首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Considering the resistance of papillary thyroid cancer (PTC) 131I therapy, this study was designed to find a solution at molecular respect. By probing into lncRNA-NEAT1/miR-101-3p/FN1 axis and PI3K/AKT signaling pathway, this study provided a potential target for PTC therapy. 131I-resistant cell lines were established by continuous treatment with median-lethal 131I. Bioinformatic analysis was applied to filtrate possible lncRNA/miRNA/mRNA and related signaling pathway. Luciferase reporter assay was employed in the verification of the targeting relationship between lncRNA and miRNA as well as miRNA and mRNA. MTT assay and flow cytometry assay were performed to observe the impact of NEAT1/miR-101-3p/FN1 on cell viability and apoptosis in radioactivity iodine (RAI)-resistant PTC cell lines, respectively. Western blot and qRT-PCR were conducted to measure the expression of proteins and mRNAs in RAI-resistant PTC tissues and cells. Meanwhile, endogenous PTC mice model were constructed, in order to verify the relation between NEAT1 and RAI-resistance in vivo. NEAT1 was over-expressed in RAI-resistant PTC tissues and cell lines and could resist RAI by accelerating proliferation accompanied by suppressing apoptosis. It indicated that overexpressed NEAT1 restrained the damage of RAI to tumor in both macroscopic and microcosmic. Besides, NEAT1/miR-101-3p exhibited a negative correlation by directly targeting each other. The expression of FN1, an overexpressed downstream protein in RAI-resistance PTC tissues, could be tuned down by miR-101-3p, while the decrease could be restored by NEAT1. In conclusion, both in vitro and in vivo, NEAT1 suppression could inhibit 131I resistance of PTC by upregulating miR-101-3p/FN1 expression and inactivated PI3K/AKT signaling pathway both in vitro and in vivo.  相似文献   

2.
3.
4.
5.
The biological function of long noncoding RNA NEAT1 has been revealed in a lot of diseases. Nevertheless, it is still not yet clear whether NEAT1 can modulate the process of myocardial ischemia–reperfusion injury (M-I/R). Here, we reported that NEAT1 was able to sponge miR-495-3p to contribute to M-I/R injury through activating mitogen-activated protein kinase 6 (MAPK6). First, elevated expression of NEAT1 was revealed in M-I/R injury mice, meanwhile, lactate dehydrogenase (LDH) and creatine kinase-muscle/brain (CK-MB) were also upregulated in the serum. Meanwhile, as previously reported, miR-495 serves as a tumor suppressor or an oncogenic miRNA in different types of cancer. Currently, we found miR-495-3p was remarkably reduced in M-I/R mice. Additionally, NEAT1 was significantly induced whereas miR-495-3p was greatly reduced by H2O2 treatment in H9C2 cells. Moreover, loss of NEAT1 in H9C2 cells could repress the viability and proliferation of cells. For another, overexpression of NEAT1 exhibited an opposite phenomenon. Furthermore, LDH release and caspase-3 activity were obviously triggered by upregulation of NEAT1 while suppressed by NEAT1 knockdown. miR-495-3p was indicated and validated as a target of NEAT1 using the analysis of bioinformatics. Interestingly, we observed that miR-495-3p mimics repressed tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-18 protein expression while their levels were enhanced by the inhibition of miR-495-3p in H9c2 cells. Subsequently, it was manifested that MAPK6 was a target of miR-495-3p, which could exert a lot in the NEAT1/miR-495-3p-mediated M-I/R injury. Overall, our results implied that NEAT1 contributed to M-I/R injury via the modulation of miR-495-3p and MAPK6.  相似文献   

