The hydrolysis rate of PAR-1 by thrombin was measured under conditions in which thrombin binding to GpIb was inhibited by different strategies, with the following results. 1) Elimination of GpIbalpha on platelet membranes by mocarhagin treatment reduced the k(cat)/K(m) value by about 6-fold. 2) A monoclonal anti-GpIb antibody reduced the apparent k(cat)/K(m) value by about 5-fold. 3) An oligonucleotide DNA aptamer, HD22, which binds to the thrombin heparin-binding site (HBS) and inhibits thrombin interaction with GpIbalpha, reduced the apparent k(cat)/K(m) value by about 5-fold. 4) Displacement of alpha-thrombin from the binding site on GpIb using PPACK-thrombin reduced the apparent k(cat)/K(m) value by about 5-fold, and 5) mutation at the HBS of thrombin (R98A) caused a 5-fold reduction of the apparent k(cat)/K(m) value of PAR-1 hydrolysis. Altogether these results show that thrombin interaction with GpIb enhances the specificity of thrombin cleavage of PAR-1 on intact platelets, suggesting that GpIb may function as a "cofactor" for PAR-1 activation by thrombin.  相似文献   

3.
A R Rezaie 《Biochemistry》1999,38(44):14592-14599
The cofactors heparin, vitronectin (VN), and thrombomodulin (TM) modulate the reactivity of alpha-thrombin with plasminogen activator inhibitor (PAI-1). While heparin and VN accelerate the reaction by approximately 2 orders of magnitude, TM protects alpha-thrombin from rapid inactivation by PAI-1 in the presence of VN. To understand how these cofactors function, we studied the kinetics of PAI-1 inactivation of alpha-thrombin, the exosite 1 variant gamma-thrombin, the exosite 2 mutant R93,97,101A thrombin, and recombinant meizothrombin in both the absence and presence of these cofactors. Heparin and VN accelerated the second-order association rate constant [k(2) = (7.9 +/- 0.5) x 10(2) M(-)(1) s(-)(1)] of alpha-thrombin with PAI-1 approximately 200- and approximately 240-fold, respectively. The k(2) value for gamma-thrombin [(7.9 +/- 0.7) x 10(1) M(-)(1) s(-)(1)] was impaired 10-fold, but was enhanced by heparin and VN approximately 280- and approximately 75-fold, respectively. Similar to inactivation of gamma-thrombin, PAI-1 inactivation of alpha-thrombin in complex with the epidermal growth factor-like domains 4-6 of TM (TM4-6) was impaired approximately 10-fold. The exosite 2 mutant R93,97,101A thrombin, which was previously shown not to bind heparin, and meizothrombin, in which exosite 2 is masked, reacted with PAI-1 at similar rates in both the absence and presence of heparin [k(2) = (1.3-1.5) x 10(3) M(-)(1) s(-)(1) for R93,97,101A thrombin and k(2) = (3.6-5.1) x 10(2) M(-)(1) s(-)(1) for meizothrombin]. Unlike heparin, however, VN enhanced the k(2) of R93,97,101A thrombin and meizothrombin inactivation approximately 80- and approximately 30-fold, respectively. Continuous kinetic analysis as well as competition kinetic studies in the presence of S195A thrombin suggested that the accelerating effect of VN or heparin occurs primarily by lowering the dissociation constant (K(d)) for formation of a noncovalent, Michaelis-type complex. Analysis of these results suggest that (1) heparin binds to exosite 2 of alpha-thrombin to accelerate the reaction by a template mechanism, (2) VN accelerates PAI-1 inactivation of alpha-thrombin by lowering the K(d) for initial complex formation by an unknown mechanism that does not require binding to either exosite 1 or exosite 2 of alpha-thrombin, (3) alpha-thrombin may have a binding site for PAI-1 within or near exosite 1, and (4) TM occupancy of exosite 1 partially accounts for the protection of thrombin from rapid inactivation by PAI-1 in the presence of vitronectin.  相似文献   

