共查询到20条相似文献,搜索用时 15 毫秒
1.
Rye KA Wee K Curtiss LK Bonnet DJ Barter PJ 《The Journal of biological chemistry》2003,278(25):22530-22536
The high density lipoproteins (HDL) in human plasma are classified on the basis of apolipoprotein composition into those containing apolipoprotein (apo) A-I but not apoA-II, (A-I)HDL, and those containing both apoA-I and apoA-II, (A-I/A-II)HDL. Cholesteryl ester transfer protein (CETP) transfers core lipids between HDL and other lipoproteins. It also remodels (A-I)HDL into large and small particles in a process that generates lipid-poor, pre-beta-migrating apoA-I. Lipid-poor apoA-I is the initial acceptor of cellular cholesterol and phospholipids in reverse cholesterol transport. The aim of this study is to determine whether lipid-poor apoA-I is also formed when (A-I/A-II)rHDL are remodeled by CETP. Spherical reconstituted HDL that were identical in size had comparable lipid/apolipoprotein ratios and either contained apoA-I only, (A-I)rHDL, or (A-I/A-II)rHDL were incubated for 0-24 h with CETP and Intralipid(R). At 6 h, the apoA-I content of the (A-I)rHDL had decreased by 25% and there was a concomitant formation of lipid-poor apoA-I. By 24 h, all of the (A-I)rHDL were remodeled into large and small particles. CETP remodeled approximately 32% (A-I/A-II)rHDL into small but not large particles. Lipid-poor apoA-I did not dissociate from the (A-I/A-II)rHDL. The reasons for these differences were investigated. The binding of monoclonal antibodies to three epitopes in the C-terminal domain of apoA-I was decreased in (A-I/A-II)rHDL compared with (A-I)rHDL. When the (A-I/A-II)rHDL were incubated with Gdn-HCl at pH 8.0, the apoA-I unfolded by 15% compared with 100% for the apoA-I in (A-I)rHDL. When these incubations were repeated at pH 4.0 and 2.0, the apoA-I in the (A-I)rHDL and the (A-I/A-II)rHDL unfolded completely. These results are consistent with salt bridges between apoA-II and the C-terminal domain of apoA-I, enhancing the stability of apoA-I in (A-I/A-II)rHDL and possibly contributing to the reduced remodeling and absence of lipid poor apoA-I in the (A-I/A-II)rHDL incubations. 相似文献
2.
de Beer MC Durbin DM Cai L Mirocha N Jonas A Webb NR de Beer FC van Der Westhuyzen DR 《The Journal of biological chemistry》2001,276(19):15832-15839
High density lipoprotein (HDL) represents a mixture of particles containing either apoA-I and apoA-II (LpA-I/A-II) or apoA-I without apoA-II (LpA-I). Differences in the function and metabolism of LpA-I and LpA-I/A-II have been reported, and studies in transgenic mice have suggested that apoA-II is pro-atherogenic in contrast to anti-atherogenic apoA-I. The molecular basis for these observations is unclear. The scavenger receptor BI (SR-BI) is an HDL receptor that plays a key role in HDL metabolism. In this study we investigated the abilities of apoA-I and apoA-II to mediate SR-BI-specific binding and selective uptake of cholesterol ester using reconstituted HDLs (rHDLs) that were homogeneous in size and apolipoprotein content. Particles were labeled in the protein (with (125)I) and in the lipid (with [(3)H]cholesterol ether) components and SR-BI-specific events were analyzed in SR-BI-transfected Chinese hamster ovary cells. At 1 microg/ml apolipoprotein, SR-BI-mediated cell association of palmitoyloleoylphosphatidylcholine-containing AI-rHDL was significantly greater (3-fold) than that of AI/AII-rHDL, with a lower K(d) and a higher B(max) for AI-rHDL as compared with AI/AII-rHDL. Unexpectedly, selective cholesterol ester uptake from AI/AII-rHDL was not compromised compared with AI-rHDL, despite decreased binding. The efficiency of selective cholesterol ester uptake in terms of SR-BI-associated rHDL was 4-5-fold greater for AI/AII-rHDL than AI-rHDL. These results are consistent with a two-step mechanism in which SR-BI binds ligand and then mediates selective cholesterol ester uptake with an efficiency dependent on the composition of the ligand. ApoA-II decreases binding but increases selective uptake. These findings show that apoA-II can exert a significant influence on selective cholesterol ester uptake by SR-BI and may consequently influence the metabolism and function of HDL, as well as the pathway of reverse cholesterol transport. 相似文献
3.
