首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background

The lack of noninvasive biomarkers of rejection remains a challenge in the accurate monitoring of deeply buried nerve allografts and precludes optimization of therapeutic intervention. This study aimed to establish the expression profile of circulating microRNAs (miRNAs) during nerve allotransplantation with or without immunosuppression.

Results

Balb/c mice were randomized into 3 experimental groups, that is, (1) untreated isograft (Balb/c → Balb/c), (2) untreated allograft (C57BL/6 → Balb/c), and (3) allograft (C57BL/6 → Balb/c) with FK506 immunosuppression. A 1-cm Balb/c or C57BL/6 donor sciatic nerve graft was transplanted into sciatic nerve gaps created in recipient mice. At 1, 3, 7, 10, and 14 d after nerve transplantation, nerve grafts, whole blood, and sera were obtained for miRNA expression analysis with an miRNA array and subsequent validation with quantitative real-time PCR (qRT-PCR). Three circulating miRNAs (miR-320, miR-762, and miR-423-5p) were identified in the whole blood and serum of the mice receiving an allograft with FK506 immunosuppression, within 2 weeks after nerve allotransplantation. However, these 3 circulating miRNAs were not expressed in the nerve grafts. The expression of all these 3 upregulated circulating miRNAs significantly decreased at 2, 4, and 6 d after discontinuation of FK506 immunosuppression. In the nerve graft, miR-125-3b and miR-672 were significantly upregulated in the mice that received an allograft with FK506 only at 7 d after nerve allotransplantation.

Conclusions

We identified the circulating miR-320, miR-762, and miR-423-5p as potential biomarkers for monitoring the immunosuppression status of the nerve allograft. However, further research is required to investigate the mechanism behind the dysregulation of these markers and to evaluate their prognostic value in nerve allotransplantation.  相似文献   

2.
3.

Background

We profiled the expression of circulating microRNAs (miRNAs) in mice using Illumina small RNA deep sequencing in order to identify the miRNAs that may potentially be used as biomarkers to distinguish between gram-negative and gram-positive bacterial infections.

Results

Recombinant-specific gram-negative pathogen Escherichia coli (Xen14) and gram-positive pathogen Staphylococcus aureus (Xen29) were used to induce bacterial infection in mice at a concentration of 1 × 108 bacteria/100 μL of phosphate buffered saline (PBS). Small RNA libraries generated from the serum of mice after exposure to PBS, Xen14, Xen29, and Xen14 + Xen29 via the routes of subcutaneous injection (I), cut wound (C), or under grafted skin (S) were analyzed using an Illumina HiSeq2000 Sequencer. Following exposure to gram-negative bacteria alone, no differentially expressed miRNA was found in the injection, cut, or skin graft models. Exposure to mixed bacteria induced a similar expression pattern of the circulating miRNAs to that induced by gram-positive bacterial infection. Upon gram-positive bacterial infection, 9 miRNAs (mir-193b-3p, mir-133a-1-3p, mir-133a-2-3p, mir-133a-1-5p, mir-133b-3p, mir-434-3p, mir-127-3p, mir-676-3p, mir-215-5p) showed upregulation greater than 4-fold with a p-value < 0.01. Among them, mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p presented the most common miRNA targets expressed in the mice exposed to gram-positive bacterial infection.

Conclusions

This study identified mir-193b-3p, mir-133a-1-3p, and mir-133a-2-3p as potential circulating miRNAs for gram-positive bacterial infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12929-014-0106-y) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
6.

Objective

Embryo implantation is directly affected by genes related to uterine receptivity. Studies have demonstrated the important roles of miRNAs in the regulation of gene expression. Our early miRNA chip analyses revealed that the mmu-miR-141 expression in endometrial tissue is lower after embryo implantation than before it. However, the possible roles of miR-141 in embryo implantation have not yet been elucidated. Here, mmu-miR-141 was designed to detect the expression and role of miR-141 in the endometria of mice in early pregnancy following embryo implantation.

Methods

Real-time PCR and in-situ hybridization were used to study mmu-miR-141 expression in mouse uterus. Cell proliferation was detected by tetrazolium dye (MTT) assay and flow cytometry. Real-time PCR and Western blot analysis were used to confirm the mRNA and protein levels of phosphatase and tensin homolog (PTEN) to determine whether it was the target gene of mmu-miR-141. Enhanced green fluorescent protein (EGFP) fluorescence reporter vector analysis was also performed. A functional study was performed by injecting mice uteri with mmu-miR-141 inhibitor or mimic vectors.

