首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The severe depletion of cholesteryl ester (CE) in adrenocortical cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays an important role in the high density lipoprotein (HDL) CE selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. A recent study showed that apoA-I(-/-) HDL binds to SR-BI with the same affinity as apoA-I(+/+) HDL, but apoA-I(-/-) HDL has a decreased V(max) for CE transfer from the HDL particle to adrenal cells. The present study was designed to determine the basis for the reduced selective uptake of CE from apoA-I(-/-) HDL. Variations in apoA-I(-/-) HDL particle diameter, free cholesterol or phospholipid content, or the apoE or apoA-II content of apoA-I(-/-) HDL had little effect on HDL CE selective uptake into Y1-BS1 adrenal cells. Lecithin cholesterol acyltransferase treatment alone or addition of apoA-I to apoA-I(-/-) HDL alone also had little effect. However, addition of apoA-I to apoA-I(-/-) HDL in the presence of lecithin cholesterol acyltransferase reorganized the large heterogeneous apoA-I(-/-) HDL to a more discrete particle with enhanced CE selective uptake activity. These results show a unique role for apoA-I in HDL CE selective uptake that is distinct from its role as a ligand for HDL binding to SR-BI. These data suggest that the conformation of apoA-I at the HDL surface is important for the efficient transfer of CE to the cell.  相似文献   

2.
The transport of HDL cholesteryl esters (CE) from plasma to the liver involves a direct uptake pathway, mediated by hepatic scavenger receptor B-I (SR-BI), and an indirect pathway, involving the exchange of HDL CE for triglycerides (TG) of TG-rich lipoproteins by cholesteryl ester transfer protein (CETP). We carried out HDL CE turnover studies in mice expressing human CETP and/or human lecithin:cholesterol acyltransferase (LCAT) transgenes on a background of human apoA-I expression. The fractional clearance of HDL CE by the liver was delayed by LCAT transgene, while the CETP transgene increased it. However, there was no incremental transfer of HDL CE radioactivity to the TG-rich lipoprotein fraction in mice expressing CETP, suggesting increased direct removal of HDL CE in the liver. To evaluate the possibility that this might be mediated by SR-BI, HDL isolated from plasma of the different groups of transgenic mice was incubated with SR-BI transfected or control CHO cells. HDL isolated from mice expressing CETP showed a 2- to 4-fold increase in SR-BI-mediated HDL CE uptake, compared to HDL from mice lacking CETP. The addition of pure CETP to HDL in cell culture did not lead to increased selective uptake of HDL CE by cells. However, when human HDL was enriched with TG by incubation with TG-rich lipoproteins in the presence of CETP, then treated with hepatic lipase, there was a significant enhancement of HDL CE uptake. Thus, the remodeling of human HDL by CETP, involving CE;-TG interchange, followed by the action of hepatic lipase (HL), leads to the enhanced uptake of HDL CE by cellular SR-BI.These observations suggest that in animals such as humans in which both the selective uptake and CETP pathways are active, the two pathways could operate in a synergistic fashion to enhance reverse cholesterol transport.  相似文献   

3.
Hepatic lipase (HL) plays a major role in high-density lipoprotein (HDL) metabolism both as a lipolytic enzyme and as a ligand. To investigate whether HL enhances the uptake of HDL-cholesteryl ester (CE) via the newly described scavenger receptor BI (SR-BI), we measured the effects of expressing HL and SR-BI on HDL-cell association as well as uptake of 125I-labeled apoA-I and [3H]CE-HDL, by embryonal kidney 293 cells. As expected, HDL cell association and CE selective uptake were increased in SR-BI transfected cells by 2- and 4-fold, respectively, compared to controls (P < 0.001). Cells transfected with HL alone or in combination with SR-BI expressed similar amounts of HL, 20% of which was bound to cell surface proteoglycans. HL alone increased HDL cell association by 2-fold but had no effect on HDL-CE uptake in 293 cells. However, in cells expressing SR-BI, HL further enhanced the selective uptake of CE from HDL by 3-fold (P < 0.001). To determine whether the lipolytic and/or ligand function of HL are required in this process, we generated a catalytically inactive form of HL (HL-145G). Cells co-transfected with HL-145G and SR-BI increased their HDL cell association and HDL-CE selective uptake by 1.4-fold compared to cells expressing SR-BI only (P < 0.03). Heparin abolished the effect of HL-145G on SR-BI-mediated HDL-CE selective uptake.Thus, the enhanced uptake of HDL-CE by HL is mediated by both its ligand role, which requires interaction with proteoglycans, and by lipolysis with subsequent HDL particle remodeling. These results establish HL as a major modulator of SR-BI mediated selective uptake of HDL-CE.  相似文献   