4.
Selective cleavage of polypeptides by alpha-thrombin can be reasonably predicted [Chang, J.Y. (1985) Eur. J. Biochem. 151,217-224]. This knowledge was applied to the selective cleavage of antibody light chains with the aim of producing intact fragments of both variable region and constant region. (a) Mouse kappa light chains 10K26 and 10K44 from anti-(azobenzene arsonate) antibodies contain 20 Arg/Lys-Xaa bonds. Only two of them, one ProArg-Thr bond located at the joint of the variable region with the joining peptide and one ValLys-Ser bond located near the carboxyl-terminal end of the constant region, were selectively cleaved by alpha-thrombin. The ProArg-Thr bond has a 50% cleavage time of about 10 min under the designated conditions, whereas the ValLys-Ser has a 50% cleavage time approx. 9-10 h. A single selective cleavage at the joining position of the variable region and joining peptide can be achieved by short-time thrombin digestion. Fragments containing intact variable region (1-96) and intact joining peptide-constant region (97-214) obtained from both denatured and native light chains of 10K26 can be separated by gel filtration. (b) lambda light chains from both human and mouse all begin with the GlnProLys-(Ala/Ser) structure (positions 108-111) at their constant regions. This ProLys-Ala/Ser bond is also susceptible to specific thrombin cleavage. Four human lambda chain (KERN, NEI, NEW, VOR) and one mouse lambda chain (RPC20) were shown to be selectively cleaved by thrombin at these ProLys-Ala/Ser bonds. For human lambda chains, the 50% cleavage time at this ProLys-Ala bond was approx. 3-4 h under the designated conditions. Six additional thrombin specific cleavages were also detected within the variable regions of NEI, VOR and RPC-20. (c) Heparin inhibits thrombin cleavage of Arg/Lys-Xaa bonds located near the center of the antibody light chain, but slightly activates thrombin cleavage of those located near the amino or carboxyl-terminal ends of the protein. The significance of these findings is threefold. (a) It demonstrates that selective cleavage of large polypeptides by alpha-thrombin can also be reasonably predicted. (b) It provides a useful method for light chain fragmentation which can greatly facilitate amino acid sequencing of antibodies. (c) It serves to generate fragments containing intact variable regions and constant regions from antibody light chains of human and mouse. Such fragments may be useful for chemical semisynthesis of a human-mouse light chain chimeras.  相似文献   

5.
The interaction of the human adenovirus proteinase (AVP) and AVP-DNA complexes with the 11-amino acid cofactor pVIc was characterized. The equilibrium dissociation constant for the binding of pVIc to AVP was 4.4 microM. The binding of AVP to 12-mer single-stranded DNA decreased the K(d) for the binding of pVIc to AVP to 0.09 microM. The pVIc-AVP complex hydrolyzed the substrate with a Michaelis constant (K(m)) of 3.7 microM and a catalytic rate constant (k(cat)) of 1.1 s(-1). In the presence of DNA, the K(m) increased less than 2-fold, and the k(cat) increased 3-fold. Alanine-scanning mutagenesis was performed to determine the contribution of individual pVIc side chains in the binding and stimulation of AVP. Two amino acid residues, Gly1' and Phe11', were the major determinants in the binding of pVIc to AVP, while Val2' and Phe11' were the major determinants in stimulating enzyme activity. Binding of AVP to DNA greatly suppressed the effects of the alanine substitutions on the binding of mutant pVIcs to AVP. Binding of either or both of the cofactors, pVIc or the viral DNA, to AVP did not dramatically alter its secondary structure as determined by vacuum ultraviolet circular dichroism. pVIc, when added to Hep-2 cells infected with adenovirus serotype 5, inhibited the synthesis of infectious virus, presumably by prematurely activating the proteinase so that it cleaved virion precursor proteins before virion assembly, thereby aborting the infection.  相似文献   

