首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development and evaluation of noninvasive methods for monitoring species distribution and abundance is a growing area of ecological research. While noninvasive methods have the advantage of reduced risk of negative factors associated with capture, comparisons to methods using more traditional invasive sampling is lacking. Historically kit foxes (Vulpes macrotis) occupied the desert and semi-arid regions of southwestern North America. Once the most abundant carnivore in the Great Basin Desert of Utah, the species is now considered rare. In recent decades, attempts have been made to model the environmental variables influencing kit fox distribution. Using noninvasive scat deposition surveys for determination of kit fox presence, we modeled resource selection functions to predict kit fox distribution using three popular techniques (Maxent, fixed-effects, and mixed-effects generalized linear models) and compared these with similar models developed from invasive sampling (telemetry locations from radio-collared foxes). Resource selection functions were developed using a combination of landscape variables including elevation, slope, aspect, vegetation height, and soil type. All models were tested against subsequent scat collections as a method of model validation. We demonstrate the importance of comparing multiple model types for development of resource selection functions used to predict a species distribution, and evaluating the importance of environmental variables on species distribution. All models we examined showed a large effect of elevation on kit fox presence, followed by slope and vegetation height. However, the invasive sampling method (i.e., radio-telemetry) appeared to be better at determining resource selection, and therefore may be more robust in predicting kit fox distribution. In contrast, the distribution maps created from the noninvasive sampling (i.e., scat transects) were significantly different than the invasive method, thus scat transects may be appropriate when used in an occupancy framework to predict species distribution. We concluded that while scat deposition transects may be useful for monitoring kit fox abundance and possibly occupancy, they do not appear to be appropriate for determining resource selection. On our study area, scat transects were biased to roadways, while data collected using radio-telemetry was dictated by movements of the kit foxes themselves. We recommend that future studies applying noninvasive scat sampling should consider a more robust random sampling design across the landscape (e.g., random transects or more complete road coverage) that would then provide a more accurate and unbiased depiction of resource selection useful to predict kit fox distribution.  相似文献   

2.
Anticoagulant rodenticides (ARs) are commonly used to control rodent infestations for biocidal and plant protection purposes. This can lead to AR exposure of non-target small mammals and their predators, which is known from several regions of the world. However, drivers of exposure variation are usually not known. To identify environmental drivers of AR exposure in non-targets we analyzed 331 liver samples of red foxes (Vulpes vulpes) for residues of eight ARs and used local parameters (percentage of urban area and livestock density) to test for associations to residue occurrence. 59.8% of samples collected across Germany contained at least one rodenticide, in 20.2% of cases at levels at which biological effects are suspected. Second generation anticoagulants (mainly brodifacoum and bromadiolone) occurred more often than first generation anticoagulants. Local livestock density and the percentage of urban area were good indicators for AR residue occurrence. There was a positive association between pooled ARs and brodifacoum occurrence with livestock density as well as of pooled ARs, brodifacoum and difenacoum occurrence with the percentage of urban area on administrative district level. Pig holding drove associations of livestock density to AR residue occurrence in foxes. Therefore, risk mitigation strategies should focus on areas of high pig density and on highly urbanized areas to minimize non-target risk.  相似文献   

3.
The status of many carnivore species is a growing concern for wildlife agencies, conservation organizations, and the general public. Historically, kit foxes (Vulpes macrotis) were classified as abundant and distributed in the desert and semi-arid regions of southwestern North America, but is now considered rare throughout its range. Survey methods have been evaluated for kit foxes, but often in populations where abundance is high and there is little consensus on which technique is best to monitor abundance. We conducted a 2-year study to evaluate four survey methods (scat deposition surveys, scent station surveys, spotlight survey, and trapping) for detecting kit foxes and measuring fox abundance. We determined the probability of detection for each method, and examined the correlation between the relative abundance as estimated by each survey method and the known minimum kit fox abundance as determined by radio-collared animals. All surveys were conducted on 15 5-km transects during the 3 biological seasons of the kit fox. Scat deposition surveys had both the highest detection probabilities (p = 0.88) and were most closely related to minimum known fox abundance (r2 = 0.50, P = 0.001). The next best method for kit fox detection was the scent station survey (p = 0.73), which had the second highest correlation to fox abundance (r2 = 0.46, P<0.001). For detecting kit foxes in a low density population we suggest using scat deposition transects during the breeding season. Scat deposition surveys have low costs, resilience to weather, low labor requirements, and pose no risk to the study animals. The breeding season was ideal for monitoring kit fox population size, as detections consisted of the resident population and had the highest detection probabilities. Using appropriate monitoring techniques will be critical for future conservation actions for this rare desert carnivore.  相似文献   