Results

mmu-miR-141 expression was lower on day 6 (D6) than day 4 (D4) and could be increased by progesterone. Reduced mmu-miR-141 could decrease the proliferation activity of stromal cells and promote apoptosis. Upregulation of mmu-miR-141 inhibited PTEN protein expression but downregulation of mmu-miR-141 increased it, while the mRNA level remained unchanged. EGFP fluorescence reporter vector analysis showed that miR-141 targets the 3′-untranslated region of the PTEN mRNA. In addition, when the physiological mmu-miR-141 level was altered on D2 by injecting with inhibitor or mimic, the embryo implantation sites were significantly decreased on D7.

Conclusions

This study demonstrated that mmu-miR-141 might influence cell proliferation and apoptosis in the endometrium by negatively regulating PTEN expression, and could also influence the number of embryo implantation sites. mmu-miR-141 plays an essential role in embryo implantation.  相似文献   

7.

Background

Environmental temperature has serious implications in life cycle of aquatic ectotherms. Understanding the molecular mechanisms of temperature acclimation and adaptation of marine organisms is of the uttermost importance for ecology, fisheries, and aquaculture, as it allows modeling the effects of global warming on population dynamics. Regulatory molecules are major modulators of acclimation and adaptation; among them, microRNAs (miRNAs) are versatile and substantial contributors to regulatory networks of development and adaptive plasticity. However, their role in thermal plasticity is poorly known. We have asked whether the temperature and its shift during the early ontogeny (embryonic and larval development) affect the miRNA repertoire of Atlantic cod (Gadus morhua), and if thermal experience has long-term consequences in the miRNA profile.

Results

We characterized miRNA during different developmental stages and in juvenile tissues using next generation sequencing. We identified 389 putative miRNA precursor loci, 120 novel precursor miRNAs, and 281 mature miRNAs. Some miRNAs showed stage- or tissue-enriched expression and miRNAs, such as the miR-17 ~ 92 cluster, myomiRs (miR-206), neuromiRs (miR-9, miR-124), miR-130b, and miR-430 showed differential expression in different temperature regimes. Long-term effect of embryonic incubation temperature was revealed on expression of some miRNAs in juvenile pituitary (miR-449), gonad (miR-27c, miR-30c, and miR-200a), and liver (let-7 h, miR-7a, miR-22, miR-34c, miR-132a, miR-192, miR-221, miR-451, miR-2188, and miR-7550), but not in brain. Some of differentially expressed miRNAs in the liver were confirmed using LNA-based rt-qPCR. The effect of temperature on methylation status of selected miRNA promoter regions was mostly inconclusive.

Conclusions

Temperature elevation by several degrees during embryonic and larval developmental stages significantly alters the miRNA profile, both short-term and long-term. Our results suggest that a further rise in seas temperature might affect life history of Atlantic cod.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1503-7) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.

Background

Lipopolysaccharide (LPS) is recognized as the most potent microbial mediator presaging the threat of invasion of Gram-negative bacteria that implicated in the pathogenesis of sepsis and septic shock. This study was designed to examine the microRNA (miRNA) expression in whole blood from mice injected with intraperitoneal LPS.

Methods

C57BL/6 mice received intraperitoneal injections of varying concentrations (range, 10–1000 μg) of LPS from different bacteria, including Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Salmonella enterica, and Serratia marcescens and were killed 2, 6, 24, and 72 h after LPS injection. Whole blood samples were obtained and tissues, including lung, brain, liver, and spleen, were harvested for miRNA expression analysis using an miRNA array (Phalanx miRNA OneArray® 1.0). Upregulated expression of miRNA targets in the whole blood of C57BL/6 and Tlr4−/− mice injected with LPS was quantified using real-time RT-PCR and compared with that in the whole blood of C57BL/6 mice injected with lipoteichoic acid (LTA) from Staphylococcus aureus.

