首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Night vision requires signaling from rod photoreceptors to adjacent bipolar cells in the retina. Mutations in the genes NYX and GRM6, expressed in ON bipolar cells, lead to a disruption of the ON bipolar cell response. This dysfunction is present in patients with complete X-linked and autosomal-recessive congenital stationary night blindness (CSNB) and can be assessed by standard full-field electroretinography (ERG), showing severely reduced rod b-wave amplitude and slightly altered cone responses. Although many cases of complete CSNB (cCSNB) are caused by mutations in NYX and GRM6, in ∼60% of the patients the gene defect remains unknown. Animal models of human diseases are a good source for candidate genes, and we noted that a cCSNB phenotype present in homozygous Appaloosa horses is associated with downregulation of TRPM1. TRPM1, belonging to the family of transient receptor potential channels, is expressed in ON bipolar cells and therefore qualifies as an excellent candidate. Indeed, mutation analysis of 38 patients with CSNB identified ten unrelated cCSNB patients with 14 different mutations in this gene. The mutation spectrum comprises missense, splice-site, deletion, and nonsense mutations. We propose that the cCSNB phenotype in these patients is due to the absence of functional TRPM1 in retinal ON bipolar cells.  相似文献   

2.
Light-dependent conductance changes of voltage-gated Cav1.4 channels regulate neurotransmitter release at photoreceptor ribbon synapses. Mutations in the human CACNA1F gene encoding the α1F subunit of Cav1.4 channels cause an incomplete form of X-linked congenital stationary night blindness (CSNB2). Many CACNA1F mutations are loss-of-function mutations resulting in non-functional Cav1.4 channels, but some mutations alter the channels’ gating properties and, presumably, disturb Ca2+ influx at photoreceptor ribbon synapses. Notably, a CACNA1F mutation (I745T) was identified in a family with an uncommonly severe CSNB2-like phenotype, and, when expressed in a heterologous system, the mutation was shown to shift the voltage-dependence of channel activation, representing a gain-of-function. To gain insight into the pathomechanism that could explain the severity of this disorder, we generated a mouse model with the corresponding mutation in the murine Cacna1f gene (I756T) and compared it with a mouse model carrying a loss-of-function mutation (ΔEx14–17) in a longitudinal study up to eight months of age. In ΔEx14–17 mutants, the b-wave in the electroretinogram was absent, photoreceptor ribbon synapses were abnormal, and Ca2+ responses to depolarization of photoreceptor terminals were undetectable. In contrast, I756T mutants had a reduced scotopic b-wave, some intact rod ribbon synapses, and a strong, though abnormal, Ca2+ response to depolarization. Both mutants showed a progressive photoreceptor loss, but degeneration was more severe and significantly enhanced in the I756T mutants compared to the ΔEx14–17 mutants.  相似文献   

3.
Congenital stationary night blindness 2A (CSNB2A) is an X-linked retinal disorder, characterized by phenotypically variable signs and symptoms of impaired vision. CSNB2A is due to mutations in CACNA1F, which codes for the pore-forming α1F subunit of a L-type voltage-gated calcium channel, Cav1.4. Mouse models of CSNB2A, used for characterizing the effects of various Cacna1f mutations, have revealed greater severity of defects than in human CSNB2A. Specifically, Cacna1f-knockout mice show an apparent lack of visual function, gradual retinal degeneration, and disruption of photoreceptor synaptic terminals. Several reports have also noted cone-specific disruptions, including axonal abnormalities, dystrophy, and cell death. We have explored further the involvement of cones in our ‘G305X’ mouse model of CSNB2A, which has a premature truncation, loss-of-function mutation in Cacna1f. We show that the expression of genes for several phototransduction-related cone markers is down-regulated, while that of several cellular stress- and damage-related markers is up-regulated; and that cone photoreceptor structure and photopic visual function – measured by immunohistochemistry, optokinetic response and electroretinography – deteriorate progressively with age. We also find that dystrophic cone axons establish synapse-like contacts with rod bipolar cell dendrites, which they normally do not contact in wild-type retinas – ectopically, among rod cell bodies in the outer nuclear layer. These data support a role for Cav1.4 in cone synaptic development, cell viability, and synaptic transmission of cone-dependent visual signals. Although our novel finding of cone-to-rod-bipolar cell contacts in this mouse model of a retinal channelopathy may challenge current views of the role of Cav1.4 in photopic vision, it also suggests a potential new target for restorative therapy.  相似文献   

4.
5.