4.
Scavenger receptor (SR)-BI is the first molecularly defined receptor for high density lipoprotein (HDL) and it can mediate the selective uptake of cholesteryl ester into cells. To elucidate the molecular mechanisms by which SR-BI facilitates lipid uptake, we examined the connection between lipid donor particle binding and lipid uptake using kidney COS-7 cells transiently transfected with SR-BI. We systematically compared the uptake of [(3)H]cholesteryl oleoyl ether (CE) and [(14)C]sphingomyelin (SM) from apolipoprotein (apo) A-I-containing reconstituted HDL (rHDL) particles and apo-free lipid donor particles. Although both types of lipid donor could bind to SR-BI, only apo-containing lipid donors exhibited preferential delivery of CE over SM (i.e. nonstoichiometric lipid uptake). In contrast, apo-free lipid donor particles (phospholipid unilamellar vesicles, lipid emulsion particles) gave rise to stoichiometric lipid uptake due to interaction with SR-BI. This apparent whole particle uptake was not due to endocytosis, but rather fusion of the lipid components of the lipid donor with the cell plasma membrane; this process is perhaps mediated by a fusogenic motif in the extracellular domain of SR-BI. The interaction of apoA-I with SR-BI not only prevents fusion of the lipid donor with the plasma membrane but also allows the optimal selective lipid uptake. A comparison of rHDL particles containing apoA-I and apoE-3 showed that while both particles bound equally well to SR-BI, the apoA-I particle gave approximately 2-fold greater CE selective uptake. Catabolism of all major HDL lipids can occur via SR-BI with the relative selective uptake rate constants for CE, free cholesterol, triglycerides (triolein), and phosphatidylcholine being 1, 1.6, 0.7, and 0.2, respectively. It follows that a putative nonpolar channel created by SR-BI between the bound HDL particle and the cell plasma membrane is better able to accommodate the uptake of neutral lipids (e.g. cholesterol) relative to polar phospholipids.  相似文献   

5.
Scavenger receptor, class B, type I (SR-BI) is a cell-surface glycoprotein that mediates selective uptake of high density lipoprotein cholesteryl ester (CE) without the concomitant uptake and degradation of the particle. We have investigated the endocytic and selective uptake of low density lipoprotein (LDL)-CE by SR-BI using COS-7 cells transiently transfected with mouse SR-BI. Analysis of lipoprotein uptake data showed a concentration-dependent LDL-CE-selective uptake when doubly labeled LDL particles were incubated with SR-BI-expressing COS-7 cells. In contrast to vector-transfected cells, SR-BI-expressing COS-7 cells showed marked increases in LDL cell association and CE uptake by the selective uptake pathway, but only a modest increase in CE uptake by the endocytic pathway. SR-BI-mediated LDL-CE-selective uptake exceeded LDL endocytic uptake by 50-100-fold. SR-BI-mediated LDL-CE-selective uptake was not inhibited by the proteoglycan synthesis inhibitor, p-nitrophenyl-beta-D-xylopyranoside or by the sulfation inhibitor sodium chlorate, indicating that SR-BI-mediated LDL-CE uptake occurs independently of LDL interaction with cell-surface proteoglycan. Analyses with subclones of Y1 adrenocortical cells showed that LDL-CE-selective uptake was proportional to the level of SR-BI expression. Furthermore, antibody directed to the extracellular domain of SR-BI blocked LDL-CE-selective uptake in adrenocortical cells. Thus, in cells that normally express SR-BI and in transfected COS-7 cells SR-BI mediates the efficient uptake of LDL-CE via the selective uptake mechanism. These results suggest that SR-BI may influence the metabolism of apoB-containing lipoproteins in vivo by mediating LDL-CE uptake into SR-BI-expressing cells.  相似文献   