4.
Exposure of wildlife to anticoagulant rodenticides is mainly assessed by analysing residues in the tissues, notably liver, of dead animals. Recent finding suggested that the analysis of active ingredients in mammal scats sampled in the field could be used as a non-invasive method to monitor non-lethal exposure in populations. Here, we measure experimentally the persistence of 6 anticoagulant rodenticides in fox scats when placed under natural conditions. Six foxes were fed with voles dosed with brodifacoum, bromadiolone, chlorophacinone, warfarin, difenacoum and difethialone in controlled conditions and their faeces were collected. Then, the scats were placed outside, thus exposed to weathering, and sampled up to four months later to measure the concentrations of the 6 rodenticides. We showed that both the concentrations and the occurrence of residues in the scats decreased rapidly for all these pesticides. Based on concentrations, the degradation half-lives ranged from 5.26 days for chlorophacinone to 7.98 days for bromadiolone. Furthermore, the probability of sampling a scat containing detectable residues decreased by 10% after 7d, 2d, 10d, 5d, 3d and 10d for warfarin, chlorophacinone, bromadiolone, brodifacoum, difenacoum and difethialone respectively. Thus, in terms of using residues in scats to monitor fox exposure to rodenticides, we recommend first, to clear the studied areas of old faeces and then, sample scats after a short period, ideally <5 days.  相似文献   

5.
Programmes to reintroduce predatory birds are resource intensive and expensive, yet there are few long-term studies on the health of these reintroduced birds following release. A total of 326 red kites (Milvus milvus) were released at four sites in England between 1989 and 2006 as part of efforts to reintroduce this species to England and Scotland, resulting in the establishment of several rapidly expanding populations in the wild. Detailed post-mortem examinations were carried out on 162 individuals found dead between 1989 and 2007, involving both released and wild-fledged birds. Toxicological analysis of one or more compounds was performed on 110 of the 162 birds. Poisoning was diagnosed in 32 of these 110 kites, 19 from second-generation anticoagulant rodenticides, 9 from other pesticides and 6 from lead. Criteria for diagnosing anticoagulant rodenticide poisoning included visible haemorrhage on gross post-mortem examination and levels of anticoagulant rodenticide exceeding 100 ng/g, but levels were elevated above 100 ng/g in a further eight red kites without visible haemorrhages, suggesting poisoning may have occurred in more birds. The anticoagulant rodenticides difenacoum and bromadiolone were the most common vertebrate control agents involved during this period. Poisoning of red kites may be slowing their rate of population recovery and range expansion in England. Simple modifications of human activity, such as best practice in rodent control campaigns, tackling the illegal use of pesticides and the use of non-toxic alternatives to lead ammunition, can reduce our impact on red kites and probably other populations of predatory and scavenging species.  相似文献   