Background

Metastatic renal cell carcinoma (RCC) is highly resistant to systemic chemotherapy. Unfortunately, nearly all patients die of the metastatic and chemoresistant RCC. Recent studies have shown the atypical PKCζ is an important regulator of tumorigenesis. However, the correlation between PKCζ expression and the clinical outcome in RCC patients is unclear. We examined the level of PKCζ expression in human RCC.

Methods

PKCζ mRNA and protein expressions were examined by real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) respectively in RCC tissues of 144 patients. Cellular cytotoxicity and proliferation were assessed by MTT.

Results

PKCζ expression was significantly higher in normal than in cancerous tissues (P < 0.0001) by real-time PCR and IHC. Similarly, PKCζ expression was down-regulated in four renal cancer cell lines compared to immortalized benign renal tubular cells. Interestingly, an increase of PKCζ expression was associated with the elevated tumor grade (P = 0.04), but no such association was found in TNM stage (P = 0.13). Tumors with higher PKCζ expression were associated with tumor size (P = 0.048). Expression of higher PKCζ found a poor survival in patients with high tumor grade. Down-regulation of PKCζ showed the significant chemoresistance in RCC cell lines. Inactivation of PKCζ expression enhanced cellular resistance to cisplatin and paclitaxel, and proliferation in HK-2 cells by specific PKCζ siRNA and inhibitor.

Conclusions

PKCζ expression was associated with tumorigenesis and chemoresistance in RCC.  相似文献   

6.
Obesity is characterized by adipocyte hyperplasia and hypertrophy. We previously showed that PKCδ expression is dysregulated in obesity (Carter, G., Apostolatos, A., Patel, R., Mathur, A., Cooper, D., Murr, M., and Patel, N. A. (2013) ISRN Obes. 2013, 161345). Using 3T3L1 preadipocytes, we studied adipogenesis in vitro and showed that expression of PKCδ splice variants, PKCδI and PKCδII, have different expression patterns during adipogenesis (Patel, R., Apostolatos, A., Carter, G., Ajmo, J., Gali, M., Cooper, D. R., You, M., Bisht, K. S., and Patel, N. A. (2013) J. Biol. Chem. 288, 26834–26846). Here, we evaluated the role of PKCδI splice variant during adipogenesis. Our results indicate that PKCδI expression level is high in preadipocytes and decreasing PKCδI accelerated terminal differentiation. Our results indicate that PKCδI is required for mitotic clonal expansion of preadipocytes. We next evaluated the splice factor regulating the expression of PKCδI during 3T3L1 adipogenesis. Our results show TRA2B increased PKCδI expression. To investigate the molecular mechanism, we cloned a heterologous splicing PKCδ minigene and showed that inclusion of PKCδ exon 9 is increased by TRA2B. Using mutagenesis and a RNA-immunoprecipitation assay, we evaluated the binding of Tra2β on PKCδI exon 9 and show that its association is required for PKCδI splicing. These results provide a better understanding of the role of PKCδI in adipogenesis. Determination of this molecular mechanism of alternative splicing presents a novel therapeutic target in the management of obesity and its co-morbidities.  相似文献   

