首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
2.
Canola (Brassica napus L.) cultivars Oscar and Westar, engineered with a Bacillus thuringiensis (Bt) cryIA(c) gene, were evaluated for resistance to lepidopterous pests, diamondback moth, Plutella xylostella L. (Plutellidae) and corn earworm, Helicoverpa zea (Boddie) (Noctuidae) in greenhouse and field conditions. In greenhouse preference assays conducted at vegetative and flowering plant stages, transgenic plants recorded very low levels of damage. A 100% diamondback moth mortality and 90% corn earworm mortality were obtained on transgenic plants in greenhouse antibiosis assays. The surviving corn earworm larvae on transgenic plants had reduced head capsule width and body weight. Mortality of diamondback moth and corn earworm were 100% and 95%, respectively, at different growth stages (seedling, vegetative, bolting, and flowering) on the transgenic plants in greenhouse tests. In field tests conducted during 1995–1997, plots were artificially infested with neonates of diamondback moth or corn earworm or left for natural infestation. Transgenic plants in all the treatments were highly resistant to diamondback moth and corn earworm larvae and had very low levels of defoliation. Plots infested with diamondback moth larvae had greater damage in both seasons as compared with corn earworm infested plots and plots under natural infestation. After exposure to defoliators, transgenic plants usually had higher final plant stand and produced more pods and seeds than non-transgenic plants. Diamondback moth injury caused the most pronounced difference in plant stand and pod and seed number between transgenic and non-transgenic plants. Our results suggest that transgenic canola could be used for effective management of diamondback moth and corn earworm on canola.  相似文献   

3.
The expression of the modified gene for a truncated form of thecryIA(c) gene, encoding the insecticidal portion of the lepidopteran-active CryIA(c) protein fromBacillus thuringiensis var.kurstaki (B.t.k.) HD73, under control of theArabidopsis thaliana ribulose-1,5-bisphosphate carboxylase (Rubisco) small subunitats1A promoter with and without its associated transit peptide was analyzed in transgenic tobacco plants. Examination of leaf tissue revealed that theats1A promoter with its transit peptide sequence fused to the truncated CryIA(c) protein provided a 10-fold to 20-fold increase incryIA(c) mRNA and protein levels compared to gene constructs in which the cauliflower mosaic virus 35S promoter with a duplication of the enhancer region (CaMV-En35S) was used to express the samecryIA(c) gene. Transient expression assays in tobacco protoplasts and the whole plant results support the conclusion that the transit peptide plus untranslated sequences upstream of that region are both required for the increase in expression of the CryIA(c) protein. Furthermore, the CaMV-En35S promoter can be used with theArabidopsis ats1A untranslated leader and transit peptide to increase expression of this protein. While subcellular fractionation revealed that the truncated CryIA(c) protein fused to theats1A transit peptide is located in the chloroplast, the increase in gene expression is independent of targeting of the CryIA(c) protein to the chloroplast. The results reported here provide new insight into the role of 5 untranslated leader sequences and translational fusions to increase heterologous gene expression, and they demonstrate the utility of this approach in the development of insect-resistant crops.  相似文献   

4.
We have examined expression of several insecticidal crystal protein (ICP) genes of Bacillus thuringiensis in transgenic tobacco plants and electroporated carrot protoplasts. We determined that low levels of lepidopteran toxin cryIA(b) ICP gene expression in plants and electroporated carrot cells is due to RNA instability. We used a series of 3' deleted by cryIA(b) constructs directed by the cauliflower mosaic virus 35S promoter to demonstrate that this instability is minimally contained in the first 579 bases of the gene in both systems. This instability may result from 5'----3' as well as 3'----5' RNA metabolism. The coleopteran toxic cryIIIA gene was also examined in electroporated carrot cells, and found to be poorly expressed. A model for improvement of ICP RNA stability in plants is presented.  相似文献   

