首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1 Monitoring studies of pine sawflies with pheromone traps were performed for the first time in Germany. Pheromone traps baited with species‐specific pheromone substances were installed in pine forests at different locations in Bavaria, Brandenburg and Lower Saxony during two years. 2 It was possible to track the flight phenology of Diprion pini, Gilpinia pallida and Neodiprion sertifer reliably and to get information about the number of generations of these species in 1997 and 1998. 3 A clear relationship between trap catch and population density could not be detected, but qualitative changes in trap catch caused by different density levels were observed. 4 For D. pini, trap catches were different among endemic populations of different forest types. Furthermore, catches of males reflected the results from the regular cocoon collections by foresters during the previous winter. 5 For N. sertifer, trap catches in endemic populations were well separated from trap catches on sites with higher sawfly densities. However, no significant correlation between trap catch and sawfly density or defoliation level could be found. These results suggest that the efficacy of the pheromone traps probably varied with biological features (sex ratio, density level, immigration) of the particular population.  相似文献   

2.
The defence chemicals and behavioural adaptations (gregariousness and active defensive behaviour) of pine sawfly larvae may be effective against ant predation. However, previous studies have tested their defences against very few species of ants, and few experiments have explored ant predation in nature. We studied how larval group size (groups of 5 and 20 in Neodiprion sertifer and 10, 20 and 40 in Diprion pini) and variation in levels of defence chemicals in the host tree (Scots pine, Pinus sylvestris) affect the survival of sawfly larvae. Food preference experiments showed that ants do eat sawfly larvae, although they are not their most preferred food item. According to our results, ant predation significantly increases the mortality rate of sawfly larvae. Larval mortality was minor on pine tree branches where ant traffic was excluded. We also found that a high resin acid concentration in the host tree significantly decreased the mortality of D. pini larvae when ants were present. However, there was no such relationship between the chemical concentrations of the host tree and larval mortality for N. sertifer. Surprisingly, grouping did not help sawfly larvae against ant predation. Mortality risk was the same for all group sizes. The results of the study seemingly contradict previous understanding of the effectiveness of defence mechanisms of pine sawfly against ant predation, and suggest that ants (Formica exsecta in particular) are effective predators of sawfly larvae.An erratum to this article can be found at  相似文献   

3.
  1. Observed lower levels of herbivory in mixed compared with monoculture stands have been hypothesized to depend on top-down forces, through higher predation pressure by natural enemies or through bottom-up mechanisms through plant quality effects on herbivore performance.
  2. In this study, we compared the performance measured as host plant induced mortality, cocoon weight, and predation mortality of the European pine sawfly Neodiprion sertifer (Geoffroy) (Hymenoptera, Diprionidae) in mixed and monoculture forest stands.
  3. We did not observe a difference in host plant induced mortality, cocoon weight, or predation mortality between mixed and monoculture forest stands. We did find an effect of local conditions around each experimental tree on pine sawfly performance. For example, the nitrogen content of pine needles is negatively affected by the proportion of pine around the experimental tree, which in turn increases the survival of sawfly larvae.
  4. The results suggest that local conditions around individual trees are more important for the performance of the European pine sawfly than stand type, i.e. mixed or monoculture plant stands.
  5. We conclude that the ongoing trend for diversification within commercial forestry calls for more research where the effects of both bottom-up and top-down effects are studied at several spatial scales.
  相似文献   

4.
Habitat heterogeneity is thought to affect top‐down control of herbivorous insects and contribute to population stability by providing a more attractive microhabitat for natural enemies, potentially leading to reduced population fluctuations. Identifying the parameters that contribute to habitat heterogeneity promoting top‐down control of herbivorous insects by natural enemies could facilitate appropriate management decisions, resulting in a decreased risk of pest insect outbreaks because of a higher level of predation. In our study, we measured the top‐down pressure exerted by small mammals on the cocoons of a notorious pest insect in pine forests, the European pine sawfly (Neodiprion sertifer), which is known to be regulated by small mammal predation. The forest stands used differed in heterogeneity measured in terms of differences in tree diversity and density, understory vegetation height, presence/absence, and density of dead wood. We found higher predation in more dense spots within forest stands. Further, the effect of dead wood on sawfly cocoon predation depended on the pine proportion in forest stands. The addition of dead wood in a manipulation experiment had a slight positive effect on cocoon predation, while dead wood removal caused a clear decrease in predation rate, and the decrease was more pronounced when the proportion of pine increased. Our results show that habitat heterogeneity affects predation by generalist predators on herbivorous insects. This knowledge could be applied to reduce the risk of insect outbreaks by applying management methods that increase heterogeneity in perennial systems such as forests and orchards, thus decreasing the levels of insect damage.  相似文献   

