首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
During the fasting state, insulin reduces nonesterified fatty acid (NEFA) appearance in the systemic circulation mostly by suppressing intracellular lipolysis in the adipose tissue. In the postprandial state, insulin may also control NEFA appearance through enhanced trapping into the adipose tissue of NEFA derived from intravascular triglyceride lipolysis. To determine the contribution of suppression of intracellular lipolysis in the modulation of plasma NEFA metabolism by insulin during enhanced intravascular triglyceride lipolysis, 10 healthy nonobese subjects underwent pancreatic clamps at fasting vs. high physiological insulin level with intravenous infusion of heparin plus Intralipid. Nicotinic acid was administered orally during the last 2 h of each 4-h clamp to inhibit intracellular lipolysis and assess insulin's effect on plasma NEFA metabolism independently of its effect on intracellular lipolysis. Stable isotope tracers of palmitate, acetate, and glycerol were used to assess plasma NEFA metabolism and total triglyceride lipolysis in each participant. The glycerol appearance rate was similar during fasting vs. high insulin level, but plasma NEFA levels were significantly lowered by insulin. Nicotinic acid significantly blunted the insulin-mediated suppression of plasma palmitate appearance and oxidation rates by approximately 60 and approximately 70%, respectively. In contrast, nicotinic acid did not affect the marked stimulation of palmitate clearance by insulin. Thus most of the insulin-mediated reduction of plasma NEFA appearance and oxidation can be explained by suppression of intracellular lipolysis during enhanced intravascular triglyceride lipolysis in healthy humans. Our results also suggest that insulin may affect plasma NEFA clearance independently of the suppression of intracellular lipolysis.  相似文献   

2.
Assessment of insulin secretion in humans under physiological conditions has been a challenge because of its complex interplay with insulin action and hepatic insulin extraction. The possibility of simultaneously assessing beta-cell function, insulin sensitivity, and hepatic insulin extraction under physiological conditions using a simple protocol is appealing, since it has the potential to provide novel insights regarding the regulation of fasting and postprandial glucose metabolism in diabetic and nondiabetic humans. In this Perspective, we review data indicating that an oral glucose tolerance test (OGTT) or a meal test is able to accomplish this goal when interpreted with the oral beta-cell minimal model. We begin by using the well-established intravenous minimal model to highlight how the oral minimal model was developed and how the oral assessment parallels that of an intravenous glucose tolerance test (IVGTT). We also point out the unique aspects of both approaches in relation to their ability to assess different aspects of the beta-cell secretory cascade. We review the ability of the oral model to concurrently measure insulin sensitivity and hepatic insulin extraction, thereby enabling it to quantitatively portray the complex relationship among beta-cell function, hepatic insulin extraction, and insulin action. In addition, data from 204 individuals (54 young and 159 elderly) who underwent both IVGTT and meal tolerance tests are used to illustrate how these different approaches provide complementary but differing insights regarding the regulation of beta-cell function in humans.  相似文献   

3.
Glucose, insulin and non-esterified fatty acid (NEFA) metabolism was studied in 18 patients (mean age 49) with ischemic heart disease (IHD) who did not have any concurrent disorder known to affect glucose tolerance.Significant hyperglycemia and hyperinsulinemia were observed in the IHD patients after oral glucose. The serum NEFA declined to a lower level in IHD patients than in normal subjects who received glucose.In response to hypoglycemia following the oral administration of sodium tolbutamide the serum NEFA in IHD patients rose to a higher level in the rebound phase than in normal subjects. This rise was preceded by a sharp decline in the concentration of circulating insulin.In 72% of the patients (IHD sub-group) the blood glucose values after oral glucose satisfied the criteria for the diagnosis of diabetes mellitus. The metabolic changes following oral glucose in the IHD sub-group and in asymptomatic diabetics (AD), free of clinical atherosclerosis and with similar impairment in glucose tolerance, were compared. Despite insignificantly lower insulin concentrations, the AD showed a significantly lesser fall in circulating NEFA than did the patients in the IHD sub-group. After oral sodium tolbutamide the IHD sub-group patients showed a greater insulin response and a greater rebound increase in circulating NEFA than did the AD.These differences in response to oral glucose and to sodium tolbutamide suggest that the pathogenesis of the impaired glucose tolerance in IHD may be different from that responsible for abnormal carbohydrate tolerance in asymptomatic diabetics without evident atherosclerosis. The abnormalities demonstrated in glucose, insulin and NEFA metabolism may play a role in the genesis of the hyperlipoproteinemia and atherosclerosis of IHD. One possible mechanism leading to hyperlipoproteinemia in ischemic heart disease compatible with the data is discussed.  相似文献   