6.
Hypersensitive substrate for ribonucleases.   总被引:4,自引:1,他引:3       下载免费PDF全文
A substrate for a hypersensitive assay of ribonucleolytic activity was developed in a systematic manner. This substrate is based on the fluorescence quenching of fluorescein held in proximity to rhodamine by a single ribonucleotide embedded within a series of deoxynucleotides. When the substrate is cleaved, the fluorescence of fluorescein is manifested. The optimal substrate is a tetranucleotide with a 5',6-carboxyfluorescein label (6-FAM) and a 3',6-carboxy-tetramethylrhodamine (6-TAMRA) label: 6-FAM-dArUdAdA-6-TAMRA. The fluorescence of this substrate increases 180-fold upon cleavage. Bovine pancreatic ribonuclease A (RNase A) cleaves this substrate with a k (cat)/ K (m)of 3.6 x 10(7)M(-1)s(-1). Human angiogenin, which is a homolog of RNase A that promotes neovascularization, cleaves this substrate with a k (cat)/ K (m)of 3. 3 x 10(2)M(-1)s(-1). This value is >10-fold larger than that for other known substrates of angio-genin. With these attributes, 6-FAM-dArUdAdA-6-TAMRA is the most sensitive known substrate for detecting ribo-nucleolytic activity. This high sensitivity enables a simple protocol for the rapid determination of the inhibition constant ( K (i)) for competitive inhibitors such as uridine 3'-phosphate and adenosine 5'-diphos-phate.  相似文献   

7.
Thrombomodulin decreased by 20-30% the Michaelis constant of two tripeptidyl p-nitroanilide substrates of thrombin. Thrombomodulin increased the rate of inactivation of thrombin by two peptidyl chloromethane inhibitors by a similar amount. This effect appeared to be due to a decrease in the dissociation constants of the inhibitors. An improved method for the separation of fibrinopeptides A and B by h.p.l.c. was developed, and this method was used to study the effect of thrombomodulin on the thrombin-catalysed cleavage of fibrinogen. In this reaction, thrombomodulin was a competitive inhibitor with respect to the A alpha-chain of fibrinogen. The release of fibrinopeptide B was also inhibited by thrombomodulin. Analysis of the inhibition caused by thrombomodulin with respect to fibrinopeptides A and B yielded the same dissociation constant for the thrombin-thrombomodulin complex. In the presence of thrombomodulin, the rate of inactivation of thrombin by antithrombin III was stimulated 4-fold. This stimulation showed saturation kinetics with respect to thrombomodulin. Thrombomodulin was found to compete with hirudin for a binding site on thrombin. As a result of this competition, hirudin became a slow-binding inhibitor of thrombin at high thrombomodulin concentrations. Estimates of the dissociation constant for thrombomodulin were obtained in several of the above experiments, and the weighted mean value was 0.7 nM.  相似文献   

8.
The crystal structure of a heparin cofactor II (HCII)-thrombin Michaelis complex has revealed extensive contacts encompassing the N-terminal domain of HCII and exosite I of the proteinase. In contrast, the location of the N-terminal extension in the uncomplexed inhibitor was unclear. Using a disulfide cross-linking strategy, we demonstrate that at least three different sites (positions 52, 54 and 68) within the N terminus may be tethered in a reformable manner to position 195 in the loop region between helix D and strand s2A of the HCII molecule, suggesting that the N-terminal domain may interact with the inhibitor scaffold in a permissive manner. Cross-linking of the N terminus to the HCII body does not strongly affect the inhibition of alpha-chymotrypsin, indicating that the reactive site loop sequences of the engineered inhibitor variants, required for interaction with one of the HCII target enzymes, are normally accessible. In contrast, intramolecular tethering of the N-terminal extension results in a drastic decrease of alpha-thrombin inhibitory activity, both in the presence and in the absence of glycosaminoglycans. Treatment with dithiothreitol and iodoacetamide restores activity towards alpha-thrombin, suggesting that release of the N terminus of HCII is an important component of the multistep interaction between the inhibitor and alpha-thrombin.  相似文献   