6.
Anthropogenic modifications to landscapes intended to benefit wildlife may negatively influence wildlife communities. Anthropogenic provisioning of free water (water developments) to enhance abundance and distribution of wildlife is a common management practice in arid regions where water is limiting. Despite the long-term and widespread use of water developments, little is known about how they influence native species. Water developments may negatively influence arid-adapted species (e.g., kit fox, Vulpes macrotis) by enabling water-dependent competitors (e.g., coyote, Canis latrans) to expand distribution in arid landscapes (i.e., indirect effect of water hypothesis). We tested the two predictions of the indirect effect of water hypothesis (i.e., coyotes will visit areas with free water more frequently and kit foxes will spatially and temporally avoid coyotes) and evaluated relative use of free water by canids in the Great Basin and Mojave Deserts from 2010 to 2012. We established scent stations in areas with (wet) and without (dry) free water and monitored visitation by canids to these sites and visitation to water sources using infrared-triggered cameras. There was no difference in the proportions of visits to scent stations in wet or dry areas by coyotes or kit foxes at either study area. We did not detect spatial (no negative correlation between visits to scent stations) or temporal (no difference between times when stations were visited) segregation between coyotes and kit foxes. Visitation to water sources was not different for coyotes between study areas, but kit foxes visited water sources more in Mojave than Great Basin. Our results did not support the indirect effect of water hypothesis in the Great Basin or Mojave Deserts for these two canids.  相似文献   

7.
ABSTRACT San Joaquin kit foxes (Vulpes macrotis mutica) occur in central California, USA, and are endangered due to habitat loss and degradation. As the human population of California grows, more roads are being constructed in remaining kit fox habitat. We examined effects of 2-lane roads on demographic and ecological patterns of kit foxes on the Lokern Natural Area (LNA) from August 2001 to June 2004. Of 60 radiocollared kit foxes, only one was struck by a vehicle. Foxes were assigned to 1 of 3 risk categories (high, medium, or low) based on proportion of time spent in road-effect zones, which were defined by the probability of a fox encountering a road during nocturnal movements. Fox survival probabilities, reproductive success, litter size, nocturnal movements, and den placement all were similar among risk categories. Nocturnal locations of foxes were closer to roads than were den locations, and den fidelity was lowest for medium-risk foxes and highest for low-risk foxes but intermediate for high-risk foxes. Food availability and use were not affected by proximity to roads. We were unable to detect any significant detrimental effects from 2-lane roads on kit fox demography and ecology. Our results suggest that standard mitigation strategies, such as crossing structures and exclusionary fencing, would not benefit kit foxes on the LNA.  相似文献   

8.
Gene flow can effectively suppress genetic divergence among widely separated populations in highly mobile species. However, the same may not be true of species that typically disperse over shorter distances. Using mtDNA restriction-site and sequence analyses, we evaluate the extent of divergence among populations of two small relatively sedentary North American canids, the kit and swift foxes (genus Vulpes). We determine the significance of genetic differentiation among populations separated by distance and those separated by discrete topographic barriers. Our results show the among-population component of genetic variation in kit and swift foxes is large and similar to that of small rodents with limited dispersal ability. In addition, we found two distinct groupings of genotypes, separated by the Rocky Mountains, corresponding to the traditional division between kit and swift fox populations. Previous workers have characterized these morphologically similar populations either as separate species or subspecies. Our mtDNA data also suggest that kit and swift fox populations hybridize over a limited geographic area. However, the sequence divergence between kit and swift foxes is similar to that between these taxa and the arctic fox (Alopex lagopus), a morphologically distinct species commonly placed in a separate genus. This result presents a dilemma for species concepts, and we conclude that kit and swift foxes should be recognized as separate species.  相似文献   