6.
Zhang  Heng-Sheng  Ouyang  Bo  Ji  Xiong-Ying  Liu  Mei-Fang 《Neurochemical research》2021,46(7):1747-1758

Cerebral ischaemia/reperfusion (I/R) injury-induced irreversible brain injury is a major cause of mortality and functional impairment in ageing people. Gastrodin (GAS), derived from the traditional Chinese herbal medicine Tianma, has been reported to inhibit the progression of stroke, but the mechanism whereby GAS modulates the progression of cerebral I/R remains unclear. The middle cerebral artery occlusion method was used as a model of I/R in vivo. Rats were pretreated with GAS by intraperitoneal injection 7 days before I/R surgery and were then treated with GAS for 7 days after I/R surgery. Additionally, an oxygen–glucose deprivation/reoxygenation model using neuronal cells was established in vitro to simulate I/R injury. 2,3,5-Triphenyltetrazolium chloride and Nissl staining were used to evaluate infarct size and neuronal damage, respectively. Lactate dehydrogenase release and cell counting kit-8 assays were used to assess neuronal cell viability. Enzyme-linked immunosorbent assay, qPCR, flow cytometry and western blotting were performed to analyse the expression levels of inflammatory factors (IL-1β, IL-18), lncRNA NEAT1, miR-22-3p, NLRP3 and cleaved caspase-1. Luciferase reporter experiments were performed to verify the association between lncRNA NEAT1 and miR-22-3p. The results indicated that GAS could significantly improve the neurological scores of rats and reduce the area of cerebral infarction. Meanwhile, GAS inhibited pyroptosis by downregulating NLRP3, inflammatory factors (IL-1β, IL-18) and cleaved caspase-1. In addition, GAS attenuated I/R-induced inflammation in neuronal cells through the modulation of the lncRNA NEAT1/miR-22-3p axis. GAS significantly attenuated cerebral I/R injury via modulation of the lncRNA NEAT1/miR-22-3p axis. Thus, GAS might serve as a new agent for the treatment of cerebral I/R injury.

  相似文献   

7.
8.
Sepsis is a severe clinical disease, which is resulted from the excessive host inflammation response to the infection. Growing evidence indicates that Staphylococcus aureus pneumonia is a significant cause of sepsis, which can lead to intestinal injury, inflammation, and apoptosis. Studies have shown that miR-182-5p can serve as a tumor oncogene or a tumor suppressive microRNA in various cancers, however, its biological role in sepsis is still uninvestigated. Here, we reported that miR-182-5p was obviously increased in S. aureus pneumonia mice models. Loss of miR-182-5p inhibited intestinal damage and intestinal apoptosis as indicated by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. In addition, we observed the lack of miR-182-5p altered the local inflammatory response to pneumonia in the intestine. Elevated tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were observed in intestinal tissue of pneumonia groups compared with the shams. Furthermore, miR-182-5p knockout (KO) pneumonia group demonstrated decreased levels of intestinal TNF-α and IL-6. Primary murine intestinal epithelial cells were isolated and cultured in our investigation. We exhibited downregulation of miR-182-5p repressed intestinal epithelial cells apoptosis and rescued the cell viability. Meanwhile, miR-182-5p caused elevated cell apoptosis and reduced cell proliferation. Moreover, the surfactant protein D (SP-D) binds with the bacterial pathogens and remove the pathogens and apoptotic bodies, which exhibits important roles in modulating immune responses. It was displayed in our study that SP-D was greatly decreased in pneumonia mice models. SP-D was predicted as a downstream target of miR-182-5p. These data concluded that miR-182-5p promoted intestinal injury in S. aureus pneumonia-induced sepsis via targeting SP-D.  相似文献   

9.
10.
Acute lung injury (ALI) is a severe pulmonary disease that causes a high number of fatalities worldwide. Studies have shown that FoxA1 expression is upregulated during ALI and may play an important role in ALI by promoting the apoptosis of alveolar type II epithelial cells. However, the mechanism of FoxA1 overexpression in ALI is unclear. In this study, an in vivo murine model of ALI and alveolar type II epithelial cells injury was induced using lipopolysaccharide (LPS). LPS upregulated FoxA1 in the lung tissue of the in vivo ALI model and in LPS-challenged type II epithelial cells. In contrast, miR-17 was significantly downregulated in these models. After miR-17 antagomir injection, the expression of FoxA1 was significantly increased in ALI mice. MiR-17 mimics could significantly inhibit FoxA1 mRNA and protein expression, whereas the miR-17 inhibitor could significantly increase FoxA1 mRNA and protein expression in LPS-induced type II epithelial cells. Thus, our results suggest that the downregulation of miR-17 expression could lead to FoxA1 overexpression in ALI.  相似文献   