9.
The synthetic gene encoding human enteropeptidase light chain (L-HEP) was cloned into plasmid pET-32a downstream from the gene of fusion partner thioredoxin immediately after the DNA sequence encoding the enteropeptidase recognition site. The fusion protein thioredoxin (Trx)/L-HEP was expressed in Escherichia coli BL21(DE3). Autocatalytic cleavage of the fusion protein and activation of recombinant L-HEP were achieved by solubilization of inclusion bodies and refolding of Trx/L-HEP fusion protein. The kinetic parameters of human and bovine enteropeptidases in the presence of different concentrations of Ca2+ and Na+ for cleavage of the specific substrate GD4K-na and nonspecific substrates such as small ester Z-Lys-SBzl and chromogenic substrates Z-Ala-X-Arg-pNA have been comparatively analyzed. It is demonstrated that positively charged ions increased the Michaelis constant (Km) for cleavage of specific substrate GD4K-na, while the catalytic constant (k(cat)) remained practically unchanged. L-HEP demonstrated secondary specificity to the chromogenic substrate Z-Ala-Phe-Arg-pNA with k(cat)/Km 260 mM(-1) x sec(-1). Enzymatic activity of L-HEP was suppressed by inhibitors of trypsin-like and cysteine (E-64), but not metallo-, amino-, or chymotrypsin-like proteinases. L-HEP was active over a broad range of pH (6-9) with optimum activity at pH 7.5, and it demonstrated high stability to different denaturing agents.  相似文献   

10.
Human kallikrein hK3 (prostate-specific antigen) is a chymotrypsin-like serine protease which is widely used in the diagnosis of prostate cancer. Assays of the enzymatic activity of hK3 in extracellular fluids have been limited by a lack of sensitive synthetic substrates. This report describes the design of a series of internally quenched fluorescent peptides containing an amino acid sequence based on preferential hK3 cleavage sites in semenogelins. Those were identified by 2-D gel electrophoresis analysis and N-terminal sequencing of semenogelin fragments generated by ex vivo proteolysis in freshly ejaculated semen. These peptides were cleaved by hK3 at the C-terminal of certain tyrosyl or glutaminyl residues with k(cat)/K(m) values of 15000-60000 M(-1) s(-1). The substrate Abz-SSIYSQTEEQ-EDDnp was cleaved at the Tyr-Ser bond with a specificity constant k(cat)/K(m) of 60000 M(-1) s(-1), making it the best substrate for hK3 described to date.  相似文献   

11.
The viral serpin, crmA, is distinguished by its small size and ability to inhibit both serine and cysteine proteases utilizing a reactive loop shorter than most other serpins. Here, we characterize the mechanism of crmA inhibition of serine proteases and probe the reactive loop length requirements for inhibition with two crmA reactive loop variants. P1 Arg crmA inhibited the trypsin-like proteases, thrombin, and factor Xa, with moderate efficiencies (approximately 10(2)-10(4) M(-1)sec(-1)), near equimolar inhibition stoichiometries, and formation of SDS-stable complexes which were resistant to dissociation (k(diss) approximately 10(-7) sec(-1)), consistent with a serpin-type inhibition mechanism. Trypsin was not inhibited, but efficiently cleaved the variant crmA as a substrate (k(cat)/K(M) of approximately 10(6) M(-1) sec(-1)). N-terminal sequencing confirmed that the P1 Arg-P1'Cys bond was the site of cleavage. Altering the placement of the Arg in a double mutant P1 Gly-P1'Arg crmA resulted in minimal ability to inhibit any of the trypsin family proteases. This variant was cleaved by the proteases approximately 10-fold less efficiently than P1 Arg crmA. Surprisingly, pancreatic elastase was rapidly inhibited by wild-type and P1 Arg crmAs (10(5)-10(6) M(-1)sec(-1)), although with elevated inhibition stoichiometries and higher rates of complex dissociation. N-terminal sequencing showed that elastase attacked the P1'Cys-P2'Ala bond, indicating that crmA can inhibit proteases using a reactive loop length similar to that used by other serpins, but with variations in this inhibition arising from different effective P2 residues. These results indicate that crmA inhibits serine proteases by the established serpin conformational trapping mechanism, but is unusual in inhibiting through either of two adjacent reactive sites.  相似文献   