While low apolipoprotein A-I (apoA-I) levels are primarily associated with increased high density lipoprotein (HDL) fractional catabolic rate (FCR), the factors that regulate the clearance of HDL from the plasma are unclear. In this study, the effect of lipid composition of reconstituted HDL particles (LpA-I) on their rate of clearance from rabbit plasma has been investigated. Sonicated LpA-I containing 1 to 2 molecules of purified human apoA-I and 5 to 120 molecules of palmitoyl-oleoyl phosphatidylcholine (POPC) exhibit similar charge and plasma FCR to that for lipid free apoA-I, 2.8 pools/day. Inclusion of 1 molecule of apoA-II to an LpA-I complex increases the FCR to 3.5 pools/day, a value similar to that observed for exchanged-labeled HDL3. In contrast, addition of 40 molecules of triglyceride, diglyceride, or cholesteryl ester to a sonicated LpA-I containing 120 moles of POPC and 2 molecules of apoA-I increases the negative charge of the particle and reduces the FCR to 1.8 pools/day. Discoidal LpA-I are the most positively charged lipoprotein particles and also have the fastest clearance rates, 4.5 pools/day. Immunochemical characterization of the different LpA-I particles shows that the exposure of an epitope at residues 98 to 121 of the apoA-I molecule is associated with an increased negative particle charge and a slower clearance from the plasma.We conclude that the charge and conformation of apoA-I are sensitive to the lipid composition of LpA-I and play a central role in regulating the clearance of these lipoproteins from plasma. conformation regulate the clearance of reconstituted high density lipoprotein in vivo. 相似文献
4.
Thuahnai ST Lund-Katz S Dhanasekaran P de la Llera-Moya M Connelly MA Williams DL Rothblat GH Phillips MC 《The Journal of biological chemistry》2004,279(13):12448-12455
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane. 相似文献
5.
Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. 总被引:4,自引:0,他引:4
W V Rodrigueza S T Thuahnai R E Temel S Lund-Katz M C Phillips D L Williams 《The Journal of biological chemistry》1999,274(29):20344-20350
Despite extensive studies and characterizations of the high density lipoprotein-cholesteryl ester (HDL-CE)-selective uptake pathway, the mechanisms by which the hydrophobic CE molecules are transferred from the HDL particle to the plasma membrane have remained elusive, until the discovery that scavenger receptor BI (SR-BI) plays an important role. To elucidate the molecular mechanism, we examined the quantitative relationships between the binding of HDL and the selective uptake of its CE in the murine adrenal Y1-BS1 cell line. A comparison of concentration dependences shows that half-maximal high affinity cell association of HDL occurs at 8.7 +/- 4.7 micrograms/ml and the Km of HDL-CE-selective uptake is 4.5 +/- 1.5 micrograms/ml. These values are similar, and there is a very high correlation between these two processes (r2 = 0.98), suggesting that they are linked. An examination of lipid uptake from reconstituted HDL particles of defined composition and size shows that there is a non-stoichiometric uptake of HDL lipid components, with CE being preferred over the major HDL phospholipids, phosphatidylcholine and sphingomyelin. Comparison of the rates of selective uptake of different classes of phospholipid in this system gives the ranking: phosphatidylserine > phosphatidylcholine approximately phosphatidylinositol > sphingomyelin. The rate of CE-selective uptake from donor particles is proportional to the amount of CE initially present in the particles, suggesting a mechanism in which CE moves down its concentration gradient from HDL particles docked on SR-BI into the cell plasma membrane. The activation energy for CE uptake from either HDL3 or reconstituted HDL is about 9 kcal/mol, indicating that HDL-CE uptake occurs via a non-aqueous pathway. HDL binding to SR-BI allows access of CE molecules to a "channel" formed by the receptor from which water is excluded and along which HDL-CE molecules move down their concentration gradient into the cell plasma membrane. 相似文献
6.