5.
Summary In order to study possible functions of the inclusion body matrix protein (IBMP) encoded by gene VI of cauliflower mosaic virus (CaMV), the XbaI fragment containing the gene VI of a Japanese strain of CaMV (CaMV S-Japan) was transferred to tobacco plants by Ti mediated transformation. Eight out of 18 kanamycin resistant plants (40%) expressed detectable levels of IBMP. Those transgenic plants expressing IBMP produced leaves with light green color, and their growth was suppressed as compared with control plants. Symptom-like necrotic spots also appeared on the leaves and stems of the mature transgenic plants. Furthermore, in these transgenic plants, pathogenesis-related proteins 1a, 1b and 1c were highly expressed and the activity of 1,3--glucanase was increased up to eightfold. From these results, we concluded that expression of the IBMP is associated with symptom development.  相似文献   

6.
GFM CrylA gene is a fully modified synthetic gene derived from insecticidal crystal prorein gene of Bacillus thuringiensis Berliner (Bt). It was synthesized based on the codon usage of plant genes instead of changing the primary sequences of amino acids of insecticidal crystal protein (ICP) gene of Bacillus thuringiensis Htibner. To test the function of the synthetic GFM CrylA gene, we introduced the GFM CrylA gene into tobacco plant cells via an Agrobacterium tumefacieus (Smith et Townsedn) Conn binary vector system. As expected, the GFM CrylA gene is expressed under control of the cauliflower mosaic virus (CaMV) 35S promoter and allows efficient production of lepidopteran insectspecific toxic proteins in the transformed tobacco plants. Bioassays using transgenic tobacco plants with tobacco bollworm showed that the transgenic tobacco plants expressing proteins of GFM CrylA gene had effective control to tobacco bollworm. In this paper the authors firstly report the complete synthesis of GFM CryIA gene and the construction of plant expression vector pGBI4AB. The authors performed introduction of the synthetic GFM CrylA gene into the tobacco plants, and the integration of GFM CrylA gene into tobacco genome was confirmed by Southern blot analysis of the tobacco genomic DNA. The gene was efficiently expressed in the transgenic tobacco plants and effective tobacco bollworm control was verified by the insect-bioassays.  相似文献   

7.
The pea plastocyanin gene in a 3.5 kbp Eco RI fragment of pea nuclear DNA was introduced into tobacco by Agrobacterium-mediated transformation. Regenerated plants contained pea plastocyanin located within the chloroplast thylakoid membrane system. Analysis of seedlings from a self-pollinated transgenic plant containing a single copy of the pea plastocyanin gene indicated that seedlings homozygous for the pea gene contained almost twice as much pea plastocyanin as seedlings hemizygous for the pea gene. Homozygous seedlings contained approximately equal amounts of pea and tobacco plastocyanins. The amount of tobacco plastocyanin in leaves of transgenic plants was unaffected by the expression of the pea plastocyanin gene. The mRNA from the pea gene in tobacco was indistinguishable by northern blotting and S1 nuclease protection from the mRNA found in pea. In both pea and transgenic tobacco, expression of the pea plastocyanin gene was induced by light in leaves but was suppressed in roots. Pea plastocyanin free of contaminating tobacco plastocyanin was purified from transgenic tobacco plants and shown to be indistinguishable from natural pea plastocyanin by N-terminal protein sequencing and 1H NMR spectroscopy.  相似文献   

8.
Two putative promoters from Australian banana streak badnavirus (BSV) isolates were analysed for activity in different plant species. In transient expression systems the My (2105 bp) and Cv (1322 bp) fragments were both shown to have promoter activity in a wide range of plant species including monocots (maize, barley, banana, millet, wheat, sorghum), dicots (tobacco, canola, sunflower, Nicotiana benthamiana, tipu tree), gymnosperm (Pinus radiata) and fern (Nephrolepis cordifolia). Evaluation of the My and Cv promoters in transgenic sugarcane, banana and tobacco plants demonstrated that these promoters could drive high-level expression of either the green fluorescent protein (GFP) or the -glucuronidase (GUS) reporter gene (uidA) in vegetative plant cells. In transgenic sugarcane plants harbouring the Cv promoter, GFP expression levels were comparable or higher (up to 1.06% of total soluble leaf protein as GFP) than those of plants containing the maize ubiquitin promoter (up to 0.34% of total soluble leaf protein). GUS activities in transgenic in vitro-grown banana plants containing the My promoter were up to seven-fold stronger in leaf tissue and up to four-fold stronger in root and corm tissue than in plants harbouring the maize ubiquitin promoter. The Cv promoter showed activities that were similar to the maize ubiquitin promoter in in vitro-grown banana plants, but was significantly reduced in larger glasshouse-grown plants. In transgenic in vitro-grown tobacco plants, the My promoter reached activities close to those of the 35S promoter of cauliflower mosaic virus (CaMV), while the Cv promoter was about half as active as the CaMV 35S promoter. The BSV promoters for pregenomic RNA represent useful tools for the high-level expression of foreign genes in transgenic monocots.  相似文献   