7.
Autosomal dominant congenital stationary night blindness (adCSNB) is caused by mutations in three genes of the rod phototransduction cascade, rhodopsin (RHO), transducin α-subunit (GNAT1), and cGMP phosphodiesterase type 6 β-subunit (PDE6B). In most cases, the constitutive activation of the phototransduction cascade is a prerequisite to cause adCSNB. The unique adCSNB-associated PDE6B mutation found in the Rambusch pedigree, the substitution p.His258Asn, leads to rod photoreceptors desensitization. Here, we report a three-generation French family with adCSNB harboring a novel PDE6B mutation, the duplication, c.928-9_940dup resulting in a tyrosine to cysteine substitution at codon 314, a frameshift, and a premature termination (p.Tyr314Cysfs*50). To understand the mechanism of the PDE6β1-314fs*50 mutant, we examined the properties of its PDE6-specific portion, PDE6β1-313. We found that PDE6β1-313 maintains the ability to bind noncatalytic cGMP and the inhibitory γ-subunit (Pγ), and interferes with the inhibition of normal PDE6αβ catalytic subunits by Pγ. Moreover, both truncated forms of the PDE6β protein, PDE6β1-313 and PDE6β1-314fs*50 expressed in rods of transgenic X. laevis are targeted to the phototransduction compartment. We hypothesize that in affected family members the p.Tyr314Cysfs*50 change results in the production of the truncated protein, which binds Pγ and causes constitutive activation of the phototransduction thus leading to the absence of rod adaptation.  相似文献   

8.
It is well established that protein kinase C (PKC) isozymes play distinctive roles in mitogenic and survival signaling as well as in cancer progression. PKCε, the product of the PRKCE gene, is upregulated in various types of cancers including prostate, lung and breast cancer. To address a potential role for PKCs in prostate cancer progression we generated three mouse transgenic lines expressing PKCα, PKCδ or PKCε in the prostate epithelium under the control of the rat probasin (PB) promoter. Whereas PB-PKCα and PB-PKCδ mice did not show any evident phenotype, PB-PKCε mice developed prostate hyperplasia as well as prostate intraepithelial neoplasia (PIN) that displayed enhanced phospho-Akt, phospho-S6 and phospho-Stat3 levels, as well as enhanced resistance to apoptotic stimuli. PKCε overexpression was insufficient to drive neoplastic changes in the mouse prostate. Notably, overexpression of PKCε by adenoviral means in normal immortalized RWPE-1 prostate cells confers a growth advantage and hyperactivation of Erk and Akt. Our results argue for a causal link between PKCε overexpression and prostate cancer development.Key words: PKCε, transgenic mice, prostate, preneoplastic lesions, cell survival, Akt  相似文献   

9.

Background

PKCδ expressed in neutrophils is implicated in promoting reperfusion injury after ischemic stroke. To understand the molecular and cellular actions of PKCδ, we employed a chemical-genetics approach to identify PKCδ substrates in neutrophils.

Results

We recently generated knock-in mice endogenously expressing analog-specific PKCδ (AS-PKCδ) that can utilize ATP analogs as phosphate donors. Using neutrophils isolated from the knock-in mice, we identified several PKCδ substrates, one of which was lipocalin-2 (LCN2), which is an iron-binding protein that can trigger apoptosis by reducing intracellular iron concentrations. We found that PKCδ phosphorylated LCN2 at T115 and this phosphorylation was reduced in Prkcd−/− mice. PKCδ colocalized with LCN2 in resting and stimulated neutrophils. LCN2 release from neutrophils after cerebral ischemia was reduced in PKCδ null mice.

Conclusions

These findings suggest that PKCδ phosphorylates LCN2 and mediates its release from neutrophils during ischemia-reperfusion injury.  相似文献   

10.
To better study the role of PKCδ in normal function and disease, we developed an ATP analog-specific (AS) PKCδ that is sensitive to specific kinase inhibitors and can be used to identify PKCδ substrates. AS PKCδ showed nearly 200 times higher affinity (Km) and 150 times higher efficiency (kcat/Km) than wild type (WT) PKCδ toward N6-(benzyl)-ATP. AS PKCδ was uniquely inhibited by 1-(tert-butyl)-3-(1-naphthyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (1NA-PP1) and 1-(tert-butyl)-3-(2-methylbenzyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (2MB-PP1) but not by other 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1) analogs tested, whereas WT PKCδ was insensitive to all PP1 analogs. To understand the mechanisms for specificity and affinity of these analogs, we created in silico WT and AS PKCδ homology models based on the crystal structure of PKCι. N6-(Benzyl)-ATP and ATP showed similar positioning within the purine binding pocket of AS PKCδ, whereas N6-(benzyl)-ATP was displaced from the pocket of WT PKCδ and was unable to interact with the glycine-rich loop that is required for phosphoryl transfer. The adenine rings of 1NA-PP1 and 2MB-PP1 matched the adenine ring of ATP when docked in AS PKCδ, and this interaction prevented the potential interaction of ATP with Lys-378, Glu-428, Leu-430, and Phe-633 residues. 1NA-PP1 failed to effectively dock within WT PKCδ. Other PP1 analogs failed to interact with either AS PKCδ or WT PKCδ. These results provide a structural basis for the ability of AS PKCδ to efficiently and specifically utilize N6-(benzyl)-ATP as a phosphate donor and for its selective inhibition by 1NA-PP1 and 2MB-PP1. Such homology modeling could prove useful in designing molecules to target PKCδ and other kinases to understand their function in cell signaling and to identify unique substrates.  相似文献   