M F Kleinherenbrink-Stins D Schouten J van der Boom A Brouwer D L Knook T J van Berkel 《Journal of lipid research》1989,30(4):511-520
In order to assess the presence of specific recognition sites for high density lipoprotein (HDL) in vivo, HDL was nitrosylated with tetranitromethane and the decay and liver uptake were compared with that of native HDL. The association of intravenously injected nitrosylated HDL (TNM-HDL) with liver was greatly increased as compared to native HDL. Using a cold cell isolation method, it became evident that the liver endothelial cells were responsible for the increased uptake of the modified HDL. The involvement of the endothelial cells in the uptake of TNM-HDL from the circulation could also be demonstrated morphologically by using the fluorescent dye dioctadecyl-tetramethyl-indocarbocyanine perchlorate (Dil) to label HDL. In vitro competition studies with isolated liver endothelial cells indicated that unlabeled modified HDL and acetylated LDL displaced iodine-labeled TNM-HDL, while no competition was seen with LDL and a slight displacement was seen with unlabeled native HDL. Nonlipoprotein competitors of the scavenger receptor such as fucoidin and polyinosinic acid blocked the interaction of TNM-HDL with the liver endothelial cells. Also the degradation of TNM-HDL was blocked by low concentrations of chloroquine. It can be concluded that a scavenger receptor on liver endothelial cells is involved in the clearance of tetranitromethane-modified HDL, which excludes the possibility of using TNM-HDL in vivo to assess the non-receptor-dependent uptake of HDL. The use of nitrosylated HDL in vitro as a low affinity control is limited to cell types that do not possess scavenger receptors, because cell types with scavenger receptors will recognize and internalize TNM-HDL by a high affinity scavenger pathway. 相似文献
7.
Metabolism of high density lipoprotein (HDL) cholesteryl ester (CE) by cultured rat adrenal cells was studied. Addition of [3H]CE-HDL to cells pretreated with adrenocorticotrophin in lipoprotein poor media resulted in a time- and concentration-dependent accumulation of [3H]cholesteryl ester and production of [3H]cholesterol and [3H]corticosterone. HDL-CE metabolism could be described as the sum of a high affinity ([ HDL-cholesterol]1/2 max = 16 micrograms/ml) and low affinity ([ HDL-cholesterol]1/2 max greater than 70 micrograms/ml) process. [3H]Cholesterol was found both intracellularly and in the media. Accumulation of [3H]cholesteryl ester could not be attributed to uptake and re-esterification of unesterified cholesterol since addition of Sandoz 58-035, an inhibitor of acyl coenzyme A:cholesterol acyltransferase, did not prevent ester accumulation. Moreover, addition of chloroquine did not inhibit cholesteryl ester hydrolysis indicating that hydrolysis was not lysosomally mediated. Aminoglutethimide prevented conversion of [3H]CE-HDL to steroid hormones but did not inhibit [3H]cholesteryl ester uptake. Cellular accumulation of [3H] cholesteryl ester exceeded accumulation of 125I-apoproteins 5-fold at 1 h and 35-fold at 24 h indicating selective uptake of cholesteryl ester moiety. We conclude that rat adrenal cells possess a mechanism for selective uptake of HDL cholesteryl esters which provides substrate for steroidogenesis. These results constitute the first direct demonstration that cholesteryl esters in HDL can be used as steroidogenic substrate by the rat adrenal cortex. 相似文献
8.