12.
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of the P-O(5') bond in RNA. Although this enzyme has been the object of much landmark work in bioorganic chemistry, the nature of its rate-limiting transition state and its catalytic rate enhancement had been unknown. Here, the value of k(cat)/K(m) for the cleavage of UpA by wild-type RNase A was found to be inversely related to the concentration of added glycerol. In contrast, the values of k(cat)/K(m) for the cleavage of UpA by a sluggish mutant of RNase A and the cleavage of the poor substrate UpOC(6)H(4)-p-NO(2) by wild-type RNase A were found to be independent of glycerol concentration. Yet, UpA cleavage by the wild-type and mutant enzymes was found to have the same dependence on sucrose concentration, indicating that catalysis of UpA cleavage by RNase A is limited by desolvation. The rate of UpA cleavage by RNase A is maximal at pH 6.0, where k(cat) = 1.4 × 10(3) s(-1) and k(cat)/K(m) = 2.3 × 10(6) M(-1)s(-1) at 25°C. At pH 6.0 and 25°C, the uncatalyzed rate of [5,6-(3)H]Up[3,5,8-(3)H]A cleavage was found to be k(uncat) = 5 × 10(-9) s(-1) (t(1/2) = 4 years). Thus, RNase A enhances the rate of UpA cleavage by 3 × 10(11)-fold by binding to the transition state for P-O(5') bond cleavage with a dissociation constant of <2 × 10(-15) M.  相似文献   

13.
The binding of plasminogen activator inhibitor-1 (PAI-1) to serine proteinases, such as tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), is mediated by the exosite interactions between the surface-exposed variable region-1, or 37-loop, of the proteinase and the distal reactive center loop (RCL) of PAI-1. Although the contribution of such interactions to the inhibitory activity of PAI-1 has been established, the specific mechanistic steps affected by interactions at the distal RCL remain unknown. We have used protein engineering, stopped-flow fluorimetry, and rapid acid quenching techniques to elucidate the role of exosite interactions in the neutralization of tPA, uPA, and beta-trypsin by PAI-1. Alanine substitutions at the distal P4' (Glu-350) and P5' (Glu-351) residues of PAI-1 reduced the rates of Michaelis complex formation (k(a)) and overall inhibition (k(app)) with tPA by 13.4- and 4.7-fold, respectively, whereas the rate of loop insertion or final acyl-enzyme formation (k(lim)) increased by 3.3-fold. The effects of double mutations on k(a), k(lim), and k(app) were small with uPA and nonexistent with beta-trypsin. We provide the first kinetic evidence that the removal of exosite interactions significantly alters the formation of the noncovalent Michaelis complex, facilitating the release of the primed side of the distal loop from the active-site pocket of tPA and the subsequent insertion of the cleaved reactive center loop into beta-sheet A. Moreover, mutational analysis indicates that the P5' residue contributes more to the mechanism of tPA inhibition, notably by promoting the formation of a final Michaelis complex.  相似文献   