11.
Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.  相似文献   

12.
13.
14.

Introduction

During wound healing, fibroblasts initially migrate into the wound bed and later contract the matrix. Relevant mediators of transcellular contractility revealed by systems analyses are protein kinase c delta/myosin light chain-2 (PKCδ/MLC-2). PKCδ is activated by growth factor-driven PLCγ1 hydrolysis of phosphoinositide bisphosphate (PIP2) hydrolysis when it becomes tranlocated to the membrane. This leads to MLC-2 phosphorylation that regulates myosin for contractility. Furthermore, PKCδ n-terminus mediates PKCδ localization to the membrane in relative proximity to PLCγ1 activity. However, the role this localization and the relationship to its activation and signaling of force is not well understood. Therefore, we investigated whether the membrane localization of PKCδ mediates the transcellular contractility of fibroblasts.

Methods

To determine PKCδ activation in targeted membrane locations in mouse fibroblast cells (NR6-WT), two PKCδ constructs were generated; PKCδ-CaaX with farnesylation moiety targeting PKCδ to the membrane and PKCδ-SaaX a non-targeting control.

Results

Increased mean cell force was observed before and during EGF stimulation in fibroblasts expressing membrane-targeted PKCδ (PKCδ-CaaX) when analyzed with 2D cell traction force and 3D compaction of collagen matrix. This effect was reduced in cells deficient in EGFR/PLCy1 signaling. In cells expressing non-membrane targeted PKCδ (PKCδ-SaaX), the cell force exerted outside the ECM (extracellular matrix) was less, but cell motility/speed/persistence was increased after EGF stimulation. Change in cell motility and increased force exertion was also preceded by change in cell morphology. Organization of actin stress fibers was also decreased as a result of increasing membrane targeting of PKCδ.

Conclusion

From these results membrane tethering of PKCδ leads to increased force exertion on ECM. Furthermore, our data show PLCγ1 regulation of PKCδ, at least in part, drives transcellular contractility in fibroblasts.  相似文献   

15.
Human myeloid leukemia cells respond to 12-O-tetradecanoylphorbol-13-acetate (TPA) and other activators of protein kinase C (PKC) with induction of monocytic differentiation. The present studies demonstrated that treatment of U-937 and HL-60 myeloid leukemia cells with TPA, phorbol-12,13-dibutyrate, or bryostatin 1 was associated with the induction of stress-activated protein kinase (SAPK). In contrast, TPA-resistant TUR and HL-525 cell variants deficient in PKCβ failed to respond to activators of PKC with the induction of SAPK. A direct role for PKCβ in TPA-induced SAPK activity in TUR and HL-525 cells that stably express PKCβ was confirmed. We showed that TPA induced the association of PKCβ with MEK kinase 1 (MEKK-1), an upstream effector of the SAPK/ERK kinase 1 (SEK1)→SAPK cascade. The results also demonstrated that PKCβ phosphorylated and activated MEKK-1 in vitro. The functional role of MEKK-1 in TPA-induced SAPK activity was further supported by the demonstration that the expression of a dominant negative MEKK-1 mutant abrogated this response. These findings indicate that PKCβ activation is necessary for activation of the MEKK-1→SEK1→SAPK cascade in the TPA response of myeloid leukemia cells.  相似文献   