Martin DD Budamagunta MS Ryan RO Voss JC Oda MN 《The Journal of biological chemistry》2006,281(29):20418-20426
Apolipoprotein A-I (apoA-I) plays a central role in the reverse cholesterol transport pathway; however, the structural basis for its antiatherogenic effects remains poorly understood. Here we employ EPR spectroscopy and fluorescence resonance energy transfer to elucidate the conformation and relative alignment of apoA-I monomers on discoidal (9.4 nm) reconstituted high density lipoprotein (rHDL). EPR spectroscopy provided evidence for an extended helical secondary structure. Position 139 since it was the only residue examined to display a dynamic motional character consistent with a flexible loop structure. The EPR spectra of nitroxide probes at positions 133 and 146 exhibit spin coupling, indicating that these positions are proximal to an apoA-I paired counterpart on the perimeter of rHDL. fluorescence resonance energy transfer studies employing engineered apoA-I variants possessing a single tryptophan (energy donor) and/or a single cysteine (whose thiol moiety was covalently labeled with an extrinsic energy acceptor) provided evidence that paired apoA-I molecules around the perimeter of rHDL align in an extended antiparallel conformation. Taken together with the observation that the EPR spectra of nitroxide probes positioned at intervening sequence positions (134-145) do not exhibit spin coupling, this has led us to propose a "looped belt" model, wherein residues 133-146 comprise a flexible loop segment that confers to apoA-I an intrinsic ability to adapt its structure to accommodate changing particle lipid content. Specifically, in the looped belt model, with the exception of amino acids 134-145, apoA-I aligns with its counterpart in a helix 5-helix 5 registry, centered at position 139. 相似文献
9.
Comparative acyl specificities for transfer and selective uptake of high density lipoprotein cholesteryl esters 总被引:1,自引:0,他引:1
This study compares the specificities of selective uptake and transfer mediated by plasma cholesteryl ester transfer protein (CETP) for various species of cholesteryl esters in high density lipoproteins (HDL). [3H]Cholesterol was esterified with a series of variable chain length saturated acids and a series of variably unsaturated 18-carbon acids. These were incorporated into synthetic HDL particles along with 125I-labeled apoA-I as a tracer of HDL particles and [14C]cholesteryl oleate as an internal standard for normalization between preparations. Selective uptake by Y1-BS1 mouse adrenal cortical tumor cells was most extensively studied, but uptake by human HepG2 hepatoma cells and fibroblasts of human, rat, and rabbit origin were also examined. Acyl chain specificities for selective uptake and for CETP-mediated transfer were conversely related; selective uptake by all cell types decreased with increasing acyl chain length and increased with the extent of unsaturation of C18 chains. In contrast, CETP-mediated transfer increased with acyl chain length, and decreased with unsaturation of C18 chains. The specificities of human and rabbit CETP were also compared, and were found to differ little. Associated experiments showed that HDL-associated triglycerides, traced by [3H]glyceryl trioleyl ether, were selectively taken up but at a lesser rate than cholesteryl esters. The mechanism of this uptake appears to be the same as for selective uptake of cholesteryl esters. 相似文献
10.
