首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Li Y  Suino K  Daugherty J  Xu HE 《Molecular cell》2005,19(3):367-380
Mineralocorticoid receptor (MR) controls sodium homeostasis and blood pressure through hormone binding and coactivator recruitment. Here, we report a 1.95 A crystal structure of the MR ligand binding domain containing a single C808S mutation bound to corticosterone and the fourth LXXLL motif of steroid receptor coactivator-1 (SRC1-4). Through a combination of biochemical and structural analyses, we demonstrate that SRC1-4 is the most potent MR binding motif and mutations that disrupt the MR/SRC1-4 interactions abolish the ability of the full-length SRC1 to coactivate MR. The structure also reveals a compact steroid binding pocket with a unique topology that is primarily defined by key residues of helices 6 and 7. Mutations swapping a single residue at position 848 from helix H7 between MR and glucocorticoid receptor (GR) switch their hormone specificity. Together, these findings provide critical insights into the molecular basis of hormone binding and coactivator recognition by MR and related steroid receptors.  相似文献   

5.
6.
Cytokine receptors elicit several signaling pathways, but it is poorly understood how they select and discriminate between them. We have scrutinized the prolactin receptor as an archetype model of homodimeric cytokine receptors to address the role of the extracellular membrane proximal domain in signal transfer and pathway selection. Structure-guided manipulation of residues involved in the receptor dimerization interface identified one residue (position 170) that in cell-based assays profoundly altered pathway selectivity and species-specific bio-characteristics. Subsequent in vitro spectroscopic and nuclear magnetic resonance analyses revealed that this residue was part of a residue quartet responsible for specific local structural changes underlying these effects. This included alteration of a novel aromatic T-stack within the membrane proximal domain, which promoted selective signaling affecting primarily the MAPK (ERK1/2) pathway. Importantly, activation of the MAPK pathway correlated with in vitro stabilities of ternary ligand·receptor complexes, suggesting a threshold mean lifetime of the complex necessary to achieve maximal activation. No such dependence was observed for STAT5 signaling. Thus, this study establishes a residue quartet in the extracellular membrane proximal domain of homodimeric cytokine receptors as a key regulator of intracellular signaling discrimination.  相似文献   

7.
8.
The brassinosteroid signal transduction pathway   总被引:7,自引:0,他引:7  
Wang ZY  Wang Q  Chong K  Wang F  Wang L  Bai M  Jia C 《Cell research》2006,16(5):427-434
  相似文献   

9.
10.
We studied the role of the mineralocorticoid receptor (MR) in the signaling that promotes atrial fibrosis. Left atrial myocardium of patients with atrial fibrillation (AF) exhibited 4-fold increased hydroxyproline content compared with patients in sinus rhythm. Expression of MR was similar, as was 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which also increased. 11β-HSD2 converts cortisol to receptor-inactive metabolites allowing aldosterone occupancy of MR. 11β-HSD2 was up-regulated by arrhythmic pacing in cultured cardiomyocytes and in a mouse model of spontaneous AF (RacET). In cardiomyocytes, aldosterone induced connective tissue growth factor (CTGF) in the absence but not in the presence of cortisol. Hydroxyproline expression was increased in cardiac fibroblasts exposed to conditioned medium from aldosterone-treated cardiomyocytes but not from cardiomyocytes treated with both cortisol and aldosterone. Aldosterone increased connective tissue growth factor and hydroxyproline expression in cardiac fibroblasts, which were prevented by BR-4628, a dihydropyridine-derived selective MR antagonist, and by spironolactone. Aldosterone activated RhoA GTPase. Rho kinase inhibition by Y-27632 prevented CTGF and hydroxyproline, whereas the RhoA activator CN03 increased CTGF expression. Aldosterone and CTGF increased lysyl oxidase, and aldosterone enhanced miR-21 expression. MR antagonists reduced the aldosterone but not the CTGF effect. In conclusion, MR signaling promoted fibrotic remodeling. Increased expression of 11β-HSD2 during AF leads to up-regulation of collagen and pro-fibrotic mediators by aldosterone, specifically RhoA activity as well as CTGF, lysyl oxidase, and microRNA-21 expression. The MR antagonists BR-4628 and spironolactone prevent these alterations. MR inhibition may, therefore, represent a potential pharmacologic target for the prevention of fibrotic remodeling of the atrial myocardium.  相似文献   

11.
A class of arylsulfonamide glucocorticoid receptor agonists that contains a substituted phenyl group as a steroid A-ring mimetic is reported. The structural design and SAR that provide the functional switching of a GR antagonist to an agonist is described. A combination of specific hydrogen bonding and lipophilic elements on the A-ring moiety is required to achieve potent GR agonist activity. This study culminated in the identification of compound 23 as a potent GR agonist with selectivity over the PR and MR nuclear hormone receptors.  相似文献   