9.
A 1369 bp DNA fragment (Sc) was isolated from a full-length clone of sugarcane bacilliform badnavirus (ScBV) and was shown to have promoter activity in transient expression assays using monocot (banana, maize, millet and sorghum) and dicot plant species (tobacco, sunflower, canola and Nicotiana benthamiana). This promoter was also tested for stable expression in transgenic banana and tobacco plants. These experiments showed that this promoter could drive high-level expression of the -glucuronidase (GUS) reporter gene in most plant cells. The expression level was comparable to the maize ubiquitin promoter in standardised transient assays in maize. In transgenic banana plants the expression levels were variable for different transgenic lines but was generally comparable with the activities of both the maize ubiquitin promoter and the enhanced cauliflower mosaic virus (CaMV) 35S promoter. The Sc promoter appears to express in a near-constitutive manner in transgenic banana and tobacco plants. The promoter from sugarcane bacilliform virus represents a useful tool for the high-level expression of foreign genes in both monocot and dicot transgenic plants that could be used similarly to the CaMV 35S or maize polyubiquitin promoter.  相似文献   

10.
Summary To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter in a monocotyledonous plant, rice (Oryza sativa L.), a transgenic plant and its progeny expressing the CaMV35S-GUS gene were examined by histochemical and fluorometric assays. The histochemical study showed that -glucuronidase (GUS) activity was primarily localized at or around the vascular tissue in leaf, root and flower organs. The activity was also detected in the embryo and endosperm of dormant and germinating seeds. The fluorometric assay of various organs showed that GUS activity in transgenic rice plants was comparable to the reported GUS activity in transgenic tobacco plants expressing the CaMV35S-GUS gene. The results indicate that the level of expression of the CaMV 35S promoter in rice is similar to that in tobacco, a dicotyledonous plant, suggesting that it is useful for expression of a variety of foreign genes in rice plants.  相似文献   

11.
A protocol has been developed to produce a cholera toxin B subunit (CTB) in tobacco tolerant to the herbicide phosphinothricin (PPT) by means of in vitro selection. The synthetic CTB subunit gene was altered to modify the codon usage to that of tobacco plant genes. The gene was then cloned into a plant expression vector and was under the control of the ubiquitin promoter and transformed into tobacco plants by Agrobacterium-mediated transformation. Transgenic plantlets were selected in a medium supplemented with 5 mg/L PPT. Polymerase chain reaction analysis confirmed stable integration of the synthetic CTB gene into a chromosomal DNA. A high level of CTB (1.8% of total soluble protein) was expressed in transgenic plants, which was 18-fold higher than that under the control of the expressed CaMV 35S promoter with native gene. The transgenic plants when transferred to a greenhouse proved to be resistant to 2% PPT.  相似文献   

12.
13.
This work reports the characterization of transgenic tobacco (Nicotiana tabacum L.) plants that constitutively overexpress NADH-GOGAT. Three independent transformants, designated GOS10, GOS13 and GOS19 (for GOGAT sense), with stable integration of the chimeric alfalfa NADH-GOGAT gene fused to the CaMV 35S promoter were studied. The transgene was stably integrated and inherited by the progeny. In these GOS lines, the expression of NADH-GOGAT mRNA and protein was detected at low levels in roots and leaves, while the expression of the host tobacco NADH-GOGAT gene was nearly undetectable. The roots of GOS lines showed an elevated (15-40%) enzyme activity as compared to control plants. When GOS plants were grown under greenhouse conditions and fed with either nitrate or ammonium as the sole nitrogen source, they showed higher total carbon and nitrogen content in shoots and increased shoot dry weight when plants were entering into the flowering stage, as compared to control plants. The observed phenotype of GOS plants was interpreted as reflecting a higher capacity to assimilate nitrogen due to a higher NADH-GOGAT activity.  相似文献   