Serum amyloid A is a ligand for scavenger receptor class B type I and inhibits high density lipoprotein binding and selective lipid uptake 总被引:6,自引:0,他引:6
Cai L de Beer MC de Beer FC van der Westhuyzen DR 《The Journal of biological chemistry》2005,280(4):2954-2961
Serum amyloid A is an acute phase protein that is carried in the plasma largely as an apolipoprotein of high density lipoprotein (HDL). In this study we investigated whether SAA is a ligand for the HDL receptor, scavenger receptor class B type I (SR-BI), and how SAA may influence SR-BI-mediated HDL binding and selective cholesteryl ester uptake. Studies using Chinese hamster ovary cells expressing SR-BI showed that (125)I-labeled SAA, both in lipid-free form and in reconstituted HDL particles, functions as a high affinity ligand for SR-BI. SAA also bound with high affinity to the hepatocyte cell line, HepG2. Alexa-labeled SAA was shown by fluorescence confocal microscopy to be internalized by cells in a SR-BI-dependent manner. To assess how SAA association with HDL influences HDL interaction with SR-BI, SAA-containing HDL was isolated from mice overexpressing SAA through adenoviral gene transfer. SAA presence on HDL had little effect on HDL binding to SR-BI but decreased (30-50%) selective cholesteryl ester uptake. Lipid-free SAA, unlike lipid-free apoA-I, was an effective inhibitor of both SR-BI-dependent binding and selective cholesteryl ester uptake of HDL. We have concluded that SR-BI plays a key role in SAA metabolism through its ability to interact with and internalize SAA and, further, that SAA influences HDL cholesterol metabolism through its inhibitory effects on SR-BI-mediated selective lipid uptake. 相似文献
11.
The severe depletion of cholesteryl ester (CE) in adrenocortical cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays an important role in the high density lipoprotein (HDL) CE selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. A recent study showed that apoA-I(-/-) HDL binds to SR-BI with the same affinity as apoA-I(+/+) HDL, but apoA-I(-/-) HDL has a decreased V(max) for CE transfer from the HDL particle to adrenal cells. The present study was designed to determine the basis for the reduced selective uptake of CE from apoA-I(-/-) HDL. Variations in apoA-I(-/-) HDL particle diameter, free cholesterol or phospholipid content, or the apoE or apoA-II content of apoA-I(-/-) HDL had little effect on HDL CE selective uptake into Y1-BS1 adrenal cells. Lecithin cholesterol acyltransferase treatment alone or addition of apoA-I to apoA-I(-/-) HDL alone also had little effect. However, addition of apoA-I to apoA-I(-/-) HDL in the presence of lecithin cholesterol acyltransferase reorganized the large heterogeneous apoA-I(-/-) HDL to a more discrete particle with enhanced CE selective uptake activity. These results show a unique role for apoA-I in HDL CE selective uptake that is distinct from its role as a ligand for HDL binding to SR-BI. These data suggest that the conformation of apoA-I at the HDL surface is important for the efficient transfer of CE to the cell. 相似文献
12.
Mechanism of the cholesteryl ester transfer protein-mediated uptake of high density lipoprotein cholesteryl esters by Hep G2 cells 总被引:3,自引:0,他引:3
Plasma cholesteryl ester transfer protein (CETP) mediates the transfer of cholesteryl esters (CE) between lipoproteins and was reported to also directly mediate the uptake of high density lipoprotein (HDL) CE by human Hep G2 cells and fibroblasts. The present study investigates that uptake and its relationship to a pathway for "selective uptake" of HDL CE that does not require CETP. HDL3 labeled in both the CE and apoprotein moieties was incubated with Hep G2 cells. During 4-h incubations, CE tracer was selectively taken up from doubly labeled HDL3 in excess of apoA-I tracer, and added CETP did not modify that uptake. However, during 18-20-h incubations, CETP stimulated the uptake of CE tracer more than 4-fold without modifying the uptake of apoA-I tracer. This suggested that secreted products, perhaps lipoproteins, might be required for the CETP effect. Four inhibitors of lipoprotein uptake via low density lipoprotein (LDL) receptors (heparin, monensin, an antibody against the LDL receptor, and antibodies against the receptor binding domains of apoB and apoE) effectively blocked the CETP stimulation of CE tracer uptake. Heparin caused an increase in CE tracer in a d less than 1.063 g/ml fraction of the medium that more than accounted for the heparin blockade of CETP-stimulated CE uptake. CETP did not affect the uptake of doubly labeled HDL3 by human fibroblasts, even at twice plasma levels of activity, and heparin did not modify uptake of HDL3 tracers. Thus the CETP effect on Hep G2 cells can be accounted for by transfer of HDL CE to secreted lipoproteins which are then retaken up, and there is no evidence for a direct effect of CETP on cellular uptake of HDL CE. 相似文献
13.