14.
To elucidate the functions of the surface loops of VIIa, we prepared two mutants, VII-30 and VII-39. The VII-30 mutant had all of the residues in the 99 loop replaced with those of trypsin. In the VII-39 mutant, both the 99 and 170 loops were replaced with those of trypsin. The k(cat)/K(m) value for hydrolysis of the chromogenic peptidyl substrate S-2288 by VIIa-30 (103 mm(-)1s(-)1) was 3-fold higher than that of wild-type VIIa (30.3 mm(-)1 s(-)1) in the presence of soluble tissue factor (sTF). This enhancement was due to a decrease in the K(m) value but not to an increase in the k(cat) value. On the other hand, the k(cat)/K(m) value for S-2288 hydrolysis by VIIa-39 (17.9 mm(-)1 s(-)1) was 18-fold higher than that of wild-type (1.0 mm(-)1 s(-)1) in the absence of sTF, and the value was almost the same as that of wild-type measured in the presence of sTF. This enhancement was due to not only a decrease in the K(m) value but also to an increase in the k(cat) value. These results were in good agreement with their susceptibilities to a subsite 1-directed serine protease inhibitor. In our previous paper (Soejima, K., Mizuguchi, J., Yuguchi, M., Nakagaki, T., Higashi, S., and Iwanaga, S. (2001) J. Biol. Chem. 276, 17229-17235), the replacement of the 170 loop of VIIa with that of trypsin induced a 10-fold enhancement of the k(cat) value for S-2288 hydrolysis as compared with that of wild-type VIIa in the absence of sTF. These results suggested that the 99 and the 170 loop structures of VIIa independently affect the K(m) and k(cat) values, respectively. Furthermore, we studied the effect of mutations on proteolytic activity toward S-alkylated lysozyme as a macromolecular substrate and the activation of natural macromolecular substrate factor X.  相似文献   

15.
Kumar K  Walz FG 《Biochemistry》2001,40(12):3748-3757
Combinatorial random mutageneses involving either Asn43 with Asn44 (set 1) or Glu46 with an adjacent insertion (set 2) were undertaken to explore the functional perfection of the guanine recognition loop of ribonuclease T(1) (RNase T(1)). Four hundred unique recombinants were screened in each set for their ability to enhance enzyme catalysis of RNA cleavage. After a thorough selection procedure, only six variants were found that were either as active or more active than wild type which included substitutions of Asn43 by Gly, His, Leu, or Thr, an unplanned Tyr45Ser substitution and Glu46Pro with an adjacent Glu47 insertion. Asn43His-RNase T(1) has the same loop sequence as that for RNases Pb(1) and Fl(2). None of the most active mutants were single substitutions at Asn44 or double substitutions at Asn43 and Asn44. A total of 13 variants were purified, and these were subjected to kinetic analysis using RNA, GpC, and ApC as substrates. Modestly enhanced activities with GpC and RNA involved both k(cat) and K(M) effects. Mutants having low activity with GpC had proportionately even lower relative activity with RNA. Asn43Gly-RNase T(1) and all five of the purified mutants in set 2 exhibited similar values of k(cat)/K(M) for ApC which were the highest observed and about 10-fold that for wild type. The specificity ratio [(k(cat)/K(M))(GpC)/(k(cat)/K(M))(ApC)] varied over 30 000-fold including a 10-fold increase [Asn43His variant; mainly due to a low (k(cat)/K(M))(ApC)] and a 3000-fold decrease (Glu46Ser/(insert)Gly47 variant; mainly due to a low (k(cat)/K(M))(GpC)) as compared with wild type. It is interesting that k(cat) (GpC) for the Tyr45Ser variant was almost 4-fold greater than for wild type and that Pro46/(insert)Glu47 RNase T(1) is 70-fold more active than the permuted variant (insert)Pro47-RNase T(1) which has a conserved Glu46. In any event, the observation that only 6 out of 800 variants surveyed had wild-type activity supports the view that functional perfection of the guanine recognition loop of RNase T(1) has been achieved.  相似文献   