6.
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane.  相似文献   

7.
Scavenger receptor class B type I (SR-BI) plays a critical role in the delivery of HDL cholesterol and cholesteryl esters (CEs) to liver and steroidogenic tissues by a selective process that does not result in significant degradation of HDL protein. Recently, SR-BI-mediated endocytosis and recycling of HDL have been demonstrated. However, it remains unclear whether efficient SR-BI-mediated selective uptake occurs strictly at the plasma membrane or at additional sites along its endocytic itinerary. To examine the requirement for SR-BI endocytosis in HDL selective uptake, we determined the effects of energy depletion on the levels of cell-associated HDL protein and CE in primary mouse hepatocytes. Compared with CHO cells, we observed a much larger energy-dependent effect on CE uptake in primary mouse hepatocytes. Although varying the levels of caveolin-1 and carboxyl ester lipase altered the efficiency of selective uptake, neither was able to account for the energy-dependent component of HDL-CE uptake. Finally, we demonstrate that the hepatocyte-specific, energy-dependent effects on HDL-apolipoprotein A-I and -CE uptake are independent of SR-BI and are not required to achieve efficient SR-BI-mediated selective uptake of CE. Together, these data support the conclusion that neither the intracellular trafficking of HDL nor any energy-dependent cellular process affects the ability of the cell to maximally acquire CE through SR-BI-mediated selective uptake from HDL.  相似文献   

8.
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake.  相似文献   

9.
Scavenger receptor class B type I (SR-BI) and ABCA1 are structurally dissimilar cell surface proteins that play key roles in HDL metabolism. SR-BI is a receptor that binds HDL with high affinity and mediates both the selective lipid uptake of cholesteryl esters from lipid-rich HDL to cells and the efflux of unesterified cholesterol from cells to HDL. ABCA1 mediates the efflux of unesterified cholesterol and phospholipids from cells to lipid-poor apolipoprotein A-I (apoA-I). The activities of ABCA1 and other ATP binding cassette superfamily members are inhibited by the drug glyburide, and SR-BI-mediated lipid transport is blocked by small molecule inhibitors called BLTs. Here, we show that one BLT, [1-(2-methoxy-phenyl)-3-naphthalen-2-yl-urea] (BLT-4), blocked ABCA1-mediated cholesterol efflux to lipid-poor apoA-I at a potency similar to that for its inhibition of SR-BI (IC(50) approximately 55-60 microM). Reciprocally, glyburide blocked SR-BI-mediated selective lipid uptake and efflux at a potency similar to that for its inhibition of ABCA1 (IC(50) approximately 275-300 microM). As is the case with BLTs, glyburide increased the apparent affinity of HDL binding to SR-BI. The reciprocal inhibition of SR-BI and ABCA1 by BLT-4 and glyburide raises the possibility that these proteins may share similar or common steps in their mechanisms of lipid transport.  相似文献   

10.
Free cholesterol (FC) has been reported to efflux from cells through caveolae, which are 50-100 nm plasma membrane pits. The 22 kDa protein caveolin-1 is concentrated in caveolae and is required for their formation. The HDL scavenger receptor BI (SR-BI), which stimulates both FC efflux and selective uptake of HDL-derived cholesteryl ester (CE), has been reported to be concentrated in caveolae, suggesting that this localization facilitates flux of FC and CE across the membrane. However, we found that overexpression of caveolin-1 in Fischer rat thyroid (FRT) cells, which lack caveolin-1 and caveolae, or HEK 293 cells, which normally express very low levels of caveolin-1, did not affect FC efflux to HDL or liposomes. Transient expression of SR-B1 did not affect this result. Similarly, caveolin-1 expression did not affect selective uptake of CE from labeled HDL particles in FRT or HEK 293 cells transfected with SR-BI. We conclude that basal and SR-BI-stimulated FC efflux to HDL and liposomes and SR-BI-mediated selective uptake of HDL CE are not affected by caveolin-1 expression in HEK 293 or FRT cells.  相似文献   