16.
Previously, we showed caveolae contain a population of protein kinase Cα (PKCα) that appears to regulate membrane invagination. We now report that multiple PKC isoenzymes are enriched in caveolae of unstimulated fibroblasts. To understand the mechanism of PKC targeting, we prepared caveolae lacking PKCα and measured the interaction of recombinant PKCα with these membranes. PKCα bound with high affinity and specificity to caveolae membranes. Binding was calcium dependent, did not require the addition of factors that activate the enzyme, and involved the regulatory domain of the molecule. A 68-kD PKCα-binding protein identified as sdr (serum deprivation response) was isolated by interaction cloning and localized to caveolae. Antibodies against sdr inhibited PKCα binding. A 100–amino acid sequence from the middle of sdr competitively blocked PKCα binding while flanking sequences were inactive. Caveolae appear to be a membrane site where PKC enzymes are organized to carry out essential regulatory functions as well as to modulate signal transduction at the cell surface.  相似文献   

17.
18.
Protein kinase C has been shown to play a central role in the cardioprotection of ischemic preconditioning. However, the mechanism underlying PKC-mediated cardioprotection is not completely understood. Given that caveolae are critical for PKC signaling, we sought to determine whether hypoxic preconditioning promotes translocation and association of PKC isoforms with caveolin-3. A cellular model of hypoxic preconditioning from adult rat cardiac myocytes (ARCM) or H9c2 cells was employed to examine PKC isoforms by molecular, biochemical and cellular imaging analysis. Hypoxia was induced by incubating the cells in an airtight chamber in which O2 was replaced by N2 with glucose-free Tyrode''s solution. Cells were subjected to hypoxic preconditioning with 10 minutes of hypoxia followed by 30 minutes of reoxygenation. Western blot data indicated that the band intensity for PKCϵ, PKCδ or PKCα, but not PKCβ and PKCζ was enhanced significantly by hypoxic preconditioning from the caveolin-enriched plasma membrane interactions. Immunoprecipitation experiments from the caveolin-enriched membrane fractions of ARCM showed that the level of PKCϵ, PKCδ and PKCα in the anti-caveolin-3 immunoprecipitates was also increased by hypoxic preconditioning. Further, our FRET analysis in H9c2 cells suggested that there is a minimum FRET signal for caveolin-3 and PKCϵ along cell peripherals, but hypoxic preconditioning enhanced the FRET signal, indicating a potential interaction between caveolin-3 and PKCϵ. And also treatment of the cells with hypoxic preconditioning led to a smaller amount of translocation of PKCϵ to the mitochondria than that to the membrane. We demonstrate that hypoxic preconditioning promotes rapid association of PKCϵ, PKCδ and PKCα with the caveolin-enriched plasma membrane microdomain of cardiac myocytes, and PKCϵ via direct molecular interaction with caveolin-3. This regulatory mechanism may play an important role in cardioprotection.  相似文献   

19.
20.
We have previously shown that deletion of protein kinase C epsilon (PKCε) in mice results in protection against glucose intolerance caused by a high fat diet. This was in part due to reduced insulin uptake by hepatocytes and insulin clearance, which enhanced insulin availability. Here we employed mouse embryonic fibroblasts (MEFs) derived from wildtype (WT) and PKCε-deficient (PKCε−/−) mice to examine this mechanistically. PKCε−/− MEFs exhibited reduced insulin uptake which was associated with decreased insulin receptor phosphorylation, while downstream signalling through IRS-1 and Akt was unaffected. Cellular fractionation demonstrated that PKCε deletion changed the localization of the insulin receptor, a greater proportion of which co-fractionated with flotillin-1, a marker of membrane microdomains. Insulin stimulation resulted in redistribution of the receptor in WT cells, while this was markedly reduced in PKCε−/− cells. These alterations in insulin receptor trafficking were associated with reduced expression of CEACAM1, a receptor substrate previously shown to modulate insulin clearance. Virally-mediated reconstitution of PKCε in MEFs increased CEACAM1 expression and partly restored the sensitivity of the receptor to insulin-stimulated redistribution. These data indicate that PKCε can affect insulin uptake in MEFs through promotion of receptor-mediated endocytosis, and that this may be mediated by regulation of CEACAM1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号