9.
Cape foxes (Vulpes chama) and bat-eared foxes (Otocyon megalotis) are sympatric with black-backed jackals (Canis mesomelas) over much of southern Africa, although competition with and/or predation by jackals may suppress local populations of both fox species. From 2005 to 2008, we captured, radio-collared, and monitored 11 cape foxes, 22 bat-eared foxes, and 15 black-backed jackals on a game ranch in South Africa to investigate their spatial, habitat, temporal, and dietary resource overlap. Mean annual home-range sizes were 27.7 km2 for cape foxes, 5.0 km2 for bat-eared foxes, and 17.8 km2 for jackal family groups. Home ranges overlapped completely between species, although core areas overlapped less (<45%), with cape foxes and jackals overlapping the least (12%). When active, cape foxes, but not bat-eared foxes, used core areas of jackal groups less than expected. Additionally, both fox species used jackal core areas less than expected for their den sites, suggesting areas outside jackal core areas were used as refuges by foxes. Strong levels of habitat partitioning were not apparent at the study site or home-range levels, although habitat selection for den sites differed between jackals and cape foxes. Jackals were the most diurnal across seasons, whereas cape foxes were the most nocturnal. Diets overlapped little (R0 = 0.20–0.34) among the canid species, with bat-eared foxes overlapping the least with the others. Jackals killed at least 5 collared bat-eared foxes and 1 collared cape fox, indicating potential interference competition, probably for exclusive use of territorial space rather than over shared resources. We conclude that bat-eared foxes coexisted with jackals primarily by their dietary specialization and group living. Cape foxes coexisted with jackals by exhibiting high levels of spatial, habitat, temporal, and dietary partitioning. Surprisingly, the fox species exhibited positive associations with each other. Our results show the mechanisms that may allow jackals to suppress fox populations, yet also show how foxes, in turn, use different mechanisms to coexist with a dominant canid. © 2012 The Wildlife Society.  相似文献   

10.
The distribution of many predators may be limited by interactions with larger predator species. The arctic fox in mainland Europe is endangered, while the red fox is increasing its range in the north. It has been suggested that the southern distribution limit of the arctic fox is determined by interspecific competition with the red fox. This has been criticised, on the basis that the species co-exist on a regional scale. However, if the larger red fox is superior and interspecific competition important, the arctic fox should avoid close contact, especially during the breeding season. Consequently, the distribution of breeding dens for the two species would be segregated on a much smaller spatial and temporal scale, in areas where they are sympatric. We tested this hypothesis by analysing den use of reproducing arctic and red foxes over 9 years in Sweden. High quality dens were inhabited by reproducing arctic foxes more often when no red foxes bred in the vicinity. Furthermore, in two out of three cases when arctic foxes did reproduce near red foxes, juveniles were killed by red foxes. We also found that breeding arctic foxes occupied dens at higher altitudes than red foxes did. In a large-scale field experiment, red foxes were removed, but the results were not conclusive. However, we conclude that on the scale of individual territories, arctic foxes avoid areas with red foxes. Through interspecific interference competition, the red fox might thus be excluding the arctic fox from breeding in low altitude habitat, which is most important in years when food abundance is limited and competition is most fierce. With high altitude refuges being less suitable, even small-scale behavioural effects could scale up to significant effects at the population level.  相似文献   

11.
The main objective was to discover extent of interference and/or exploitative competition between the native red fox (Vulpes vulpes) and the introduced, invasive raccoon dog (Nyctereues proconoides) in the intensively used, agricultural landscape of northeast Germany (Mecklenburg-Western Pomerania) using very high frequency (VHF) radio telemetry. We recorded location data for 12 foxes and 16 raccoon dogs between July 2004 and December 2006. Species had similar average home range sizes estimated in each season (K95). Home ranges of adjacent raccoon dogs and foxes overlapped from 0.5 to 74.5 % with a mean of 26.4 %. We found a significantly different home range overlap index between the species showing that raccoon dog ranges shifted between seasons to a greater extent than red fox ranges. The raccoon dog differed significantly from the red fox in its use of habitat types, preferring dense vegetation cover and avoiding open areas. The red fox displayed less preference for or avoidance of specific habitat types. Moreover, an almost neutral inter-specific interaction index ranging from ?0.12 to 0.12 indicates that raccoon dogs and red foxes ignored each other. It is concluded that widespread and available resources and differences in spatial use patterns prevent competition between red foxes and raccoon dogs in the agricultural landscape of northeast Germany.  相似文献   