5.
1 Predation and parasitism on litter‐buried cocoons of the common pine sawfly Diprion pini (L.) were compared in different forest types with endemic sawfly populations by field exposure of laboratory‐reared cocoons during three consecutive years (1993–1995). 2 The impact of cocoon predation was dependent on season and forest type. The highest predation (up to 95%) was found during autumn in forest stands with a dense understory vegetation. 3 Cocoon parasitism varied between year, season and forest type. The highest parasitoid attack was observed in pure pine forests with more or less barren soils, but did not exceed 24% of exposed cocoons. 4 Cocoons were exposed in small patches. Predators tended to exploit all cocoons of a patch, whereas parasitoids only attacked a few cocoons of a patch. Predation was similar on cocoons placed in the litter and those buried more deeply in the soil, whereas parasitism of soil‐buried cocoons was rare. 5 These results indicate that predators can have a remarkable potential for limiting endemic sawfly densities, if habitat conditions in a forest maintain their population and support their foraging behaviour. A notable effect of parasitoids on sawfly cocoons deposited in the litter is obviously restricted to typical pure and barren pine forests, but may play there a similar role as predation.  相似文献   

6.
Larval mortality ofNeodiprion sertifer (Geoffroy),Diprion pini (L.) andGilpinia pallida (Klug) were studied in field experiments around a factory complex in southwestern Finland. Larval colonies were transferred on the shoots of Scots pines growing at different distances from the emission source. Larval mortality was highest near the factories. InN. sertifer, larval mortality caused by the nuclear polyhedrosis virus was higher and cocoon mortality caused by parasitoids was lower near the pollutant source. The most abundant parasitoid species wereSynomelix scutulata (Hartig) andLamachus eques (Hartig). 16–67% of theN. sertifer, 0–5% of theD. pini and the 73–100% ofG. pallida cocoons contained parasitoids oviposited during the larval period of the sawflies.   相似文献   

7.
Influence of plant quality on pine sawfly population dynamics   总被引:7,自引:0,他引:7  
The contribution of plant quality to the population dynamics of herbivorous insects has been an issue of much controversy. Many studies have documented how variable plant quality differentially influences the survival and fecundity of insect individuals. Whether or not such effects can be translated to the level of insect populations is, however, not clear. In order to test this hypothesis one needs to combine processes at both the level of the individual and the population. This is difficult with an empirical approach, but could be achieved by means of modeling given that appropriate data exist for both levels of organization. In this paper we report on a model developed to analyze whether altered Scots pine (Pinus sylvestris) quality can contribute to the build‐up of populations of the European pine sawfly (Neodiprion sertifer). Experimental data on responses of sawfly larvae to variable plant quality, i.e. needle concentrations of resin acids, were used to parameterize the model. Larval survival and sawfly fecundity are reduced at high resin acid concentrations. However, high resin acid concentrations are, at the same time, beneficial because larval defense against predators is enhanced. In the model, data on individual responses were combined with literature data at the population level; a type III functional response related to cocoon predation was presumed to be the density‐dependent process regulating sawfly populations. The analysis showed that the risk for an outbreak is high when needle resin acid concentration (r) or larval predation pressure (p) is low. When r or p is high there is no risk. By analyzing different scenarios it was found that small changes in r and p can result in the sawfly population moving from low to high outbreak risk. Changes of the same, or larger, magnitude in r have been observed in empirical studies. The role of tritrophic interactions was also considered. This was done by removing the positive effects of resin acids on larval performance in the model. It was found that the anti‐predator defense of N.sertifer makes it prone to outbreak under wider combinations of r and p than an insect without the defense. We conclude that small changes in a density‐independent factor, such as needle chemistry, can have significant effects on herbivore population dynamics because increased fecundity and survival caused by needle quality may allow the population to escape the control of density‐dependent factors, such as cocoon predation.  相似文献   