Results

Following LPS injection, a significant increase of 15 miRNAs was observed in the whole blood. Among them, only 3 miRNAs showed up-regulated expression in the lung, but no miRNAs showed a high expression level in the other examined tissues. Upregulated expression of the miRNA targets (let-7d, miR-15b, miR-16, miR-25, miR-92a, miR-103, miR-107 and miR-451) following LPS injection on real-time RT-PCR was dose- and time-dependent. miRNA induction occurred after 2 h and persisted for at least 6 h. Exposure to LPS from different bacteria did not induce significantly different expression of these miRNA targets. Additionally, significantly lower expression levels of let-7d, miR-25, miR-92a, miR-103, and miR-107 were observed in whole blood of Tlr4−/− mice. In contrast, LTA exposure induced moderate expression of miR-451 but not of the other 7 miRNA targets.

Conclusions

We identified a specific whole blood–derived miRNA signature in mice exposed to LPS, but not to LTA, from different gram-negative bacteria. These whole blood-derived miRNAs are promising as biomarkers for LPS exposure.  相似文献   

10.

Background & Aims

While it is widely accepted that obesity is associated with low-grade systemic inflammation, the molecular origin of the inflammation remains unknown. Here, we investigated the effect of endotoxin-induced inflammation via TLR4 signaling pathway at both systemic and intestinal levels in response to a high-fat diet.

Methods

C57BL/6J and TLR4-deficient C57BL/10ScNJ mice were maintained on a low-fat (10 kcal % fat) diet (LFD) or a high–fat (60 kcal % fat) diet (HFD) for 8 weeks.

Results

HFD induced macrophage infiltration and inflammation in the adipose tissue, as well as an increase in the circulating proinflammatory cytokines. HFD increased both plasma and fecal endotoxin levels and resulted in dysregulation of the gut microbiota by increasing the Firmicutes to Bacteriodetes ratio. HFD induced the growth of Enterobecteriaceae and the production of endotoxin in vitro. Furthermore, HFD induced colonic inflammation, including the increased expression of proinflammatory cytokines, the induction of Toll-like receptor 4 (TLR4), iNOS, COX-2, and the activation of NF-κB in the colon. HFD reduced the expression of tight junction-associated proteins claudin-1 and occludin in the colon. HFD mice demonstrated higher levels of Akt and FOXO3 phosphorylation in the colon compared to the LFD mice. While the body weight of HFD-fed mice was significantly increased in both TLR4-deficient and wild type mice, the epididymal fat weight and plasma endotoxin level of HFD-fed TLR4-deficient mice were 69% and 18% of HFD-fed wild type mice, respectively. Furthermore, HFD did not increase the proinflammatory cytokine levels in TLR4-deficient mice.

Conclusions

HFD induces inflammation by increasing endotoxin levels in the intestinal lumen as well as in the plasma by altering the gut microbiota composition and increasing its intestinal permeability through the induction of TLR4, thereby accelerating obesity.  相似文献   

11.
12.

Background

MicroRNAs (miRNAs) represent new and potentially informative diagnostic targets for disease detection and prognosis. However, little work exists documenting the effect of TRIzol, a common viral inactivation and nucleic acid extraction reagent, on miRNA purification. Here, we developed an optimized protocol for miRNA extraction from plasma samples by evaluating five different RNA extraction kits, TRIzol phase separation, purification additives, and initial plasma sample volume. This method was then used for downstream profiling of plasma miRNAs found in archived samples from one nonhuman primate (NHP) experimentally challenged with Ebola virus by the aerosol route.

Results

Comparison of real-time RT-PCR results for spiked-in and endogenous miRNA sequences determined extraction efficiencies from five different RNA purification kits. These experiments showed that 50 μL plasma processed using the QIAGEN miRNeasy Mini Kit with 5 μg of glycogen as a co-precipitant yielded the highest recovery of endogenous miRNAs. Using this optimized protocol, miRNAs from archived plasma samples of one rhesus macaque challenged with aerosolized Ebola virus was profiled using a targeted real-time PCR array. A total of 519 of the 752 unique miRNAs assayed were present in the plasma samples at day 0 and day 7 (time of death) post-exposure. Statistical analyses revealed 25 sequences significantly up- or down-regulated between day 0 and day 7 post infection, validating the utility of the extraction method for plasma miRNA profiling.

Conclusions

This study contributes to the knowledgebase of circulating miRNA extraction methods and expands on the potential applications of cell-free miRNA profiling for diagnostics and pathogenesis studies. Specifically, we optimized an extraction protocol for miRNAs from TRIzol-inactivated plasma samples that can be used for highly pathogenic viruses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1299-5) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Mesenchymal stem cells (MSCs) at maternal-fetal interface are considered to play an important role in the pathogenesis of pre-eclampsia (PE). microRNAs (miRNAs) also have an important influence on differentiation, maturation, and functions of MSCs. Our aim in this study was to determine the differential expression of miRNAs in decidua-derived MSCs (dMSCs) from severe PE and normal pregnancies.