11.
High density lipoprotein (HDL) represents a mixture of particles containing either apoA-I and apoA-II (LpA-I/A-II) or apoA-I without apoA-II (LpA-I). Differences in the function and metabolism of LpA-I and LpA-I/A-II have been reported, and studies in transgenic mice have suggested that apoA-II is pro-atherogenic in contrast to anti-atherogenic apoA-I. The molecular basis for these observations is unclear. The scavenger receptor BI (SR-BI) is an HDL receptor that plays a key role in HDL metabolism. In this study we investigated the abilities of apoA-I and apoA-II to mediate SR-BI-specific binding and selective uptake of cholesterol ester using reconstituted HDLs (rHDLs) that were homogeneous in size and apolipoprotein content. Particles were labeled in the protein (with (125)I) and in the lipid (with [(3)H]cholesterol ether) components and SR-BI-specific events were analyzed in SR-BI-transfected Chinese hamster ovary cells. At 1 microg/ml apolipoprotein, SR-BI-mediated cell association of palmitoyloleoylphosphatidylcholine-containing AI-rHDL was significantly greater (3-fold) than that of AI/AII-rHDL, with a lower K(d) and a higher B(max) for AI-rHDL as compared with AI/AII-rHDL. Unexpectedly, selective cholesterol ester uptake from AI/AII-rHDL was not compromised compared with AI-rHDL, despite decreased binding. The efficiency of selective cholesterol ester uptake in terms of SR-BI-associated rHDL was 4-5-fold greater for AI/AII-rHDL than AI-rHDL. These results are consistent with a two-step mechanism in which SR-BI binds ligand and then mediates selective cholesterol ester uptake with an efficiency dependent on the composition of the ligand. ApoA-II decreases binding but increases selective uptake. These findings show that apoA-II can exert a significant influence on selective cholesterol ester uptake by SR-BI and may consequently influence the metabolism and function of HDL, as well as the pathway of reverse cholesterol transport.  相似文献   

12.
During inflammatory states plasma levels of high density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apoA-I) are reduced. Secretory group IIa phospholipase A(2) (sPLA(2)) is a cytokine-induced acute-phase enzyme associated with HDL. Transgenic mice overexpressing sPLA(2) have reduced HDL levels. Studies were performed to define the mechanism for the HDL reduction in these mice. HDL isolated from sPLA(2) transgenic mice have a significantly lower phospholipid content and greater triglyceride content. In autologous clearance studies, (125)I-labeled HDL from sPLA(2) transgenic mice was catabolized significantly faster than HDL from control mice (4.24 +/- 1.16 vs. 2.84 +/- 0.1 pools per day, P < 0.008). In both sPLA(2) transgenic and control mice, the cholesteryl ester component of HDL was more rapidly catabolized than the protein component, indicating a selective uptake mechanism. In vitro studies using CHO cells transfected with scavenger receptor class B type I (SR-BI) showed that sPLA(2)-modified HDL was nearly twice as efficient as a substrate for cholesteryl ester transfer. These data were confirmed in in vivo selective uptake experiments using adenoviral vector overexpression of SR-BI. In these studies, increased hepatic selective uptake was associated with increased (125)I-labeled apolipoprotein uptake in the kidney.We conclude that during inflammation sPLA(2) hydrolysis of HDL phospholipids alters the lipid composition of the particle, allowing for more efficient SR-BI-mediated selective cholesteryl ester uptake. This enhanced SR-BI activity generates HDL remnants that are preferentially catabolized in the kidney.  相似文献   

13.
Scavenger receptor class B type I (SR-BI) delivers cholesterol ester from HDL to cells via a selective uptake mechanism, whereby lipid is transferred from the core of the particle without concomitant degradation of the protein moiety. The precise metabolic fate of HDL particles after selective lipid uptake is not known. To characterize SR-BI-mediated HDL processing in vivo, we expressed high levels of this receptor in livers of apoA-I(-/-) mice by adenoviral vector gene transfer, and then injected the mice with a bolus of human HDL(2) traced with (125)I-dilactitol tyramine. HDL recovered from apoA-I(-/-) mice over-expressing SR-BI was significantly smaller than HDL recovered from control mice as measured by non-denaturing gel electrophoresis. When injected into C57BL/6 mice, these HDL "remnants" were rapidly converted to HDL(2)-sized lipoprotein particles, and were cleared from the plasma at a rate similar to HDL(2). In assays in cultured cells, HDL remnants did not stimulate ATP-binding cassette transporter A1-dependent cholesterol efflux. When mixed with mouse plasma ex vivo, HDL remnants rapidly converted to larger HDL particles. These studies identify a previously ill-defined pathway in HDL metabolism, whereby SR-BI generates small, dense HDL particles that are rapidly remodeled in plasma. This remodeling pathway may represent a process that is important in determining the rate of apoA-I catabolism and HDL-mediated reverse cholesterol transport.  相似文献   