8.
Population densities of forest defoliating insects may be regulated by small mammal predation on the pupae. When outbreaks do occur, they often coincide with warm, dry weather and at barren forest sites. A proposed reason for this is that weather and habitat affect small mammal population density (numerical response) and hence pupal predation. We propose an alternative explanation: weather and habitat affect small mammal feeding behaviour (functional response) and hence the outbreak risks of forest pest insects. We report results from laboratory and field-enclosure experiments estimating rates of pupal predation by bank voles (Myodes glareolus) on an outbreak insect, the European pine sawfly (Neodiprion sertifer), at different temperatures (15 and 20 °C), in different microhabitats (sheltered and non-sheltered), and with or without access to alternative food (sunflower seeds). We found that the probability of a single pupa being eaten at 20 °C was lower than at 15 °C (0.49 and 0.72, respectively). Pupal predation was higher in the sheltered microhabitat than in the open one, and the behaviour of the voles differed between microhabitats. More pupae were eaten in situ in the sheltered microhabitat whereas in the open area more pupae were removed and eaten elsewhere. Access to alternative food did not affect pupal predation. The results suggest that predation rates on pine sawfly pupae by voles are influenced by temperature- and habitat-induced variation in the physiology and behaviour of the predator, and not necessarily solely through effects on predator densities as previously proposed.  相似文献   

9.
To identify general patterns in the effects of climate change on the outbreak dynamics of forest‐defoliating insect species, we examined a 212‐year record (1800–2011) of outbreaks of five pine‐defoliating species (Bupalus piniarius, Panolis flammea, Lymantria monacha, Dendrolimus pini, and Diprion pini) in Bavaria, Germany for the evidence of climate‐driven changes in the severity, cyclicity, and frequency of outbreaks. We also accounted for historical changes in forestry practices and examined effects of past insecticide use to suppress outbreaks. Analysis of relationships between severity or occurrence of outbreaks and detrended measures of temperature and precipitation revealed a mixture of positive and negative relationships between temperature and outbreak activity. Two moth species (P. flammea and Dendrolimus pini) exhibited lower outbreak activity following years or decades of unusually warm temperatures, whereas a sawfly (Diprion pini), for which voltinism is influenced by temperature, displayed increased outbreak occurrence in years of high summer temperatures. We detected only one apparent effect of precipitation, which showed Dendrolimus pini outbreaks tending to follow drought. Wavelet analysis of outbreak time series suggested climate change may be associated with collapse of L. monacha and Dendrolimus pini outbreak cycles (loss of cyclicity and discontinuation of outbreaks, respectively), but high‐frequency cycles for B. piniarius and P. flammea in the late 1900s. Regional outbreak severity was generally not related to past suppression efforts (area treated with insecticides). Recent shifts in forestry practices affecting tree species composition roughly coincided with high‐frequency outbreak cycles in B. piniarius and P. flammea but are unlikely to explain the detected relationships between climate and outbreak severity or collapses of outbreak cycles. Our results highlight both individualistic responses of different pine‐defoliating species to climate changes and some patterns that are consistent across defoliator species in this and other forest systems, including collapsing of population cycles.  相似文献   

10.
Evidence for cross-induction of systemic resistance or susceptibility in plant–fungus–herbivore interactions is mostly derived from herbaceous model systems and not perennial woody plants. Furthermore, the effects of environmental variables such as soil fertility on these tripartite interactions are generally unknown. This study examined cross-induction of systemic resistance in Pinus nigra (Austrian pine) to infection by Sphaeropsis sapinea (a fungal pathogen), or feeding by Neodiprion sertifer (European pine sawfly), by prior induction with either S. sapinea or N. sertifer, over a fertility gradient. In a replicated 3-year study, cross-induction of systemic induced resistance (SIR) was found to be both asymmetric within a single year and variable between years. Prior induction with insect defoliation induced SIR to subsequent fungal challenge in 2006 but not in 2005. In 2005, a fertility-independent negative systemic effect of the fungal infection on herbivore growth was detected while herbivore survival was affected by a significant interaction between induction treatment and fertility level in 2006. Prior infection by the fungus induced SIR against the same fungus in both years regardless of fertility levels. This is the first report of whole-plant SIR against a defoliating insect induced by a fungal pathogen and vice versa, under variable nutrient availability, in a conifer or any other tree. Alieta Eyles and Rodrigo Chorbadjian contributed equally to the paper.  相似文献   

