首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Coccidian parasites are of major importance in animal production, public health and food safety. The most frequently used representative in basic research on this group is Toxoplasma gondii. Although this parasite is well investigated there is no adequate in vitro model for its sexual development available and knowledge on this important life cycle phase is therefore scarce. The use of Isospora suis , a sister taxon to T. gondii and the causative agent of piglet coccidiosis, could provide a solution for this. In the present study an in vitro model for neonatal porcine coccidiosis in cells representative for the in vivo situation in the piglet gut was developed and evaluated. The parasite development was investigated by light and transmission electron microscopy and optimum culture conditions were evaluated. Intestinal porcine epithelial cells (IPEC-J2) adequately representing the natural host cells supported the development of all endogenous life cycle stages of I . suis , including gametocytes and oocysts. A concentration of 5% fetal calf serum in the culture medium led to highest gametocyte densities on day 12 post infection. Low infection doses (≤1 sporozoite for 100 host cells) were best for oocyst and gametocyte development. The presented system can also be used for immunostaining with established antibodies developed against T. gondii (in our case, anti-TgIMC3 antibodies directed against the inner membrane complex 3). The complete life cycle of I . suis in a cell line representing the natural host cell type and species provides a unique model among coccidian parasites and can be used to address a wide range of topics, especially with regard to the sexual development of coccidia.  相似文献   

2.
During the summer of 1980, numerous exposed native littleneck clams (Protothaca staminea) were observed in Sequim Bay, Washington. The kidneys of these clams were found to be parasitized by a coccidian. Heavily parasitized kidney was characterized by massive epithelial destruction and an intense inflammatory response. In addition, large numbers of “brown cells” were present throughout the tissues of infected clams.Infected kidneys harbored several stages of the life history of the parasite. The present coccidian differs markedly in several respects from other coccidians in bivalves. First, the entire life history apparently occurs in the kidney of the clam, in contrast to the presumed involvement of an alternative host in other known coccidian parasites of bivalves. Second, a thick-walled spore is produced in addition to a thin-walled oocyst. The apparent presence of two types of dissemination stages is unknown in the Coccidia. Finally, the sporocysts are tetrazoic as opposed to dizoic or multiple sporocysts in previously described species. This parasite, therefore, appears to represent an undescribed genus and species of Coccidia.  相似文献   

3.
Studies on Cryptosporidium species have been hampered by the limited amount of parasitic stages available for research. One of the major objectives of many laboratories is to develop a reproducible culture model for this important parasite. Recent research has resulted in long-term culturing of Cryptosporidium in cell culture using pH modification, sub-culturing and gamma irradiation. Further advances in the in vitro culturing of Cryptosporidium revealed that this parasite can complete its life cycle in culture medium overcoming the problem of using the host cells, as host cell overgrowth and aging resulted in the termination of the Cryptosporidium life cycle prior to its completion. Improved methods for visualizing life cycle stages in cell-free culture have also been developed. This review will discuss factors that can influence the success of Cryptosporidium culture in vitro and propose new ideas for the future optimization of the cell-free culture system.  相似文献   

4.
5.
6.
Toxoplasma gondii is a zoonotic parasite with a world-wide distribution. House mice (Mus musculus) play an important role as a reservoir host in the parasite life cycle. However, their detection in mouse brain is limited because the host potentially harbours only a few tissue cysts. In order to improve the diagnosis, we tested a novel protocol for T. gondii detection in mice and compared this technique to a standard PCR-based protocol using a commercial kit for DNA isolation. Efficacy of magnetic capture for isolation of T. gondii DNA from whole host brains was tested in brain samples of laboratory mice spiked with 1 up to 104 tachyzoites. Real-time PCR revealed that even 1–5 tachyzoites can be detected after magnetic capture. Also this method is suitable to quantify parasite numbers in mouse brains with more than 10 tachyzoite equivalents. To assess the two techniques in wild mice, we employed a dataset consisting of 243 individuals. The prevalence of T. gondii detected by magnetic capture and qPCR and by commercial isolation and PCR was 1.2% and 0%, respectively. The magnetic capture and quantitative PCR seems to be a highly sensitive and specific diagnostic method for both laboratory research and wild population surveys.  相似文献   

7.
8.
Toxoplasma gondii infects virtually any nucleated cell type of warm-blooded animals and humans including skeletal muscle cells (SkMCs). Infection of SkMCs by T. gondii, differentiation from the highly replicative tachyzoites to dormant bradyzoites and tissue cyst formation are crucial for parasite persistence in muscle tissue. These processes are also prerequisites for one of the major routes of transmission to humans via undercooked or cured meat products. Evidence obtained in vitro and in vivo indicates that SkMCs are indeed a preferred cell type for tissue cyst formation and long-term persistence of T. gondii. This raises intriguing questions about what makes SkMCs a suitable environment for parasite persistence and how the SkMC–T. gondii interaction is regulated. Recent data from our laboratory show that differentiation of SkMCs from myoblasts to syncytial myotubes, rather than the cell type itself, is critical for parasite growth, bradyzoite formation and tissue cyst maturation. Myotube formation is accompanied by a permanent withdrawal from the cell cycle, and the negative cell cycle regulator cell division autoantigen (CDA)-1 directly or indirectly promotes T. gondii stage conversion in SkMCs. Moreover, host cell cycle regulators are specifically modulated in mature myotubes, but not myoblasts, following infection. Myotubes also up-regulate the expression of various pro-inflammatory cytokines and chemokines after T. gondii infection and they respond to IFN-γ by exerting potent anti-parasitic activity. This highlights that mature myotubes are active participants rather than passive targets of the local immune response to T. gondii which may also govern the interaction between SkMCs and the parasite.  相似文献   