The effects of injection of purified human or rat apolipoprotein (apo) A-I (1.7 mg/100 g body weight) on the size and composition of rat high density lipoprotein (HDL) particles have been investigated. The injection of human apo A-I results in the formation (over a period of 3 to 6 h) of a population of smaller HDL particles resembling human HDL3. This population of smaller particles contains human apo A-I and rat apo A-IV but lacks rat apo A-I and rat apo E. Small HDL3-like particles are not detected in rat plasma following the injection of rat apo A-I. Associated with the injection of either human or rat apo A-I is a gradual increase of plasma cholesterol levels of 20 to 50% (over 24 h) and the appearance of larger HDL particles. The results suggest that the smaller HDL particles in human plasma compared to rat plasma are not simply due to the action of lipid modifying enzymes or lipid transfer proteins but a specific property of human apo A-I. 相似文献
14.
High density lipoprotein-induced signaling of the MAPK pathway involves scavenger receptor type BI-mediated activation of Ras 总被引:8,自引:0,他引:8
Grewal T de Diego I Kirchhoff MF Tebar F Heeren J Rinninger F Enrich C 《The Journal of biological chemistry》2003,278(19):16478-16481
High density lipoprotein (HDL) stimulates multiple signaling pathways. HDL-induced activation of the mitogen-activated protein kinase (MAPK) pathway can be mediated by protein kinase C (PKC) and/or pertussis toxin-sensitive G-proteins. Although HDL-induced activation of MAPK involves Raf-1, Mek, and Erk1/2, the upstream contribution of p21(ras) (Ras) on the activation of Raf-1 and MAPK remains elusive. Here we examine the effect of HDL on Ras activity and demonstrate that HDL induces PKC-independent activation of Ras that is completely blocked by pertussis toxin, thus implicating heterotrimeric G-proteins. In addition, the HDL-induced activation of Ras is inhibited by a neutralizing antibody against scavenger receptor type BI. We conclude that the binding of HDL to scavenger receptor type BI activates Ras in a PKC-independent manner with subsequent induction of the MAPK signaling cascade. 相似文献
15.
Tietge UJ Maugeais C Cain W Grass D Glick JM de Beer FC Rader DJ 《The Journal of biological chemistry》2000,275(14):10077-10084
Plasma levels of high density lipoprotein (HDL) cholesterol and its major protein component apolipoprotein (apo) A-I are significantly reduced in both acute and chronic inflammatory conditions, but the basis for this phenomenon is not well understood. We hypothesized that secretory phospholipase A(2) (sPLA(2)), an acute phase protein that has been found in association with HDL, promotes HDL catabolism. A series of HDL metabolic studies were performed in transgenic mice that specifically overexpress human sPLA(2) but have no evidence of local or systemic inflammation. We found that HDL isolated from these mice have a significantly lower phospholipid and cholesteryl ester and significantly greater triglyceride content. The fractional catabolic rate (FCR) of (125)I-HDL was significantly faster in sPLA(2) transgenic mice (4.08 +/- 0.01 pools/day) compared with control wild-type littermates (2.16 +/- 0.48 pools/day). (125)I-HDL isolated from sPLA(2) transgenic mice was catabolized significantly faster than (131)I-HDL isolated from wild-type mice after injection in wild-type mice (p < 0.001). Injection of (125)I-tyramine-cellobiose-HDL demonstrated significantly greater degradation of HDL apolipoproteins in the kidneys of sPLA(2) transgenic mice compared with control mice (p < 0.05). The fractional catabolic rate of [(3)H]cholesteryl ether HDL was significantly faster in sPLA(2)-overexpressing mice (6.48 +/- 0.24 pools/day) compared with controls (4.80 +/- 0.72 pools/day). Uptake of [(3)H] cholesteryl ether into the livers and adrenals of sPLA(2) transgenic mice was significantly enhanced compared with control mice. In summary, these data demonstrate that overexpression of sPLA(2) alone in the absence of inflammation causes profound alterations of HDL metabolism in vivo and are consistent with the hypothesis that sPLA(2) may promote HDL catabolism in acute and chronic inflammatory conditions. 相似文献
16.