12.
Abstract: San Joaquin kit foxes (Vulpes macrotis mutica) are an endangered species with a narrow geographic range whose natural populations are limited by predation by coyotes (Canis latrans). In the warm, arid grassland and shrubland habitats where kit foxes occur, coyotes are more cover dependent than kit foxes, creating the possibility of habitat segregation. Effects of habitat variation on coyote and kit fox competition are unknown. We assessed exploitation and interference competition between coyotes and kit foxes in grassland and shrubland habitats to determine if such competition varies among habitats. With respect to exploitation competition, we evaluated habitat and spatial partitioning, diet, prey abundance, and survival for kit foxes and coyotes at the Lokern Natural Area in central California, USA, from January 2003 through June 2004. Kit foxes partitioned habitat, space, and diet with coyotes. Coyotes primarily used shrubland habitats whereas kit foxes selectively used burned grasslands. Kit foxes and coyotes had high dietary overlap with regards to items used, but proportional use of items differed between the 2 species. Kit foxes selected for Heermann's kangaroo rats (Dipodomys heermanni), which were closely tied to shrub habitats. With respect to interference competition, predation was the primary source of mortality for kit foxes, and survival of individual kit foxes was inversely related to proportion of shrub habitat within their home ranges. Our results suggest that a heterogeneous landscape may benefit kit foxes by providing habitat patches where predation risk may be lower.  相似文献   

13.
Endangered San Joaquin kit foxes Vulpes macrotis mutica can be sympatrically distributed with as many as four other canids: red fox, gray fox, coyote and domestic dog. Canid scats are often found during routine fieldwork, but cannot be reliably identified to species. To detect and study the endangered kit fox, we developed mitochondrial DNA markers that can be amplified from small amounts of DNA extracted from scats. We amplified a 412-bp fragment of the mitochondrial cytochrome- b gene from scat samples and digested it with three restriction enzymes. The resulting restriction profiles discriminated among all five canid species and correctly identified 10 'unknown' fox scats to species in blind tests. We have applied our technique to identify canids species for an environmental management study and a conservation study. We envision that our protocol, and similar ones developed for other endangered species will be greatly used for conservation management in the future.  相似文献   

14.
ABSTRACT The distribution and abundance of swift foxes (Vulpes velox) has declined from historic levels. Causes for the decline include habitat loss and fragmentation, incidental poisoning, changing land use practices, trapping, and predation by other carnivores. Coyotes (Canis latrans) overlap the geographical distribution of swift foxes, compete for similar resources, and are a significant source of mortality amongst many swift fox populations. Current swift fox conservation and management plans to bolster declining or recovering fox populations may include coyote population reduction to decrease predation. However, the role of coyote predation in swift fox population dynamics is not well-understood. To better understand the interactions of swift foxes and coyotes, we compared swift fox population demographics (survival rates, dispersal rates, reproduction, density) between areas with and without coyote population reduction. On the Piñon Canyon Maneuver Site, Colorado, USA, we monitored 141 swift foxes for 65,226 radio-days from 15 December 1998 to 14 December 2000 with 18,035 total telemetry locations collected. Juvenile swift fox survival rate was increased and survival was temporarily prolonged in the coyote removal area. Adult fox survival patterns were also altered by coyote removal, but only following late-summer coyote removals and, again, only temporarily. Coyote predation remained the main cause of juvenile and adult fox mortality in both areas. The increase in juvenile fox survival in the coyote removal area resulted in a compensatory increase in the juvenile dispersal rate and an earlier pulse in dispersal movements. Adult fox dispersal rate was more consistent throughout the year in the coyote removal area. Coyote removal did not influence the reproductive parameters of the swift foxes. Even though juvenile survival increased, swift fox density remained similar between the areas due to the compensatory dispersal rate among juvenile foxes. We concluded that the swift fox population in the area was saturated. Although coyote predation appeared additive in the juvenile cohort, it was compensatory with dispersal.  相似文献   