14.
The binding of high density lipoprotein (HDL) to scavenger receptor BI (SR-BI) is responsible for whole-body cholesterol disposal via reverse cholesterol transport. The extracellular domain of SR-BI is required for HDL binding and selective uptake of HDL-cholesterol. We identified six highly hydrophobic regions in this domain that may be important for receptor activity and performed site-directed mutagenesis to investigate the importance of these regions in SR-BI-mediated cholesterol transport. Non-conservative mutation of the regions encompassing V67, L140/L142, V164 or V221 reduced hydrophobicity and impaired the ability of SR-BI to bind HDL, mediate selective uptake of HDL-cholesterol, promote cholesterol efflux, and enlarge the cholesterol oxidase-sensitive pool of membrane free cholesterol. In contrast, conservative mutations at V67, V164 or V221 did not affect the hydrophobicity or these cholesterol transport activities. We conclude that the hydrophobicity of N-terminal extracellular regions of SR-BI is critical for cholesterol transport, possibly by mediating receptor-ligand and/or receptor-membrane interactions.  相似文献   

15.
Apolipoprotein A-I (apoA-I) is an important ligand for the high density lipoprotein (HDL) scavenger receptor class B type I (SR-BI). SR-BI binds both free and lipoprotein-associated apoA-I, but the effects of particle size, composition, and apolipoprotein conformation on HDL binding to SR-BI are not understood. We have studied the effect of apoA-I conformation on particle binding using native HDL and reconstituted HDL particles of defined composition and size. SR-BI expressed in transfected Chinese hamster ovary cells was shown to bind human HDL(2) with greater affinity than HDL(3), suggesting that HDL size, composition, and possibly apolipoprotein conformation influence HDL binding to SR-BI. To discriminate between these factors, SR-BI binding was studied further using reconstituted l-alpha-palmitoyloleoyl-phosphatidylcholine-containing HDL particles having identical components and equal amounts of apoA-I, but differing in size (7.8 vs. 9.6 nm in diameter) and apoA-I conformation. The affinity of binding to SR-BI was significantly greater (50-fold) for the larger (9.6-nm) particle than for the 7.8-nm particle. We conclude that differences in apoA-I conformation in different-sized particles markedly influence apoA-I recognition by SR-BI. Preferential binding of larger HDL particles to SR-BI would promote productive selective cholesteryl ester uptake from larger cholesteryl ester-rich HDL over lipid-poor HDL.  相似文献   

16.
The Class B type I scavenger receptor I (SR-BI) is a physiologically relevant high density lipoprotein (HDL) receptor that can mediate selective cholesteryl ester (CE) uptake by cells. Direct interaction of apolipoprotein E (apoE) with this receptor has never been demonstrated, and its implication in CE uptake is still controversial. By using a human adrenal cell line (NCI-H295R), we have addressed the role of apoE in binding to SR-BI and in selective CE uptake from lipoproteins to cells. This cell line does not secrete apoE and SR-BI is its major HDL-binding protein. We can now provide evidence that 1) free apoE is a ligand for SR-BI, 2) apoE associated to lipids or in lipoproteins does not modulate binding or CE-selective uptake by the SR-BI pathway, and 3) the direct interaction of free apoE to SR-BI leads to an increase in CE uptake from lipoproteins of both low and high densities. We propose that this direct interaction could modify SR-BI structure in cell membranes and potentiate CE uptake.  相似文献   

17.
Several hereditary point mutations in human apolipoprotein A-I (apoA-I) have been associated with low HDL-cholesterol levels and/or increased coronary artery disease (CAD) risk. However, one apoA-I mutation, the V19L, recently identified in Icelanders, has been associated with increased HDL-cholesterol levels and decreased CAD risk. In an effort to gain mechanistic insight linking the presence of this mutation in apoA-I with the increase of HDL-cholesterol levels we evaluated the effect of V19L mutation on the conformational integrity and functional properties of apoA-I in lipid-free and lipidated form. ApoA-I[V19L] was found to be thermodynamically destabilized in lipid-free form and displays an increased capacity to associate with phospholipids compared to WT apoA-I. When associated to reconstituted HDL (rHDL), apoA-I[V19L] was more thermodynamically stabilized than WT apoA-I. ApoA-I[V19L] displayed normal capacity to promote ABCA1-mediated cholesterol efflux and to activate the enzyme LCAT, in lipid-free and rHDL-associated forms, respectively. Additionally, rHDL-associated apoA-I[V19L] showed normal capacity to promote ABCG1-mediated cholesterol efflux, but 45% increased capacity to promote SR-BI-mediated cholesterol efflux, while the SR-BI-mediated HDL-lipid uptake was normal. Overall, our findings show that the apoA-I V19L mutation does not affect the first steps of HDL biogenesis pathway. However, the increased capacity of apoA-I[V19L] to associate with phospholipids, in combination with the enhanced thermodynamic stability of lipoprotein-associated apoA-I[V19L] and increased capacity of apoA-I[V19L]-containing lipoprotein particles to accept additional cholesterol by SR-BI could account for the increased HDL-cholesterol levels observed in human carriers of the mutation.  相似文献   