16.
Klimacek M  Nidetzky B 《Biochemistry》2002,41(31):10158-10165
Mannitol dehydrogenases (MDH) are a family of Zn(2+)-independent long-chain alcohol dehydrogenases that catalyze the regiospecific NAD(+)-dependent oxidation of a secondary alcohol group in polyol substrates. pH and primary deuterium kinetic isotope effects on kinetic parameters for reaction of recombinant MDH from Pseudomonas fluorescens with D-mannitol have been measured in H(2)O and D(2)O at 25 degrees C and used to determine the relative timing of C-H and O-H bond cleavage steps during alcohol conversion. The enzymatic rates decreased at low pH; apparent pK values for log(k(cat)/K(mannitol)) and log k(cat) were 9.2 and 7.7 in H(2)O, respectively, and both were shifted by +0.4 pH units in D(2)O. Proton inventory plots for k(cat) and k(cat)/K(mannitol) were determined at pL 10.0 using protio or deuterio alcohol and were linear at the 95% confidence level. They revealed the independence of primary deuterium isotope effects on the atom fraction of deuterium in a mixed H(2)O-D(2)O solvent and yielded single-site transition-state fractionation factors of 0.43 +/- 0.05 and 0.47 +/- 0.01 for k(cat)/K(mannitol) and k(cat), respectively. (D)(k(cat)/K(mannitol)) was constant (1.80 +/- 0.20) in the pH range 6.0-9.5 and decreased at high pH to a limiting value of approximately 1. Measurement of (D)(k(cat)/K(fructose)) at pH 10.0 and 10.5 using NADH deuterium-labeled in the 4-pro-S position gave a value of 0.83, the equilibrium isotope effect on carbonyl group reduction. A mechanism of D-mannitol oxidation by MDH is supported by the data in which the partly rate-limiting transition state of hydride transfer is stabilized by a single solvation catalytic proton bridge. The chemical reaction involves a pH-dependent internal equilibrium which takes place prior to C-H bond cleavage and in which proton transfer from the reactive OH to the enzyme catalytic base may occur. Loss of a proton from the enzyme at high pH irreversibly locks the ternary complex with either alcohol or alkoxide bound in a conformation committed of undergoing NAD(+) reduction at a rate about 2.3-fold slower than the corresponding reaction rate of the protonated complex. Transient kinetic studies for D-mannitol oxidation at pH(D) 10.0 showed that the solvent isotope effect on steady-state turnover originates from a net rate constant of NADH release that is approximately 85% rate-limiting for k(cat) and 2-fold smaller in D(2)O than in H(2)O.  相似文献   

17.
The catalytic properties of the hammerhead ribozyme embedded in the (+) strand of the satellite tobacco ringspot viral genome are analyzed with the goal of obtaining the elemental rate constants of the cleavage (k(2)) and ligation (k(-)(2)) steps. Two different chimeras combining the sTRSV (+) hammerhead and the well-characterized hammerhead 16 were used to measure the cleavage rate constant (k(2)), the rate of approach to equilibrium (k(obs) = k(2) + k(-)(2)), and the fraction of full-length hammerhead at equilibrium (k(-)(2)/k(2) + k(-)(2)). When compared to minimal hammerheads that lack the recently discovered loop I-loop II interaction, an extended format hammerhead derived from sTRSV studied here shows at least a 20-fold faster k(2) and a 1300-fold faster k(-)(2) at 10 mM MgCl(2). However, the magnesium dependence of the cleavage rate is not significantly changed. Thus, the enhanced cleavage of this hammerhead observed in vivo is due to its higher intrinsic rate and not due to its tighter binding of magnesium ions. The faster k(-)(2) of this hammerhead suggests that ligation may be used to form circular RNA genomes. This in vitro system will be valuable for experiments directed at understanding the hammerhead mechanism and the role of the loop I-loop II interaction.  相似文献   

18.
Osteoclasts and macrophages express high amounts of tartrate-resistant acid phosphatase (TRACP), an enzyme with unknown biological function. TRACP contains a disulfide bond, a protease-sensitive loop peptide, and a redox-active iron that can catalyze formation of reactive oxygen species (ROS). We studied the effects of proteolytic cleavage by trypsin, reduction of the disulfide bond by beta-mercaptoethanol, and reduction of the redox-active iron by ascorbate on the phosphatase and ROS-generating activity of baculovirus-generated recombinant human TRACP. Ascorbate alone and trypsin in combination with beta-mercaptoethanol increased k(cat)/K(m) of the phosphatase activity seven- to ninefold. The pH-optimum was changed from 5.4-5.6 to 6.2-6.4 by ascorbate and trypsin cleavage. Trypsin cleavage increased k(cat)/K(m) of the ROS-generating activity 2.5-fold without affecting the pH-optimum (7.0). These results suggest that the protease-sensitive loop peptide, redox-active iron, and disulfide bond are important regulatory sites in TRACP, and that the phosphatase and ROS-generating activity are performed with different reaction mechanisms.  相似文献   