11.
12.
Atherosclerosis has been recognized as a chronic inflammation process induced by lipid of the vessel wall. Oxidized low-density lipoprotein (ox-LDL) can drive atherosclerosis progression involving macrophages. Recently, long noncoding RNAs (lncRNAs) have been reported to play critical roles in atherosclerosis development. In our current study, we focused on the biological roles of lncRNA NEAT1 in atherosclerosis progress. Here, we found that ox-LDL was able to trigger human macrophages THP-1 cells, a human monocytic cell line, apoptosis in a dose-dependent and time-dependent course. In addition, we observed that NEAT1 was significantly increased in THP-1 cells incubated with ox-LDL and meanwhile miR-342-3p was greatly decreased. Then, NEAT1 was silenced by transfection of small interfering RNA (siRNA) of NEAT1 into THP-1 cells. As exhibited, CD36, oil-red staining levels, total cholesterol (TC), total cholesterol (TG) levels and THP-1 cell apoptosis were obviously repressed by knockdown of NEAT1. Furthermore, inhibition of NEAT1 contributed to the repression of inflammation in vitro. Interleukin 6 (IL-6), IL-1β, cyclooxygenase-2 (COX-2) and tumour necrosis factor-alpha (TNF-α) protein levels were remarkably depressed by NEAT1 siRNA in THP-1 cells. By using bioinformatics analysis, miR-342-3p was predicted as a downstream target of NEAT1 and the correlation between them was confirmed in our study. Moreover, overexpression of miR-342-3p could also greatly suppress inflammation response and lipid uptake in THP-1 cells. Knockdown of NEAT1 and miR-342-3p mimics inhibited lipid uptake in THP-1 cells. In conclusion, we implied that blockade of NEAT1 repressed inflammation response through modulating miR-342-3p in human macrophages THP-1 cells and NEAT1 may offer a promising strategy to treat atherosclerotic cardiovascular diseases.  相似文献   

13.
Docetaxel resistance remains one of the main problems in clinical treatment of metastatic prostate cancer (PCa). Previous studies identified differently expressed lncRNAs in docetaxel-resistant PCa cell lines, while the potential mechanisms were still unknown. In the present study, we found NEAT1 was expressed at high levels in docetaxel-resistant PCa clinical samples and related cell lines. When knockdown NEAT1, cell proliferation and invasion in docetaxel-resistant PCa cells in vitro and in vivo were downregulated. Our further researches explained that NEAT1 exerts oncogenic function in PCa by competitively ‘sponging’ both miR-34a-5p and miR-204-5p. Inhibition of miR-34a-5p or miR-204-5p expression mimics the docetaxel-resistant activity of NEAT1, whereas ectopic expression of miR-34a-5p or miR-204-5p attenuates the anti-drug function of NEAT1 in PCa cells. Besides, we also found ACSL4 is a target of both miR-34a-5p and miR-204-5p, and ACSL4 was also inhibited by miR-34a-5p and miR-204-5p. Moreover, suppression of miR-34a-5p or/and miR-204-5p greatly restrained the expression of ACSL4 upon NEAT1 overexpression. Joint expression of miR-34a-5p and miR-204a-5p synergistically decreased the expression of ASCL4, indicating miR-34a-5p and miR-204a-5p collaboratively inhibit the expression of ACSL4. Innovatively, we concluded that NEAT1 contributes to the docetaxel resistance by increasing ACSL4 via sponging miR-34a-5p and miR-204-5p in PCa cells.  相似文献   

14.
Atherosclerosis (AS) is one of the significant chronic inflammatory pathology considering public health impact. Up-regulation of HDAC1 has been proved to be related with endothelial dysfunction which is correlated intimately with AS. Our research aims to investigate how histone deacetylase 1 (HDAC1)/miR-182-5p/vav guanine nucleotide exchange factor 3 (VAV3)/AKT axis participates in AS in terms of molecular mechanism. We detected miR-181-5p in human umbilical vein endothelial cells after treatment with aorta and ox-LDL in AS model mice. Dual luciferase reporter assay was employed to verify interaction of miR-182-5p and VAV3. ChIP was performed to determine the relationship between HDAC1 and promoter of miR-182-5p. Protein levels of HADC1, VAV3, AKT, p-AKT, vascular cell adhesion molecule-1 (VCAM-1), intercellular cell adhesion molecule-1 (ICAM-1), and monocyte chemotactic protein 1 (MCP-1) were detected by western blot analysis. CCK8 and flow cytometry were used to detect cell viability and apoptosis, respectively. After different treatments, the ability of cells to form monoclonal cells was detected, and AS was evaluated by detecting arterial injury and inflammation-related factors. Overexpression of HDAC1 could inhibit HUVECs proliferation and promote AS in mouse model. It was verified by dual luciferase assay that miR-182-5p could bind to VAV3 3′UTR mRNA. Meanwhile, HDAC1 repressed miR-182-5p expression through binding to miR-182-5p promoter and then inhibit VAV3 expression further. In summary, HDAC1 promoted AS through AKT pathway, which was improved by VAV3 activation mediated by miR-182-5p. Our results demonstrated that HDAC1 repressed miR-182-5p and activating AKT pathway via improving VAV3 to promote AS progression.  相似文献   