18.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) by the liver. Hepatic lipase (HL) promotes this lipid uptake independent from lipolysis. The role of SR-BI in this HL-mediated increase in selective CE uptake was explored. Baby hamster kidney (BHK) cells were transfected with the SR-BI cDNA yielding cells with SR-BI expression, whereas no SR-BI was detected in control cells. These cells were incubated in medium containing 125I [3H]cholesteryl oleyl ether-labeled HDL3 (d = 1.125-1.21 g/ml) and HL was absent or present. Tetrahydrolipstatin (THL) blocked lipolysis. In control BHK cells and in BHK cells with SR-BI, HDL3 selective CE uptake (3H-125I) was detectable and SR-BI promoted this uptake. In both cell types, HL mediated an increase in selective CE uptake from HDL3. Quantitatively, this HL effect was similar in control BHK cells and in BHK cells with SR-BI. These results suggest that HL promotes selective uptake independent from SR-BI. To investigate the role of cell surface proteoglycans on the HL-mediated HDL3 uptake, proteoglycan deficiency was induced by heparinase digestion. Proteoglycan deficiency decreased the HL-mediated promotion of selective CE uptake. In summary, the stimulating HL effect on HDL selective CE uptake is independent from SR-BI and lipolysis. Proteoglycans are a requisite for the HL action on selective uptake. Results suggest that (a) pathway(s) distinct from SR-BI mediate(s) selective CE uptake from HDL.  相似文献   

19.
This study compares the roles of ABCG1 and scavenger receptor class B type I (SR-BI) singly or together in promoting net cellular cholesterol efflux to plasma HDL containing active LCAT. In transfected cells, SR-BI promoted free cholesterol efflux to HDL, but this was offset by an increased uptake of HDL cholesteryl ester (CE) into cells, resulting in no net efflux. Coexpression of SR-BI with ABCG1 inhibited the ABCG1-mediated net cholesterol efflux to HDL, apparently by promoting the reuptake of CE from medium. However, ABCG1-mediated cholesterol efflux was not altered in cholesterol-loaded, SR-BI-deficient (SR-BI(-/-)) macrophages. Briefly cultured macrophages collected from SR-BI(-/-) mice loaded with acetylated LDL in the peritoneal cavity did exhibit reduced efflux to HDL. However, this was attributable to reduced expression of ABCG1 and ABCA1, likely reflecting increased macrophage cholesterol efflux to apolipoprotein E-enriched HDL during loading in SR-BI(-/-) mice. In conclusion, cellular SR-BI does not promote net cholesterol efflux from cells to plasma HDL containing active LCAT as a result of the reuptake of HDL-CE into cells. Previous findings of increased atherosclerosis in mice transplanted with SR-BI(-/-) bone marrow probably cannot be explained by a defect in macrophage cholesterol efflux.  相似文献   

20.
We have studied the effects of mutations in apoA-I on reconstituted high density lipoprotein (HDL) particle (rHDL(apoA-I)) binding to and cholesterol efflux from wild-type (WT) and mutant forms of the HDL receptor SR-BI expressed by ldlA-7 cells. Mutations in helix 4 or helix 6 of the apoA-I reduced efflux by 79 and 51%, respectively, without substantially altering receptor binding (apparent K(d) values of 1.1-4.4 microg of protein/ml). SR-BI with an M158R mutation bound poorly to rHDL with WT and helix 4 mutant apoA-I; the helix 6 mutant restored tight binding to SR-BI(M158R) (K(d) values of 48, 60, and 7 microg of protein/ml, respectively). SR-BI(M158R)-mediated cholesterol efflux rates, normalized for binding, were high for all three rHDLs (71-111% of control). In contrast, absolute (12-19%) and binding-corrected (24-47%) efflux rates for all three rHDLs mediated by SR-BI with Q402R/Q418R mutations were very low. We propose that formation of a productive complex between apoA-I in rHDL and SR-BI, in which the lipoprotein and the receptor must either be precisely aligned or have the capacity to undergo appropriate conformational changes, is required for efficient SR-BI-mediated cholesterol efflux. Some mutations in apoA-I and/or SR-BI can result in high affinity, but non-productive, binding that does not permit efficient cholesterol efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号