19.
The primary specificity residue of a substrate or an inhibitor, called the P(1) residue, is responsible for the proper recognition by the cognate enzyme. This residue enters the S(1) pocket of the enzyme and establishes contacts (up to 50%) inside the proteinase substrate cavity, strongly affecting its specificity. To analyze the influence on bovine alpha-chymotrypsin substrate activity, aromatic non-proteinogenic amino acid residues in position P(1) with the sequence Ac-Phe-Ala-Thr-X-Anb(5,2)-NH(2) were introduced: L-pyridyl alanine (Pal), 4-nitrophenylalanine - Phe(p-NO(2)), 4-aminophenylalanine - Phe(p-NH(2)), 4-carboxyphenylalanine Phe(p-COOH), 4-guanidine phenylalanine - Phe(p-guanidine), 4-methyloxycarbonyl-phenylalanine - Phe(p-COOMe), 4-cyanophenylalanine - Phe(p-CN), Phe, Tyr. The effect of the additional substituent at the phenyl ring of the Phe residue was investigated. All peptides contained an amide of 5-amino-2-nitrobenzoic acid, which served as a chromophore. Kinetic parameters (k(cat), K(M) and k(cat)/K(M)) of the peptides synthesized with bovine alpha-chymotrypsin were determined. The highest value of the specificity constant k(cat)/K(M), reaching 6.0 x 10(5) [M(-1)xs(-1)], was obtained for Ac-Phe-Ala-Thr-Phe(p-NO(2))-Anb(5,2)-NH(2). The replacement of the acetyl group with benzyloxycarbonyl moiety yielded a substrate with the value of k(cat) more than three times higher. Peptide aldehydes were synthesized with selected residues (Phe, Pal, Tyr, Phe(p-NO(2)) in position P(1) and potent chymotrypsin inhibitors were obtained. The dissociation constant (K(i)) with the experimental enzyme determined for the most active peptide, Tos-Phe-Ala-Thr-Phe(p-NO(2))-CHO, amounted to 1.12 x 10(-8) M.  相似文献   

20.
Inactivation of factor Va (FVa) by activated protein C (APC) is a predominant mechanism in the down-regulation of thrombin generation. In normal FVa, APC-mediated inactivation occurs after cleavage at Arg306 (with corresponding rate constant k'306) or after cleavage at Arg506 (k506) and subsequent cleavage at Arg306 (k306). We have studied the influence of heparin on APC-catalyzed FVa inactivation by kinetic analysis of the time courses of inactivation. Peptide bond cleavage was identified by Western blotting using FV-specific antibodies. In normal FVa, unfractionated heparin (UFH) was found to inhibit cleavage at Arg506 in a dose-dependent manner. Maximal inhibition of k506 by UFH was 12-fold, with the secondary cleavage at Arg306 (k306) being virtually unaffected. In contrast, UFH stimulated the initial cleavage at Arg306 (k'306) two- to threefold. Low molecular weight heparin (Fragmin) had the same effects on the rate constants of FVa inactivation as UFH, but pentasaccharide did not inhibit FVa inactivation. Analysis of these data in the context of the 3D structures of APC and FVa and of simulated APC-heparin and FVa-APC complexes suggests that the heparin-binding loops 37 and 70 in APC complement electronegative areas surrounding the Arg506 site, with additional contributions from APC loop 148. Fewer contacts are observed between APC and the region around the Arg306 site in FVa. The modeling and experimental data suggest that heparin, when bound to APC, prevents optimal docking of APC at Arg506 and promotes association between FVa and APC at position Arg306.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号