Panagotopulos SE Horace EM Maiorano JN Davidson WS 《The Journal of biological chemistry》2001,276(46):42965-42970
Apolipoprotein A-I (apoA-I) is the major protein associated with high density lipoprotein (HDL), and its plasma levels have been correlated with protection against atherosclerosis. Unfortunately, the structural basis of this phenomenon is not fully understood. Over 25 years of study have produced two general models of apoA-I structure in discoidal HDL complexes. The belt model states that the amphipathic helices of apoA-I are aligned perpendicular to the acyl chains of the lipid bilayer, whereas the picket fence model argues that the helices are aligned parallel with the acyl chains. To distinguish between the two models, various single tryptophan mutants of apoA-I were analyzed in reconstituted, discoidal HDL particles composed of phospholipids containing nitroxide spin labels at various positions along the acyl chain. We have previously used this technique to show that the orientation of helix 4 of apoA-I is most consistent with the belt model. In this study, we performed additional control experiments on helix 4, and we extended the results by performing the same analysis on the remaining 22-mer helices (helices 1, 2, 5, 6, 7, 8, and 10) of human apoA-I. For each helix, two different mutants were produced that each contained a probe Trp occurring two helical turns apart. In the belt model, the two Trp residues in each helix should exhibit maximal quenching at the same nitroxide group position on the lipid acyl chains. For the picket fence model, maximal quenching should occur at two different levels in the bilayer. The results show that the majority of the helices are in an orientation that is consistent with a belt model, because most Trp residues localized to a position about 5 A from the center of the bilayer. This study corroborates a belt hypothesis for the majority of the helices of apoA-I in phospholipid discs. 相似文献
17.
The structure and molecular dynamics of recombinant high density lipoproteins (rHDL) were studied by non-radiative energy transfer (NRET), fluorescence anisotropy and intensity measurements. The rHDL particles contained human plasma apolipoprotein (apo) A-I and dipalmitoylphosphatidylcholine (DPPC). Fluorescent cis- and trans-parinaric acids were used both as probes of molecular motion in the particle lipid phase and as acceptors in the Forster's energy transfer from apo A-I tryptophan residues to determine particle dimensions, apolipoprotein localization and lipid dynamics. The probes are sensitive to thermal wobbling (macromobility) and conformational deformations (micromobility) of phospholipid acyl chains. The experimental data fitted to various models of the particle structure are compatible with the following: (a) at T < Tt the particles appeared as lens-like discs with a radius of the lipid phase of 5 nm and a mean thickness of 4 nm, the value being more by 20% in the particle centre, the alpha-helices of about 1 nm thickness were located around the edge of the lipid core. Compared to liposomes, both macro- and micromobility of DPPC molecules in rHDL were more rapid due to a significant disorder of the boundary lipid molecules close to the apo A-I molecule. This disorder led to the increase of the specific surface area per one lipid molecule, S(o). The lipid phase can be divided into three regions: (i) zone I of the most tightly packed lipid (0-1.7 nm from the disc axis) with a S(o) value small as 0.5 nm2; (ii) intermediate zone II (from 1.7 to 4.0 nm); and (iii) boundary lipid zone III (4-5 nm) of significantly disordered lipid with a S(o) value large as 0.65 nm2. (b) at T> Tt the S(o) heterogeneity disappeared, the radius of the lipid phase did not increase significantly, not exceeding 5.2-5.4 nm, but protein-induced immobilization of lipid molecules which affected about half or more of the total lipid, became remarkable. The overall effect was the suppression of the transition amplitude in rHDL compared to liposomes. The structural inhomogeneity might underlie the function of the native plasma HDL as the key component of the transport and metabolism of plasma lipids. 相似文献
18.