Results

miRNA expression profiles in dMSCs from five patients with severe PE and five healthy pregnant women were screened using microarray. Then, bioinformatic analysis of the microarray results was performed. Out of 179 differentially expressed miRNAs, 49 miRNAs had significant (p < 0.05) differential expression of ≥ 2.0-fold changes, including 21 up-regulated and 28 down-regulated. miRNA-Gene-network and miRNA-Gene ontology (GO) -network analyses were performed. Overall, 21 up-regulated and 15 down-regulated miRNAs showed high degrees in these analyses. Moreover, the significantly enriched signaling pathways and GOs were identified. The analyses revealed that pathways associated with cell proliferation, angiogenesis, and immune functions were highly regulated by the differentially expressed miRNAs, including Wnt signaling pathway, mitogen-activated protein kinase signaling pathway, transforming growth factor beta signaling pathway, T-cell receptor signaling pathway, and B cell receptor signaling pathway. Four miRNA predicted target genes, vascular endothelial growth factor A (VEGFA), indoleamine 2,3-dioxygenase, suppression of cytokine signaling 3, and serine/threonine protein phosphatase 2A 55 kDa regulatory subunit B α isoform (PPP2R2A) were all decreased in dMSCs from patients with PE. Furthermore, the physiological roles of miR-16 and miR-136 in the down-regulation of VEGFA and PPP2R2A, respectively, were confirmed through reporter assays.

Conclusions

These findings suggest that miRNAs in dMSCs may be important regulatory molecules in the development of PE.  相似文献   

14.

Background

Potential regulators of adipogenesis include microRNAs (miRNAs), small non-coding RNAs that have been recently shown related to adiposity and differentially expressed in fat depots. However, to date no study is available, to our knowledge, regarding miRNAs expression profile during human adipogenesis. Thereby, the aim of this study was to investigate whether miRNA pattern in human fat cells and subcutaneous adipose tissue is associated to obesity and co-morbidities and whether miRNA expression profile in adipocytes is linked to adipogenesis.

Methodology/Principal Findings

We performed a global miRNA expression microarray of 723 human and 76 viral mature miRNAs in human adipocytes during differentiation and in subcutaneous fat samples from non-obese (n = 6) and obese with (n = 9) and without (n = 13) Type-2 Diabetes Mellitus (DM-2) women. Changes in adipogenesis-related miRNAs were then validated by RT-PCR. Fifty of 799 miRNAs (6.2%) significantly differed between fat cells from lean and obese subjects. Seventy miRNAs (8.8%) were highly and significantly up or down-regulated in mature adipocytes as compared to pre-adipocytes. Otherwise, 17 of these 799 miRNAs (2.1%) were correlated with anthropometrical (BMI) and/or metabolic (fasting glucose and/or triglycerides) parameters. We identified 11 miRNAs (1.4%) significantly deregulated in subcutaneous fat from obese subjects with and without DM-2. Interestingly, most of these changes were associated with miRNAs also significantly deregulated during adipocyte differentiation.

Conclusions/Significance

The remarkable inverse miRNA profile revealed for human pre-adipocytes and mature adipocytes hints at a closely crosstalk between miRNAs and adipogenesis. Such candidates may represent biomarkers and therapeutic targets for obesity and obesity-related complications.  相似文献   

15.

Background

Growing evidence suggests that epigenetic mechanisms of gene regulation may play a role in susceptibilities to specific toxicities and adverse drug reactions. MiRNAs in particular have been shown to be important regulators in cancer and other diseases and show promise as predictive biomarkers for diagnosis and prognosis. In this study, we characterized the global kidney miRNA expression profile in untreated male and female F344 rats throughout the life span. These findings were correlated with sex-specific susceptibilities to adverse renal events, such as male-biased renal fibrosis and inflammation in old age.

Methods

Kidney miRNA expression was examined in F344 rats at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age in both sexes using Agilent miRNA microarrays. Differential expression was determined using filtering criteria of ≥1.5 fold change and ANOVA or pairwise t-test (FDR <5%) to determine significant age and sex effects, respectively. Pathway analysis software was used to investigate the possible roles of these target genes in age- and sex-specific differences.