4.
Dynamics of nonesterified fatty acid (NEFA) metabolism in humans requires quantification if we are to understand the etiology of such diseases as type 1 and 2 diabetes, as well as metabolic syndrome and obesity, or if we are to elucidate the mechanism of action of various interventions. We present a new compartmental model that employs the pattern of plasma glucose concentrations in healthy young adults to predict dynamic changes that occur in plasma NEFA concentrations during either a glucose-only intravenous glucose tolerance test, or an insulin-modified intravenous tolerance test, or a modified protocol during which variable-rate glucose infusions were administered to prevent plasma glucose from declining below 100 mg/dl. The model described all of the major features of NEFA response to an intravenous glucose tolerance test, including an initial latency phase, a phase during which plasma NEFA concentrations plummet to a nadir, and a rebound phase during which plasma NEFA concentrations may rise to a plateau concentration, which may be substantially higher than the initial basal NEFA concentration. This model is consistent with physiological processes and provides seven adjustable parameters that can be used to quantify NEFA production (lipolysis) and utilization (oxidation). When tested on data from the scientific literature, the range in estimated rate of lipolysis was 24-36 micromol.l(-1).min(-1) and for NEFA oxidation rate was 25-54 micromol.l(-1).min(-1). All model parameters were well identified and had coefficients of variation < 15% of their estimated values. It is concluded that this model is suitable to describe NEFA kinetics in human subjects.  相似文献   

5.
6.
Aging is associated with impaired fasted oxidation of nonesterified fatty acids (NEFA) suggesting a mitochondrial defect. Aging is also associated with deficiency of glutathione (GSH), an important mitochondrial antioxidant, and with insulin resistance. This study tested whether GSH deficiency in aging contributes to impaired mitochondrial NEFA oxidation and insulin resistance, and whether GSH restoration reverses these defects. Three studies were conducted: (i) in 82‐week‐old C57BL/6 mice, the effect of naturally occurring GSH deficiency and its restoration on mitochondrial 13C1‐palmitate oxidation and glucose metabolism was compared with 22‐week‐old C57BL/6 mice; (ii) in 20‐week C57BL/6 mice, the effect of GSH depletion on mitochondrial oxidation of 13C1‐palmitate and glucose metabolism was studied; (iii) the effect of GSH deficiency and its restoration on fasted NEFA oxidation and insulin resistance was studied in GSH‐deficient elderly humans, and compared with GSH‐replete young humans. Chronic GSH deficiency in old mice and elderly humans was associated with decreased fasted mitochondrial NEFA oxidation and insulin resistance, and these defects were reversed with GSH restoration. Acute depletion of GSH in young mice resulted in lower mitochondrial NEFA oxidation, but did not alter glucose metabolism. These data suggest that GSH is a novel regulator of mitochondrial NEFA oxidation and insulin resistance in aging. Chronic GSH deficiency promotes impaired NEFA oxidation and insulin resistance, and GSH restoration reverses these defects. Supplementing diets of elderly humans with cysteine and glycine to correct GSH deficiency could provide significant metabolic benefits.  相似文献   

7.
The daily rhythm of glucose metabolism is governed by the circadian clock, which consists of cell-autonomous clock machineries residing in nearly every tissue in the body. Disruption of these clock machineries either environmentally or genetically induces the dysregulation of glucose metabolism. Although the roles of clock machineries in the regulation of glucose metabolism have been uncovered in major metabolic tissues, such as the pancreas, liver, and skeletal muscle, it remains unknown whether clock function in non-major metabolic tissues also affects systemic glucose metabolism. Here, we tested the hypothesis that disruption of the clock machinery in the heart might also affect systemic glucose metabolism, because heart function is known to be associated with glucose tolerance. We examined glucose and insulin tolerance as well as heart phenotypes in mice with heart-specific deletion of Bmal1, a core clock gene. Bmal1 deletion in the heart not only decreased heart function but also led to systemic insulin resistance. Moreover, hyperglycemia was induced with age. Furthermore, heart-specific Bmal1-deficient mice exhibited decreased insulin-induced phosphorylation of Akt in the liver, thus indicating that Bmal1 deletion in the heart causes hepatic insulin resistance. Our findings revealed an unexpected effect of the function of clock machinery in a non-major metabolic tissue, the heart, on systemic glucose metabolism in mammals.  相似文献   