12.
The mineralocorticoid signaling pathway has gained interest over the past few years, considering not only its implication in numerous pathologies but also its emerging role in physiological processes during kidney, brain, heart and lung development. This review aims at describing the setting and regulation of aldosterone biosynthesis and the expression of the mineralocorticoid receptor (MR), a nuclear receptor mediating aldosterone action in target tissues, during the perinatal period. Specificities concerning MR expression and regulation during the development of several major organs are highlighted. We provide evidence that MR expression is tightly controlled in a tissue-specific manner during development, which could have major pathophysiological implications in the neonatal period.  相似文献   

13.
14.
Accumulating evidence demonstrates that aldosterone can cause extra-cellular matrix (ECM) accumulation, in addition to regulating sodium and potassium homeostasis. Increased extra-cellular matrix production by renal glomerular mesangial cells has been suggested to be involved in pathogenesis of glomerular sclerosis. The present studies examine whether aldosterone is also produced in renal mesangial cells, and the effect of aldosterone on ECM accumulation in these cells. In cultured renal mesangial cells, aldosterone synthase (CYP11B2), mineralocorticoid receptor (MR), and 11beta-HSD2 mRNA expressions were detected by RT-PCR. The ability of renal mesangial cells to produce aldosterone was confirmed by directly detecting aldosterone in culture medium via radioimmunoassay. Real-time RT-PCR showed that the expression of CYP11B2 mRNA in mesangial cells was significantly enhanced by AngII (P<0.001) and by potassium (P<0.05). Exposure of the cultured mesangial cells to aldosterone significantly increased fibronectin production from 12.4+/-1.9 to 74.6+/-16.8ng/ml (P<0.05). The aldosterone induced fibronectin production was abolished by aldosterone receptor antagonist spironolactone. Aldosterone also increased the TGF-beta1 reporter luciferase activity from 0.8+/-0.1 to 1.7+/-0.1 (P<0.05). Immunoblot showed TGF-beta1 protein expression was increased following aldosterone treatment. Blocking TGF-beta1 signaling pathway by knocking down Smad2 significantly blunted the aldosterone induced fibronectin production. The present studies indicate that renal mesangial cell is a target of local aldosterone action, which promotes ECM protein fibronectin production via TGF-beta1/Smad2 signaling pathway.  相似文献   

15.
In an earlier study, we have reported an inhibition of insulin receptor (IR) mRNA levels and insulin binding by aldosterone in U-937 human promonocytic cells. In the present extension of our studies, we demonstrate that this inhibition by aldosterone had no effects on basal glucose transport or on basal thymidine incorporation into DNA, while the cell responsiveness reflected by the maximal response to insulin was decreased by 23% for glucose transport and by 31% for DNA synthesis after the aldosterone treatment. We also prove that this inhibition of the insulin response by aldosterone is mediated by a downregulation of the levels of mineralocorticoid receptors (MRs) (50% decrease) and their mRNA (50% decrease). In addition, the mineralocorticoid antagonist spironolactone reversed the decrease in MR mRNA levels elicited by aldosterone, which suggests the involvement of this receptor in the process.  相似文献   

16.
17.
18.
19.
Aging is accelerated, at least in part, by pathological condition such as metabolic syndrome (MetS), and various molecular pathways such as oxidative stress are common mediators of aging and MetS. We previously developed the aging‐like skin model by single ultraviolet (UV) irradiation on the MetS model mice. Recent studies revealed that mineralocorticoid receptor (MR) signaling plays a pivotal role for various tissue inflammation and damages in MetS. Although previous studies reported that MR is expressed in the skin and that overexpression of MR in the skin resulted in the skin atrophy, the physiological or pathological functions of MR in the skin are not fully elucidated. Here, we show the involvement of MR signaling in the aging‐like skin changes in our own model. Elevations of oxidative stress and inflammation markers were observed in the MetS mice, and the UV‐evoked aging‐like skin damages were attenuated by topical antioxidant. MR expression was higher in the MetS mouse skin, and notably, expression of its effecter gene Sgk1 was significantly upregulated in the aging‐like skin in the UV‐irradiated MetS mice. Furthermore, topical application of MR antagonist spironolactone suppressed Sgk1 expression, oxidative stress, inflammation, and the aging‐like changes in the skin. The 2‐week UV onto the non‐MetS mice, the more usual photoaging model, resulted in the skin damages mostly equivalent to the MetS mice with single UV, but they were not associated with upregulation of MR signaling. Our studies suggested an unexpected role of MR signaling in the skin aging in MetS status.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号