15.
《Gene》2014,538(2):342-347
Chemotherapy plays a crucial role in hepatocellular carcinoma (HCC) treatment especially for patients with advanced HCC. Cisplatin is one of the commonly used chemotherapeutic drugs for the treatment of HCC. However, acquisition of cisplatin resistance is common in patients with HCC, and the underlying mechanism of such resistance is not fully understood. In the study, we focused on identifying the role of miRNAs in chemotherapy resistance after cisplatin-based combination chemotherapy. We assayed the expression level of miR-182 after cisplatin-based chemotherapy in patients with advanced HCC, and defined the biological functions by real-time PCR analysis and CCK-8 assay. We found that miR-182 levels were significantly increased in HCC patients treated with cisplatin-based chemotherapy. miR-182 levels were also higher in cisplatin-resistant HepG2 (HepG2-R) cells than in HepG2 cells. Upregulated miR-182 significantly increased the cell viability, whereas miR-182 knockdown reduced the cell viability during cisplatin treatment. miR-182 inhibition also partially overcame cisplatin resistance in HepG2-R cell. Furthermore, we found that upregulated miR-182 inhibited the expression of tumor suppressor gene TP53INP1 (tumor protein 53-induced nuclear protein1) in vitro. In vivo, miR-182 and TP53INP1 expression was negatively correlated. We finally demonstrated that miR-182 increased cisplatin resistance of HCC cell, partly by targeting TP53INP1. These data suggest that miR-182/TP53INP1 signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.  相似文献   

16.
Downregulation of microRNA-590-3p (miR-590-3p) is a frequently occurring, nonphysiological event which is observed in several human cancers, especially breast cancer. However, the significance of miR-590-3p still remain unclear in the progression of this disease. This study explored the role of miR-590-3p in apoptosis of breast cancer cells. Gene expression of miR-590-3p, Sirtuin-1 (SIRT1), Bcl-2 associated X protein (BAX), and p21 was evaluated with real-time polymerase chain reaction (PCR) and SIRT1 protein expression was assessed by Western blot analysis in breast cancer cell lines. Bioinformatics analysis and luciferase reporter assay were used to evaluate targeting of SIRT1 messenger RNA (mRNA) by miR-590-3p. Cells were transfected with miR-590-3p mimic and inhibitor and their effects on the expression and activity of SIRT1 were evaluated. The effects of miR-590-3p upregulation on the acetylation of p53 as well as cell viability and apoptosis were assessed by Western blot analysis, WST-1 assay, and flow cytometry, respectively. miR-590-3p expression was considerably downregulated in breast cancer cells which was accompanied by upregulation of SIRT1 expression. SIRT1 was recognized as a direct target for miR-590-3p in breast cancer cells and its protein expression and activity was dramatically inhibited by the miR-590-3p. In addition, there was an increase in p53 and its acetylated form that ultimately led to upregulation of BAX and p21 expression, suppression of cell survival, and considerable induction of apoptosis in breast cancer cells. These findings suggest that miR-590-3p exerts tumor-suppressing effects through targeting SIRT1 in breast cancer cells, which makes it a potential therapeutic target for developing more efficient treatments for breast cancer.  相似文献   