8.
9.
Peripheral neuropathy develops in human subjects with prediabetes and metabolic syndrome before overt hyperglycemia. The contributions of impaired glucose tolerance and insulin signaling, hypertriglyceridemia and/or increased nonesterified fatty acids (NEFA), and hypercholesterolemia to this condition remain unknown. Niacin and its derivatives alleviate dyslipidemia with a minor effect on glucose homeostasis. This study evaluated the roles of impaired glucose tolerance versus dyslipidemia in prediabetic neuropathy using Zucker fatty (fa/fa) rats and the niacin derivative acipimox, as well as the interplay of hypertriglyceridemia, increased NEFA, and oxidative-nitrosative stress. Sixteen-week-old Zucker fatty rats with impaired glucose tolerance, obesity, hyperinsulinemia, hypertriglyceridemia, hypercholesterolemia, and increased NEFA displayed sensory nerve conduction velocity deficit, thermal and mechanical hypoalgesia, and tactile allodynia. Acipimox (100 mg kg(-1) day(-1), 4 weeks) reduced serum insulin, NEFA, and triglyceride concentrations without affecting glucose tolerance and hypercholesterolemia. It alleviated sensory nerve conduction velocity deficit and changes in behavioral measures of sensory function and corrected oxidative-nitrosative stress, but not impaired insulin signaling, in peripheral nerve. Elevated NEFA increased total and mitochondrial superoxide production and NAD(P)H oxidase activity in cultured human Schwann cells. In conclusion, hypertriglyceridemia and/or increased NEFA concentrations cause prediabetic neuropathy through oxidative-nitrosative stress. Lipid-lowering agents and antioxidants may find a use in the management of this condition.  相似文献   

10.
cis‐9, trans‐11‐Conjugated linoleic acid (c9 t11 CLA) exerts anti‐diabetic effects by improving systemic insulin sensitivity and inflammation. Levels of CLA in beef can be increased by feeding cattle on pasture. This study aimed to explore the efficacy of a CLA‐rich diet (0.6% w/w c9 t11 CLA), presented as beef enriched with CLA or beef supplemented with synthetic CLA (c9 t11 CLA), for 28 days on molecular biomarkers of the metabolic syndrome, and adipose, hepatic, and skeletal muscle proteome in male ob/ob mice. Despite equal weight gain, CLA‐fed mice had lower plasma glucose, insulin, non‐esterified fatty acid, triacylglycerol and interleukin‐6, and higher adiponectin concentrations than controls. c9 t11 CLA induced differential regulation of redox status across all tissues, and decreased hepatic and muscle endoplasmic reticulum stress. CLA also modulated mechanistic links between the actin cytoskeleton, insulin signalling, glucose transport and inflammation in the adipose tissue. In the liver and muscle, c9 t11 CLA improved metabolic flexibility through co‐ordination between carbohydrate and energy metabolism. c9 t11 CLA may ameliorate systemic insulin sensitivity in obesity‐induced diabetes by altering cellular stress and redox status, and modulating nutrient handling in key insulin‐sensitive tissues through complex biochemical interplay among representative proteomic signatures.  相似文献   

11.
Hepatic glucose and lipid metabolism are altered in metabolic disease (e.g. obesity, metabolic syndrome, and Type 2 diabetes). Insulin-dependent regulation of glucose metabolism is impaired. In contrast, lipogenesis, hypertriglyceridemia, and hepatic steatosis are increased. Because insulin promotes lipogenesis and liver fat accumulation, to explain the elevation in plasma and tissue lipids, investigators have suggested the presence of pathway-selective insulin resistance. In this model, insulin signaling to glucose metabolism is impaired, but insulin signaling to lipid metabolism is intact. We discuss the evidence for the differential regulation of hepatic lipid and glucose metabolism. We suggest that the primary phenotypic driver is altered substrate delivery to the liver, as well as the repartitioning of hepatic nutrient handling. Specific alterations in insulin signaling serve to amplify the alterations in hepatic substrate metabolism. Thus, hyperinsulinemia and its resultant increased signaling may facilitate lipogenesis, but are not the major drivers of the phenotype of pathway-selective insulin resistance.  相似文献   