The selective uptake of high density lipoprotein (HDL) cholesteryl ester (CE) by the scavenger receptor class B type I (SR-BI) is well documented. However, the effect of altered HDL composition, such as occurs in hyperlipidemia, on this important process is not known. This study investigated the impact of variable CE and triglyceride (TG) content on selective uptake. CE selective uptake by Y1 and HepG2 cells was strongly affected by modification of either the CE or TG content of HDL. Importantly, TG, like CE, was selectively taken up by a dose-dependent, saturable process in these cells. As shown by ACTH up-regulation and receptor overexpression experiments, SR-BI mediated the selective uptake of both CE and TG. With in vitro modified HDLs of varying CE and TG composition, the selective uptake of CE and TG was dependent on the abundance of each lipid within the HDL particle. Furthermore, total selective uptake (CE + TG) remained constant, indicating that these lipids competed for cellular uptake. These data support a novel mechanism whereby SR-BI binds HDL and mediates the incorporation of a nonspecific portion of the HDL lipid core. In this way, TG directly affects the ability of HDL to donate CE to cells. Processes that raise the TG/CE ratio of HDL will impair the delivery of CE to cells via this receptor and may compromise the efficiency of sterol balancing pathways such as reverse cholesterol transport. 相似文献
19.
Gauthamadasa K Vaitinadin NS Dressman JL Macha S Homan R Greis KD Silva RA 《The Journal of biological chemistry》2012,287(10):7615-7625
It is well accepted that HDL has the ability to reduce risks for several chronic diseases. To gain insights into the functional properties of HDL, it is critical to understand the HDL structure in detail. To understand interactions between the two major apolipoproteins (apos), apoA-I and apoA-II in HDL, we generated highly defined benchmark discoidal HDL particles. These particles were reconstituted using a physiologically relevant phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) incorporating two molecules of apoA-I and one homodimer of apoA-II per particle. We utilized two independent mass spectrometry techniques to study these particles. The techniques are both sensitive to protein conformation and interactions and are namely: 1) hydrogen deuterium exchange combined with mass spectrometry and 2) partial acetylation of lysine residues combined with MS. Comparison of mixed particles with apoA-I only particles of similar diameter revealed that the changes in apoA-I conformation in the presence of apoA-II are confined to apoA-I helices 3-4 and 7-9. We discuss these findings with respect to the relative reactivity of these two particle types toward a major plasma enzyme, lecithin:cholesterol acyltransferase responsible for the HDL maturation process. 相似文献
20.
Specific oxidized phospholipids inhibit scavenger receptor bi-mediated selective uptake of cholesteryl esters 总被引:2,自引:0,他引:2
Ashraf MZ Kar NS Chen X Choi J Salomon RG Febbraio M Podrez EA 《The Journal of biological chemistry》2008,283(16):10408-10414
We have recently demonstrated that specific oxidized phospholipids (oxPC(CD36)) accumulate at sites of oxidative stress in vivo such as within atherosclerotic lesions, hyperlipidemic plasma, and plasma with low high-density lipoprotein levels. oxPC(CD36) serve as high affinity ligands for the scavenger receptor CD36, mediate uptake of oxidized low density lipoprotein by macrophages, and promote a pro-thrombotic state via platelet scavenger receptor CD36. We now report that oxPC(CD36) represent ligands for another member of the scavenger receptor class B, type I (SR-BI). oxPC(CD36) prevent binding to SR-BI of its physiological ligand, high density lipoprotein, because of the close proximity of the binding sites for these two ligands on SR-BI. Furthermore, oxPC(CD36) interfere with SR-BI-mediated selective uptake of cholesteryl esters in hepatocytes. Thus, oxidative stress and accumulation of specific oxidized phospholipids in plasma may have an inhibitory effect on reverse cholesterol transport. 相似文献