Results

Three hundred eleven miRNAs were found to be expressed in at least one age and sex. Filtering criteria revealed 174 differentially expressed miRNAs in the kidney; 173 and 34 miRNAs exhibiting age and sex effects, respectively. Principal component analysis revealed age effects predominated over sex effects, with 2-week miRNA expression being much different from other ages. No significant sexually dimorphic miRNA expression was observed from 5 to 8 weeks, while the most differential expression (13 miRNAs) was observed at 21 weeks. Potential target genes of these differentially expressed miRNAs were identified.

Conclusions

The expression of 56% of detected renal miRNAs was found to vary significantly with age and/or sex during the life span of F344 rats. Pathway analysis suggested that 2-week-expressed miRNAs may be related to organ and cellular development and proliferation pathways. Male-biased miRNA expression at older ages correlated with male-biased renal fibrosis and mononuclear cell infiltration. These miRNAs showed high representation in renal inflammation and nephritis pathways, and included miR-214, miR-130b, miR-150, miR-223, miR-142-5p, miR-185, and miR-296*. Analysis of kidney miRNA expression throughout the rat life span will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13293-014-0019-1) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.

Background and Aims

Cholangiocarcinoma (CCA) is highly resistant to chemotherapy, including gemcitabine (Gem) treatment. MicroRNAs (miRNAs) are endogenous, non-coding, short RNAs that can regulate multiple genes expression. Some miRNAs play important roles in the chemosensitivity of tumors. Here, we examined the relationship between miRNA expression and the sensitivity of CCA cells to Gem.

Methods

Microarray analysis was used to determine the miRNA expression profiles of two CCA cell lines, HuH28 and HuCCT1. To determine the effect of candidate miRNAs on Gem sensitivity, expression of each candidate miRNA was modified via either transfection of a miRNA mimic or transfection of an anti-oligonucleotide. Ontology-based programs were used to identify potential target genes of candidate miRNAs that were confirmed to affect the Gem sensitivity of CCA cells.

Results

HuCCT1 cells were more sensitive to Gem than were HuH28 cells, and 18 miRNAs were differentially expressed whose ratios over ± 2log2 between HuH28 and HuCCT1. Among these 18 miRNAs, ectopic overexpression of each of three downregulated miRNAs in HuH28 (miR-29b, miR-205, miR-221) restored Gem sensitivity to HuH28. Suppression of one upregulated miRNA in HuH28, miR-125a-5p, inhibited HuH28 cell proliferation independently to Gem treatment. Selective siRNA-mediated downregulation of either of two software-predicted targets, PIK3R1 (target of miR-29b and miR-221) or MMP-2 (target of miR-29b), also conferred Gem sensitivity to HuH28.

Conclusions

miRNA expression profiling was used to identify key miRNAs that regulate Gem sensitivity in CCA cells, and software that predicts miRNA targets was used to identify promising target genes for anti-tumor therapies.  相似文献   

19.
20.

Background

Sensitive and specific detection of liver cirrhosis is an urgent need for optimal individualized management of disease activity. Substantial studies have identified circulation miRNAs as biomarkers for diverse diseases including chronic liver diseases. In this study, we investigated the plasma miRNA signature to serve as a potential diagnostic biomarker for silent liver cirrhosis.

Methods

A genome-wide miRNA microarray was first performed in 80 plasma specimens. Six candidate miRNAs were selected and then trained in CHB-related cirrhosis and controls by qPCR. A classifier, miR-106b and miR-181b, was validated finally in two independent cohorts including CHB-related silent cirrhosis and controls, as well as non−CHB-related cirrhosis and controls as validation sets, respectively.

Results

A profile of 2 miRNAs (miR-106b and miR-181b) was identified as liver cirrhosis biomarkers irrespective of etiology. The classifier constructed by the two miRNAs provided a high diagnostic accuracy for cirrhosis (AUC = 0.882 for CHB-related cirrhosis in the training set, 0.774 for CHB-related silent cirrhosis in one validation set, and 0.915 for non−CHB-related cirrhosis in another validation set).

Conclusion

Our study demonstrated that the combined detection of miR-106b and miR-181b has a considerable clinical value to diagnose patients with liver cirrhosis, especially those at early stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号