12.
The kinetics of nonesterified fatty acid (NEFA) metabolism in humans requires quantification to facilitate understanding of diseases like type 1 and 2 diabetes, metabolic syndrome, and obesity, and the mechanisms underpinning various interventions. Oral glucose tolerance tests (OGTT) and glucose meal tolerance tests (MTT) are potentially useful procedures for enabling quantification of NEFA kinetics because they both cause transitory, but substantial, declines and then rebounds in plasma NEFA concentrations in response to physiologically relevant increases in plasma glucose. The Boston MINIMAL model of NEFA kinetics was developed to analyze data from the intravenous glucose tolerance test (IVGTT), but in this work, we present for the first time its application to modeling NEFA data from both OGTT and MTT studies. This model enables estimation of SFFA (micromol.l(-1).min(-1)) (a parameter describing the maximum rate of lipolysis), and KFFA (%/min) (a parameter related to NEFA oxidation rate). The model could well describe the trajectories of NEFA concentrations following an OGTT (R2 in excess of 0.97) but was not as successful with the MTT (R2>0.65). Model parameters derived from analysis of OGTT and MTT data were well identified with coefficients of variation generally less than 15%. Type 2 diabetes, body mass index, and dietary treatment (high-fat vs. high-glycemic-index diets) were all shown to have significant effects on model parameters. Modeling plasma NEFA concentrations over 24 h has helped to identify and quantify the extent that periprandial NEFA peaks and nocturnal elevation in plasma NEFA can be accounted for by our model.  相似文献   

13.
Although germ‐line deletion of c‐Jun NH2‐terminal kinase (JNK) improves overall insulin sensitivity in mice, those studies could not reveal the underlying molecular mechanism and the tissue site(s) in which reduced JNK activity elicits the observed phenotype. Given its importance in nonesterified fatty acids (NEFA) and glucose utilization, we hypothesized that the insulin‐sensitive phenotype associated with Jnk deletion originates from loss of JNK function in skeletal muscle. Short hairpin RNA (shRNA)–mediated gene silencing was used to identify the functions of JNK subtypes in regulating energy metabolism and metabolic responses to elevated concentrations of NEFA in C2C12 myotubes, a cellular model of skeletal muscle. We show for the first time that cellular JNK2‐ and JNK1/JNK2‐deficiency divert glucose from oxidation to glycogenesis due to increased glycogen synthase (GS) activity and induction of Pdk4. We further show that JNK2‐ and JNK1/JNK2‐deficiency profoundly increase cellular NEFA oxidation, and their conversion to phospholipids and triglyceride. The increased NEFA utilization was coupled to increased expressions of selective NEFA handling genes including Cd36, Acsl4, and Chka, and enhanced palmitic acid (PA)‐dependent suppression of acetyl‐CoA carboxylase (Acc). In JNK‐intact cells, PA inhibited insulin signaling and glycogenesis. Although silencing Jnk1 and/or Jnk2 prevented PA‐induced inhibition of insulin signaling, it did not completely block decreased insulin‐mediated glycogenesis, thus indicating JNK‐independent pathways in the suppression of glycogenesis by PA. Muscle‐specific inhibition of JNK2 (or total JNK) improves the capacity of NEFA utilization and glycogenesis, and is a potential therapeutic target for improving systemic insulin sensitivity in type 2 diabetes (T2D).  相似文献   