11.
Habitat heterogeneity might promote the abundance and richness of natural enemies potentially leading to higher top-down pressure on herbivorous insects. Heterogeneous habitats could provide natural enemies with more abundant and alternative resources and a greater variety of micro-habitats. Natural enemies with different searching behaviours, e.g. generalists and specialists, could be affected in different ways by habitat heterogeneity, thus affecting their pressure on herbivorous insects.To understand how top-down pressure on herbivorous insects is promoted by habitat heterogeneity, it is crucial to investigate which parameters contributing to habitat heterogeneity affect not only the abundance and richness but also the searching behaviour of different natural enemies. We investigated the relationship between heterogeneity in forest habitats and the top-down pressure exerted by generalist predators and specialist parasitoids on larvae of the European pine sawfly (Neodiprion sertifer).We used forest stands with endemic or epidemic densities of resident sawfly populations. Within each stand we selected experimental trees to create variation in tree species diversity and density in their surrounding area, i.e. habitat heterogeneity. We found that a higher tree density increased the predation by generalists on sawfly larvae in stands with endemic sawfly densities. Parasitoids were less successful in stands with endemic sawfly densities. Total mortality depended on stand character and the proportion of pine around experimental trees.The explained variation in the response variables by the models is relatively low, indicating that other measures of heterogeneity, like understory vegetation and presence of dead wood could contribute to the observed variation. Also, interference between generalist and specialist enemies could affect the realized mortality pressure. Thus, the effect of tree species diversity in combination with these other measures of heterogeneity needs to be recognized to promote the presence and the activity of natural enemies in managed habitats.  相似文献   

12.
The sawfly, Diprion pini L., is a pest of Pinus in Europe and is mainly found on P. sylvestris L. and P. nigra laricio Poiret. The relative importance of female oviposition capacity and behaviour, egg development, and larval survival on a new host plant was measured on 11 pine species. Five were natural host plants and six non-host plants, five of which are not indigenous to Europe. Oviposition choice tests showed that females discriminated between the pine species. Egg and larval development also differed between pine species. However, the female choice was not linked with hatching rate and larval development. Results of biological tests clearly indicated that there were different response patterns of D. pini life stages in relation to pine species, and these patterns were the same with insects of four different origins. We discuss the importance of each potential barrier to colonisation of a new host.  相似文献   

13.
Evolution of costly secondary defences for a cryptic prey is puzzling, if the prey is already well protected by camouflage. However, if the chemical defence is not sufficient to deter all predators, selection can favour low signal intensity in defended prey. Alternatively, if the costs of chemical defence are low or cost-free, chemical defences can be expected to evolve also for non-signalling prey, particularly if conspicuous signalling is costly. We tested these assumptions with pine sawfly larvae (Neodiprion sertifer and Diprion pini) that are cryptically coloured and chemically defended with resin acids sequestered from their host plant (Pinus sp.). Larvae feed in large aggregations, which we hypothesise could function as a signal of unprofitability. Our results show that even though the birds found N. sertifer larvae unprofitable in the controlled laboratory assays, they continued attacking and consuming them in the wild. When we tested the signal value of aggregation we found that a large group size did not offer protection for a defended larva: the survival was higher in groups of 10 individuals compared to groups of 50, suggesting increased detectability costs for individuals in larger groups. Finally, we tested how costly the production and maintenance of a chemical defence is for D. pini larvae by manipulating the resin acid content of the diet. We did not find any life history or immunological costs of the chemical defence for the larvae. In contrast, pupal weights were higher on the high resin diet than on the low resin diet. Also, larvae were able to produce higher amounts of defence fluids on the high diet than on the low diet. Thus, our result suggests high detectability costs and low production costs of defences could explain why some unprofitable species have not evolved conspicuous signals.  相似文献   

14.
15.
Summary In a recently published food utilization study of larvae of the European pine sawfly, Neodiprion sertifer (Larsson and Tenow, Oecologia (Berl) 43 (1979) 157–172), it was concluded that a high consumption rate was part of a suite of presumed adaptations exhibited by these larvae for feeding on a food with a low nitrogen content. In this note it is shown that larvae of N. sertifer exhibit a relative consumption rate which is comparable to that of other sawflies and intermediate in comparison to other herbivorous insects.  相似文献   