15.
From 1993 to 2001, we conducted a series of experiments in a mixed grassland–woodland system in central New South Wales (NSW) to quantify the interactions between red foxes and their prey and competitors. Foxes were removed from two areas around the perimeter of Lake Burrendong, and data were collected from these areas and a nearby untreated area before, during, and after the period of fox control. The arrival of rabbit hemorrhagic disease (RHD) in 1996 provided an opportunity to examine the interactive effects of controlling foxes and rabbits. In this landscape, typical of central NSW, (a) the fox population was not affected by a large reduction in the abundance of rabbits, or vice versa; (b) the cat population declined in areas where foxes were removed after the large RHD-induced reduction in rabbit numbers, but there was no consistent response to the removal of foxes; (c) the abundance of some macropod species increased in response only to the combined removal of rabbits and foxes; (d) there were no consistent changes in the abundances of bird species in response to the removal of either foxes or rabbits, but there were clear habitat differences in bird species richness; and (e) there was likely to be an increase in woody plant species after the large reduction in rabbit populations by RHD. We conclude that (a) long-term field experiments (more than 3 years) are required to quantify the indirect consequences of controlling foxes and rabbits, and (b) single manipulations, such as fox control or rabbit control, are not necessarily sufficient for the conservation of remnant woodland communities in southeastern Australia.  相似文献   

16.
The binding constants (K) of a series of anticoagulant rodenticides with the main soil organic component, humic acid (HA), were determined using frontal analysis approach. The order of the binding constants was identical as the one obtained in a previous paper [J. Chromatogr. B 813 (2004) 295], i.e. bromadiolone>brodifacoum>difenacoum>chlorophacinone>diphacinone, confirming the power of this frontal analysis approach for the determination of binding constants. Moreover, and for the first time, the concentration of unbound rodenticide to HAs could be determined. Thanks this approach, we could clearly demonstrate that HA acid protected the human hepatoma cell line HepG2 against the cytotoxicity of all the rodenticides tested and that the toxicity of rodenticides was directly linked to the free rodenticide fraction in the medium (i.e. unbound rodenticide to HA).  相似文献   

17.
In the twentieth century, red fox (Vulpes vulpes) expanded into the Canadian Arctic, where it competes with arctic fox (Vulpes lagopus) for food and shelter. Red fox dominates in physical interactions with the smaller arctic fox, but little is known about competition between them on the tundra. On Hershel Island, north Yukon, where these foxes are sympatric, we focused on natal den choice, a critical aspect of habitat selection. We tested the hypothesis that red fox displaces arctic fox from dens in prey-rich habitats. We applied an approach based on model comparisons to analyse a 10-year data set and identify factors important to den selection. Red fox selected dens in habitats that were more prey-rich in spring. When red foxes reproduced, arctic fox selected dens with good springtime access, notably many burrows unblocked by ice and snow. These provided the best refuge early in the reproductive season. In the absence of red foxes, arctic foxes selected dens offering good shelter (i.e. large isolated dens). Proximity to prey-rich habitats was consistently less important than the physical aspects of dens for arctic fox. Our study shows for the first time that red foxes in the tundra select dens associated primarily with prey-rich areas, while sympatric arctic foxes do not. These results fit a model of red fox competitively interfering with arctic fox, the first detailed study of such competition in a true arctic setting.  相似文献   

18.
We investigated diet composition, habitat selection and spatial behaviour of the red fox (Vulpes vulpes) in relation to the availability of wader nests in a coastal polder area in southwest Denmark. The predatory role of the red fox in wet grassland ecosystems has profound implications for conservation status of declining populations of grassland breeding waders. However, few studies have focussed on the foraging ecology and behaviour of the red fox in these landscapes. Faecal analyses revealed that fox diet consisted of birds (43 % of prey remains?/?32 % of biomass), rodents (39 %?/?21 %), sheep (mainly as carrion, 14 %?/?41 %) and lagomorphs (4 %?/?7 %). Charadriiformes (including waders) comprised 3–12 % of prey remains throughout the year. Telemetry data and spotlight counts indicated that foxes did not select areas with high densities of breeding waders, suggesting that foxes did not target wader nests while foraging. Foxes maintained stable home ranges throughout their lives, indicating that the area sustained a permanent fox population all year round. The population densities, estimated from spotlight surveys, were 0.74 visible foxes km?2 (95 % CI; 0.34–1.61) on the preferred breeding habitat for waders and 1.21 km?2 in other open habitats such as cultivated fields. Our results indicate that red fox predation on wader nests is incidental, consistent with the notion that red foxes are generalist predators that opportunistically subsist on many prey groups.  相似文献   