14.
Objective : Satiety plays an important role in weight control. The meaning of fasting hormone levels and satiety feelings, and how post-absorptive changes after meals high in carbohydrate regulate appetite remains to be demonstrated. Research Methods and Procedures : Prospective metabolic study with 25 non-diabetic obese women at the Energy Metabolism Research Unit of the Department of Nutrition Sciences, University of Alabama at Birmingham. We analyzed fasting and postprandial ratings of hunger-satiety and values of various metabolic parameters (serum glucose and insulin, plasma cholecystokinin, respiratory quotient) during controlled weight loss. The postprandial measures were assessed following a test meal providing 320 kcal and yielding a food quotient of 0.89. Results : In the fasting state, there was no correlation between hunger-satiety ratings and any of the measured metabolic parameters. Under postprandial conditions, satiety was positively related to glucose (p = 0.002) and insulin (p = 0.002) responses to the test meal. In multivariate analysis including glucose, insulin, cholecystokinin, hunger-satiety ratings and respiratory quotient, insulin was the only independent predictor of satiety in the postprandial state. Discussion : These data suggest an association between the endogenous insulin response and feelings of postprandial satiety. Insulin's satiation properties, which could well be mediated by other hormones, may represent a primary factor of food intake regulation after meals relatively high in carbohydrate.  相似文献   

15.
There is experimental evidence that a source of fatty acids (FAs) that is either exogenous or endogenous is necessary to support normal insulin secretion. Therefore, FAs comodulate the glucose-induced pancreatic insulin secretion. To assess the role of FAs, 16 morbidly obese nondiabetic patients and 6 healthy volunteers were studied. The controls and the obese subjects, before and after diet-induced weight loss, spent 24 h in a calorimetric chamber, where they consumed standardized meals. Hourly blood samples were drawn from a central venous catheter for the measurement of glucose, C-peptide, and nonesterified fatty acid (NEFA) concentrations. Insulin sensitivity was measured (as the M value) by euglycemic hyperinsulinemic clamp. In the present study, we propose a mathematical model in which insulin secretion rate (ISR) is expressed as a function of both plasma glucose and NEFA concentrations. Model parameters, obtained by fitting the individual experimental data of plasma C-peptide concentration, gave an estimated ISR comparable with that obtained by the deconvolution method. To evaluate the performance of the model in an experimental condition in which incretin effect was minimized, previous data on insulin secretion following a butter load and subsequent hyperglycemic clamp were reanalyzed. This model of nutrient-stimulated insulin secretion is the first attempt to represent in a simple way the interaction between glucose and NEFA in the regulation of insulin secretion in the beta-cell and explains, at least in part, the "potentiation factor" used in previous models to account for other control factors different from glucose after either an intravenous infusion of glucose or a mixed meal.  相似文献   

16.
Insulin-independent glucose metabolism, including anaerobic glycolysis that is promoted in resistance training, plays critical roles in glucose disposal and systemic metabolic regulation. However, the underlying mechanisms are not completely understood. In this study, through genetically manipulating the glycolytic process by overexpressing human glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and 6-phosphofructo-2-kinase-fructose-2,6-biphosphatase 3 (PFKFB3) in mouse skeletal muscle, we examined the impact of enhanced glycolysis in metabolic homeostasis. Enhanced glycolysis in skeletal muscle promoted accelerated glucose disposal, a lean phenotype and a high metabolic rate in mice despite attenuated lipid metabolism in muscle, even under High-Fat diet (HFD). Further study revealed that the glucose metabolite sensor carbohydrate-response element-binding protein (ChREBP) was activated in the highly glycolytic muscle and stimulated the elevation of plasma fibroblast growth factor 21 (FGF21), possibly mediating enhanced lipid oxidation in adipose tissue and contributing to a systemic effect. PFKFB3 was critically involved in promoting the glucose-sensing mechanism in myocytes. Thus, a high level of glycolysis in skeletal muscle may be intrinsically coupled to distal lipid metabolism through intracellular glucose sensing. This study provides novel insights for the benefit of resistance training and for manipulating insulin-independent glucose metabolism.  相似文献   

17.
The liver may regulate glucose homeostasis by modulating the sensitivity/resistance of peripheral tissues to insulin, by way of the production of secretory proteins, termed hepatokines. Here, we demonstrate that selenoprotein P (SeP), a liver-derived secretory protein, causes insulin resistance. Using serial analysis of gene expression (SAGE) and DNA chip methods, we found that hepatic SeP mRNA levels correlated with insulin resistance in humans. Administration of purified SeP impaired insulin signaling and dysregulated glucose metabolism in both hepatocytes and myocytes. Conversely, both genetic deletion and RNA interference-mediated knockdown of SeP improved systemic insulin sensitivity and glucose tolerance in mice. The metabolic actions of SeP were mediated, at least partly, by inactivation of adenosine monophosphate-activated protein kinase (AMPK). In summary, these results demonstrate a role of SeP in the regulation of glucose metabolism and insulin sensitivity and suggest that SeP may be a therapeutic target for type 2 diabetes.  相似文献   