16.
17.
Ascertaining the relative effects of factors such as weather and predation on population dynamics, and determining the time scales on which they operate, is important to our understanding of basic ecology and pest management. In this study, we sampled the pine engraver Ips pini (Say) (Coleoptera: Scolytidae) and its predominant predators Thanasimus dubius (F.) (Coleoptera: Cleridae) and Platysoma cylindrica (Paykull) (Coleoptera: Histeridae) in red pine plantations in Wisconsin, USA, over 2 years. We sampled both the prey and predators using flight traps baited with the synthetic aggregation pheromone of I. pini. Flight models were constructed using weather variables (temperature and precipitation), counts of bark beetles and their predators, and temporal variables to incorporate possible effects of seasonality. The number of I. pini per weekly collection period was temperature dependent and decreased with the number of predators, specifically T. dubius in 2001 and P. cylindrica in 2002. The number of predators captured each week was also weather dependent. The predators had similar seasonal phenologies, and the number of each predator species was positively correlated with the other. Including a term for the number of prey did not improve the model fits for either predator for either year. Our results suggest that exogenous weather factors strongly affect the flight activity of I. pini, but that its abundance is also affected by direct density-dependent processes acting over weekly time scales. Adult predation during both colonization and dispersal are likely processes yielding these dynamics.  相似文献   

18.
Newly emerged females of the European pine sawfly, Neodiprion sertifer Geoffroy (Hymenoptera: Diprionidae), were placed on pine twigs in the field and their behavior was recorded. Twenty to 25% of the females attracted wild males and mated on the day of release. One-third to one-half of these females remained and oviposited, while the rest disappeared from their twigs after mating. The mating frequency peaked at noon, and on average the mating lasted for 19 ± 13 (SD) min. Eleven to 30% of the females that remained on their twigs after mating remated, occasionally up to five times. Most released females disappeared from their twigs on the first day. Disappearances included both predation and dispersal. Only a few dispersals >5 m were recorded, because the sawflies were difficult to follow during flight. By color marking, dispersal up to 20 m was recorded.  相似文献   

19.
Summary Electroantennographic and single sensillum recordings were performed on male pine sawfly, Neodiprion sertifer, antennae. Responses to the sex pheromone component (2S, 3S, 7S)- 3,7-dimethyl-2-pentadecenyl (diprionyl) acetate (SSS:OAc), to the behavioral inhibitor (2S, 3R, 7R)-diprionyl acetate (SRR:OAc), to the six other enantiomers of diprionyl acetate, and to the biosynthetic precursor diprionol were recorded. Responses to trans-perillenal, a monoterpene identified in female gland extracts and to (2S, 3S, 7S)-diprionyl propionate (SSS:OPr), a field attractant for N. sertifer and some related sawfly species were also recorded.EAG recordings demonstrated a high antennal sensitivity to SSS:OAc and to SSS:OPr. A somewhat lower response was elicited by SRR:OAc.Single sensillum recordings revealed 8–12 different cells firing in each sensillum, corresponding to the number of cells observed in earlier morphological investigations. Out of these cells all, except one, responded to SSS:OAc and to SSS:OPr. No differences in the response to the two components could be observed. The largest amplitude cell in each sensillum was specifically tuned to the behavioral antagonist, SRR:OAc. The pheromone perception system encountered in male pine sawflies thus differs clearly from that observed in moths.Abbreviation EAG electroantennogram - OAc acetate - OPr propionate  相似文献   

20.
  • 1 Neodiprion sertifer nucleopolyhedrovirus (NeseNPV) is widely used as a viral bio‐insecticide against larvae of the European pine sawfly N. sertifer (Geoff.) (Hymenoptera: Diprionidae), which is one of the most harmful defoliators of pines in Northern Europe. A major obstacle to studying this pathogenic virus in nature is the difficulty of confirming and quantifying the presence of NeseNPV.
  • 2 In the present study, we developed real‐time polymerase chain reaction (PCR) primers, based on the caspid gene 39 sequence, for the specific and quantitative detection of NeseNPV. The quantitative real‐time PCR (qPCR) assay can detect virus from any substrate tested, including different insect life stages (egg, larval, adult), pine foliage, and litter or ground vegetation. The reproducible detection limit for the real‐time assay is 0.013 pg of viral DNA (0.013×10?12 g), corresponding to 136 viral genomes or approximately one to seven virus occlusion bodies per sample.
  • 3 qPCR is a specific, quantitative, sensitive, reliable and flexible procedure, and is a good supplement to conventional microscopy‐ or bioassay‐based methods for detection of the virus. We have used qPCR to quantify the level of NeseNPV in samples collected in the field after aerial application of the virus, and demonstrated significantly higher virus levels in sawfly larvae from sprayed areas compared with unsprayed control areas 4 weeks after spraying.
  • 4 This qPCR assay can be used to determine important aspects of the biology of NeseNPV (e.g. virus levels in different insect life stages and in their microhabitats on pine foliage and in forest litter).
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号