19.
Swift fox (Vulpes velox) were historically distributed in southwestern South Dakota including the region surrounding Badlands National Park (BNP). The species declined during the mid-1800s, largely due to habitat loss and poisoning targeted at wolves (Canis lupus) and coyotes (Canis latrans). Only a small population of swift foxes near Ardmore, which is located in Fall River County, South Dakota, persisted. In 2003, a reintroduction program was initiated at BNP with swift foxes translocated from Colorado and Wyoming. Foxes released in the years 2003, 2004 and 2005 were translocated from Colorado (BNP-Colorado) whereas in 2006, released foxes were translocated from Wyoming (BNP-Wyoming). Our objective was to evaluate genetic diversity and structure of the restored swift fox population in the area surrounding BNP compared to source fox populations in an area of Colorado and Wyoming, as well as the local swift fox population neighboring BNP near Ardmore in Fall River County, South Dakota. A total of 400 swift foxes (28 released in 2003, 28 released in 2004, 26 released in 2005, 26 released in 2006, 252 wild-born foxes, 40 individual foxes from the Ardmore area of South Dakota) was genotyped using twelve microsatellite loci. We report mean gene diversity values of 0.778 (SD = 0.156) for the BNP-Colorado population, 0.753 (SD = 0.165) for the BNP-Wyoming population, 0.751 (SD = 0.171) for the BNP population, and 0.730 (SD = 0.166) for the Fall River population. We also obtained Fst values ranging from 0.014 to 0.029 for pair-wise comparisons of fox populations (BNP, Fall River, BNP-Wyoming, BNP-Colorado). We conclude that the reintroduced fox population around BNP has high genetic diversity comparable to its source populations in Colorado and Wyoming. Although genetic diversity indicates that the reintroduction was successful, additional time is necessary to fully evaluate long-term genetic maintenance and interconnectivity among these populations.  相似文献   

20.
Pleistocene aridification in central North America caused many temperate forest-associated vertebrates to split into eastern and western lineages. Such divisions can be cryptic when Holocene expansions have closed the gaps between once-disjunct ranges or when local morphological variation obscures deeper regional divergences. We investigated such cryptic divergence in the gray fox (Urocyon cinereoargenteus), the most basal extant canid in the world. We also investigated the phylogeography of this species and its diminutive relative, the island fox (U. littoralis), in California. The California Floristic Province was a significant source of Pleistocene diversification for a wide range of taxa and, we hypothesized, for the gray fox as well. Alternatively, gray foxes in California potentially reflected a recent Holocene expansion from further south. We sequenced mitochondrial DNA from 169 gray foxes from the southeastern and southwestern United States and 11 island foxes from three of the Channel Islands. We estimated a 1.3% sequence divergence in the cytochrome b gene between eastern and western foxes and used coalescent simulations to date the divergence to approximately 500,000 years before present (YBP), which is comparable to that between recognized sister species within the Canidae. Gray fox samples collected from throughout California exhibited high haplotype diversity, phylogeographic structure, and genetic signatures of a late-Holocene population decline. Bayesian skyline analysis also indicated an earlier population increase dating to the early Wisconsin glaciation (~70,000 YBP) and a root height extending back to the previous interglacial (~100,000 YBP). Together these findings support California’s role as a long-term Pleistocene refugium for western Urocyon. Lastly, based both on our results and re-interpretation of those of another study, we conclude that island foxes of the Channel Islands trace their origins to at least 3 distinct female founders from the mainland rather than to a single matriline, as previously suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号