18.
The energy balance in vivo is maintained through inter-organ cross-talk involving several different tissues. As a first step towards recapitulating the metabolic circuitry, hepatocytes, endothelial cells and adipose tissue were connected in a multicompartmental modular bioreactor to reproduce salient aspects of glucose and lipid metabolism in vitro. We first examined how the two-way cellular interplay between adipose tissue and endothelial cells affects glucose and lipid metabolism. The hepatocyte cell line HepG2 was then added to the system, creating a three-way connected culture, to determine whether circulating metabolite concentrations were normalized, or whether metabolic shifts, which may arise when endothelial cells and adipose tissue are placed in connection, were corrected. The addition of hepatocytes to the system prevented the drop in the concentrations of glucose, L-alanine and lactate, and the rise in that of free fatty acids. There was no significant change in glycerol levels in either of the connected cultures. The results show that connected cultures recapitulate complex physiological systemic processes, such as glucose and lipid metabolism, and that the HepG2 hepatocytes normalize circulating metabolites in this in vitro environment in the presence of other cell types.  相似文献   

19.
Rainbow trout are carnivorous fish and poor metabolizers of carbohydrates, which established this species as a model organism to study the comparative physiology of insulin. Following the recent characterisation of key roles of several miRNAs in the insulin action on hepatic intermediary metabolism in mammalian models, we investigated the hypothesis that hepatic miRNA expression is postprandially regulated in the rainbow trout and temporally coordinated in the context of insulin-mediated regulation of metabolic gene expression in the liver. To address this hypothesis, we used a time-course experiment in which rainbow trout were fed a commercial diet after short-term fasting. We investigated hepatic miRNA expression, activation of the insulin pathway, and insulin regulated metabolic target genes at several time points. Several miRNAs which negatively regulate hepatic insulin signaling in mammalian model organisms were transiently increased 4 h after the meal, consistent with a potential role in acute postprandial negative feed-back regulation of the insulin pathway and attenuation of gluconeogenic gene expression. We equally observed a transient increase in omy- miRNA-33 and omy-miRNA-122b 4 h after feeding, whose homologues have potent lipogenic roles in the liver of mammalian model systems. A concurrent increase in the activity of the hepatic insulin signaling pathway and the expression of lipogenic genes (srebp1c, fas, acly) was equally observed, while lipolytic gene expression (cpt1a and cpt1b) decreased significantly 4 h after the meal. This suggests lipogenic roles of omy-miRNA-33 and omy-miRNA-122b may be conserved between rainbow trout and mammals and that these miRNAs may furthermore contribute to acute postprandial regulation of de novo hepatic lipid synthesis in rainbow trout. These findings provide a framework for future research of miRNA regulation of hepatic metabolism in trout and will help to further elucidate the metabolic phenotype of rainbow trout.  相似文献   

20.
Impairment of the insulin regulation of energy metabolism is considered to be an etiologic key component for metabolic disturbances. Methods for studies of insulin sensitivity thus are highly topical. There are clear indications that reduced insulin sensitivity contributes to the metabolic disturbances that occurs especially among obese lactating cows. Direct measurements of insulin sensitivity are laborious and not suitable for epidemiological studies. We have therefore adopted an indirect method originally developed for humans to estimate insulin sensitivity in dairy cows. The method, "Revised Quantitative Insulin Sensitivity Check Index" (RQUICKI) is based on plasma concentrations of glucose, insulin and free fatty acids (FFA) and it generates good and linear correlations with different estimates of insulin sensitivity in human populations. We hypothesized that the RQUICKI method could be used as an index of insulin function in lactating dairy cows. We calculated RQUICKI in 237 apparently healthy dairy cows from 20 commercial herds. All cows included were in their first 15 weeks of lactation. RQUICKI was not affected by the homeorhetic adaptations in energy metabolism that occurred during the first 15 weeks of lactation. In a cohort of 24 experimental cows fed in order to obtain different body condition at parturition RQUICKI was lower in early lactation in cows with a high body condition score suggesting disturbed insulin function in obese cows. The results indicate that RQUICKI might be used to identify lactating cows with disturbed insulin function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号