17.
ABSTRACT

Atopic dermatitis (AD) is a relapsing inflammatory skin disease with a complicated pathogenesis. This study aimed to investigate whether miR-375-3p could regulate AD through the Yes-associated protein 1 (YAP1) pathway. In this study, inflammatory response was induced by TNF-α and IFN-γ administration in HaCaT cells. We found that viability and inflammatory factor release, including interleukin-1β (IL-1β) and IL-6, were negatively related to miR-375-3p expression in HaCaT cells. We also found that YAP1 overexpression down-regulated lympho-epithelial Kazal type inhibitor (LEKTI) levels and aggravated viability and inflammation in TNF-α and IFN-γ-treated HaCaT cells. Dual-luciferase reporter assay proved the targeted binding of miR-375-3p and YAP1 3?-UTR. Additionally, the protective effect of miR-375-3p on inflammatory response in TNF-α and IFN-γ-treated HaCaT cells could be impeded by YAP1 overexpression. Collectively, our results suggested that miR-375-3p could modulate HaCaT cell viability and inflammation through the YAP1/LEKTI pathway.  相似文献   

18.
Notoginsenoside R1 (NGR1) is a neoteric phytoestrogen extracted from Panax notoginseng, and possesses comprehensive pharmacological functions in multitudinous ailments. But, whether NGR1 is utilized in neonatal pneumonia is not clear. This research study aspired to disclose the protective activity of NGR1 in neonatal pneumonia. WI-38 cells were co-stimulated with NGR1 and lipopolysaccharide (LPS, 10 ng/mL), CCK-8 and flow cytometry assays were implemented for cell viability and apoptosis assessment. Real-time quantitative plymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were executed for inflammatory cytokine determination. MicroRNA-181a (miR-181a) expression was evaluated through RT-qPCR, simultaneously, the impact of miR-181a was estimated in NGR1 and LPS co-managed cells. Dual luciferase report assay was performed to disclose the relation between miR-181a and Toll-like receptor 4 (TLR4). The nuclear factor-κB (NF-κB) and TAK1/JNK pathways were ultimately appraised. We found that NGR1 decreased cell viability, evoked apoptosis and impeded interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) expression and secretions in LPS-managed WI-38 cells. MiR-181a expression was enhanced by NGR1, and miR-181a inhibition inverted the impacts of NGR1 in LPS-managed WI-38 cells. Besides, TLR4 was predicted to be a firsthand direct target of miR-181a. Furthermore, NGR1 hindered NF-κB and TAK1/JNK pathways through modulating TLR4. These discoveries disclosed the fact that NGR1 protected WI-38 cells against LPS-triggered injury via adjusting the miR-181a/TLR4 and NF-κB and TAK1/JNK pathways.  相似文献   

19.
This study was aimed to figure out whether long noncoding RNA MEG3/miR-361-5p/FoxM1 signaling would contribute to improved proliferation and metastasis of osteosarcoma cells. We altogether collected 204 pairs of osteosarcoma tissues and adjacent normal tissues, and obtained four human osteosarcoma cell lines. Then pcDNA3.1-MEG3, si-MEG3, miR-361-5p mimic, miR-361-5p inhibitor, pcDNA3.1-FoxM1, si-FoxM1, and negative control (NC) were, respectively, transfected into the osteosarcoma cells. Furthermore, real time polymerase chain reaction was utilized to determine the mRNA expressions of maternally expressed gene 3 (MEG3) and miR-361-5p, and western blot analysis was applied for determining the FoxM1 expression. Besides, dual luciferase reporter gene assay was adopted to verify if MEG3 can be directly targeted by miR-361-5p. Finally, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, colony formation assay, flow cytometry, wound healing assay, and transwell assay were conducted to investigate the influence of MEG3, miR-361-5p, and FoxM1 expressions on the viability, proliferation, apoptosis, migration, and invasion of osteosarcoma cells. MEG3 and miR-361-5p were observed to be significantly downregulated within both osteosarcoma tissues and cell lines, whereas FoxM1 was upregulated in osteosarcoma tissues and cell lines (p < 0.05). MEG3 directly bound to miR-361-5p, and significantly upgraded its expression (p < 0.05). The upregulated MEG3 and miR-361-5p or the downregulated FoxM1 appeared to substantially inhibit proliferation, migration, and invasion of osteosarcoma cells (p < 0.05). Finally, the proliferation, migration, invasion, and motility of osteosarcoma cells within the miR-NC + pcDNA3.1-FoxM1 group and pcDNA + pcDNA-FoxM1 group were markedly promoted when compared with the miR-361-5p mimic group and pcDNA3.1-MEG3 group (p < 0.05). The MEG3/miR-361-5p/FoxM1 axis could potentially serve as therapeutic targets or diagnostic biomarkers for osteosarcoma.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号