14.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   

15.
Transgenic sugarcane plants resistant to stem borer attack   总被引:9,自引:0,他引:9  
A truncated cryIA(b) gene encoding the active region of the Bacillus thuringiensis -endotoxin was expressed in transgenic sugarcane plants (Saccharum officinarum L.) under the control of the CaMV 35S promoter. Genetic transformation was accomplished by electroporation of intact cells. The levels of recombinant toxin were established and biological activity tests were performed against neonate sugarcane borer (Diatraea saccharalis F.) larvae. Transgenic sugarcane plants showed significant larvicidal activity despite the low expression of CryIA(b).  相似文献   

16.
17.
18.
The coding region of the 2S albumin gene of Brazil nut (Bertholletia excelsa H.B.K.) was completely synthesized, placed under control of the cauliflower mosaic virus (CaMV) 35S promoter and inserted into the binary vector plasmid pGSGLUC1, thus giving rise to pGSGLUC1-2S. This was used for transformation of tobacco (Nicotiana tabacum L. cv. Petit Havanna) and of the grain legume Vicia narbonensis L., mediated by the supervirulent Agrobacterium tumefaciens strain EHA 101. Putative transformants were selected by screening for neomycin phosphotransferase (NPT II) and -glucuronidase (GUS) activities. Transgenic plants were grown until flowering and fruiting occurred. The presence of the foreign gene was confirmed by Southern analysis. GUS activity was found in all organs of the regenerated transgenic tobacco and legume plants, including the seeds. In the legume, the highest expression levels of the CaMV 35S promoter-controlled 2S albumin gene were observed in leaves and roots. 2S albumin was localized in the vacuoles of leaf mesophyll cells of transgenic tobacco. The Brazil nut protein was present in the 2S fraction after gel filtration chromatography of the legume seed proteins and could be clearly identified by immunoblotting. Analysis of seeds from the R2 progenies of the legume and of transgenic tobacco plants revealed Mendelian inheritance of the foreign gene. Agrobacterium rhizogenes strain RifR 15834 harbouring the binary vector pGSGLUCl2S was also used to transform Pisum sativum L. and Vicia faba L. Hairy roots expressed the 2S albumin-specific gene. Several shoots were raised but they never completely rooted and no fertile plants were obtained from these transformants.  相似文献   

19.
The nucleotide sequence of a fragment of the promoter region of pro-SmAMP1 gene, having a length of 1257 bp and encoding antifungal peptides, was determined in chickweed (Stellaria media (L.) Vill.). Computer analysis of the nucleotide sequence revealed a number of cis-elements that are typical strong plant promoters. Five 5′-deletion variants were created taking into account the distribution of cis-elements:–1235,–771,–714,–603, and–481 bp of pro-SmAMP1 gene promoter, which were fused to the coding region of the uidA reporter gene in pCambia1381Z plant expression vector. The efficacy of pro-SmAMP1 promoter deletion variants was determined by transient expression in plants of Nicotiana benthamiana and using sequential generations of transgenic Nicotiana tabacum plants. It was found that the levels of GUS reporter protein activity in the extracts from transgenic and agroinfiltrated plants using all deletion variants of pro-SmAMP1 gene promoter were 3–5 times higher than those of 35S CaMV viral promoter. The highest activity of GUS protein was observed in the leaves of transgenic tobacco plants and closely correlated with the mRNA level of encoding gene. The levels of GUS activity did not differ significantly among 11 independent homozygous lines of T2 generation of N. tabacum plants with different deletion variants of pro-SmAMP1 promoter. The results give reason to assume that all deletion variants of pro-SmAMP1 promoter provide stable and high level of expression of controlled genes. The shortest deletion variant–481 bp of pro-SmAMP1 promoter should be viewed as a potentially strong plant promoter for the genetic engineering of plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号