9.
Numerous intracellular pathogens exploit cell surface glycoconjugates for host cell recognition and entry. Unlike bacteria and viruses, Toxoplasma gondii and other parasites of the phylum Apicomplexa actively invade host cells, and this process critically depends on adhesins (microneme proteins) released onto the parasite surface from intracellular organelles called micronemes (MIC). The microneme adhesive repeat (MAR) domain of T. gondii MIC1 (TgMIC1) recognizes sialic acid (Sia), a key determinant on the host cell surface for invasion by this pathogen. By complementation and invasion assays, we demonstrate that TgMIC1 is one important player in Sia-dependent invasion and that another novel Sia-binding lectin, designated TgMIC13, is also involved. Using BLAST searches, we identify a family of MAR-containing proteins in enteroparasitic coccidians, a subclass of apicomplexans, including T. gondii, suggesting that all these parasites exploit sialylated glycoconjugates on host cells as determinants for enteric invasion. Furthermore, this protein family might provide a basis for the broad host cell range observed for coccidians that form tissue cysts during chronic infection. Carbohydrate microarray analyses, corroborated by structural considerations, show that TgMIC13, TgMIC1, and its homologue Neospora caninum MIC1 (NcMIC1) share a preference for α2–3- over α2–6-linked sialyl-N-acetyllactosamine sequences. However, the three lectins also display differences in binding preferences. Intense binding of TgMIC13 to α2–9-linked disialyl sequence reported on embryonal cells and relatively strong binding to 4-O-acetylated-Sia found on gut epithelium and binding of NcMIC1 to 6′sulfo-sialyl Lewisx might have implications for tissue tropism.  相似文献   

10.
Recently, several authors have proposed that the availability of intermediate hosts (IHs) for definitive hosts (DHs) may contribute to determining the dynamics and evolutionary ecology of parasites with facultative complex life cycles. The protozoa Toxoplasma gondii may be transmitted to DHs either via predation of infected IHs through a complex life cycle (CLC) or directly from a contaminated environment through a simple life cycle (SLC). This parasite is also present in contrasting host density environments. We tested the hypothesis that the relative contributions of the CLC and SLC along an urban-rural gradient depend on the IH supply. We built and analysed a deterministic model of the T. gondii transmission cycle. The SLC relative contribution is important only in urban-type environments, i.e., with low predation rate on IHs. In contrast, the parasite is predominantly transmitted through a CLC in suburban and rural environments. The association of the two cycles enables the parasite to spread in situations of low IH availability and low DH population size for which each cycle alone is insufficient.  相似文献   

11.
12.
13.
14.
15.
Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite’s life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion.  相似文献   

16.

Background

The phylum Apicomplexa comprises important unicellular human parasites such as Toxoplasma and Plasmodium. Eimeria is the largest and most diverse genus of apicomplexan parasites and some species of the genus are the causative agent of coccidiosis, a disease economically devastating in poultry. We report a complete genome sequence of the mouse parasite Eimeria falciformis. We assembled and annotated the genome sequence to study host-parasite interactions in this understudied genus in a model organism host.

Results

The genome of E. falciformis is 44 Mb in size and contains 5,879 predicted protein coding genes. Comparative analysis of E. falciformis with Toxoplasma gondii shows an emergence and diversification of gene families associated with motility and invasion mainly at the level of the Coccidia. Many rhoptry kinases, among them important virulence factors in T. gondii, are absent from the E. falciformis genome. Surface antigens are divergent between Eimeria species. Comparisons with T. gondii showed differences between genes involved in metabolism, N-glycan and GPI-anchor synthesis. E. falciformis possesses a reduced set of transmembrane transporters and we suggest an altered mode of iron uptake in the genus Eimeria.

Conclusions

Reduced diversity of genes required for host-parasite interaction and transmembrane transport allow hypotheses on host adaptation and specialization of a single host parasite. The E. falciformis genome sequence sheds light on the evolution of the Coccidia and helps to identify determinants of host-parasite interaction critical for drug and vaccine development.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-696) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa phylum. The Coccidia are obligate intracellular pathogens that establish infection in their mammalian host via the enteric route. These parasites lack a mitochondrial pyruvate dehydrogenase complex but have preserved the degradation of branched‐chain amino acids (BCAA) as a possible pathway to generate acetyl‐CoA. Importantly, degradation of leucine, isoleucine and valine could lead to concomitant accumulation of propionyl‐CoA, a toxic metabolite that inhibits cell growth. Like fungi and bacteria, the Coccidia possess the complete set of enzymes necessary to metabolize and detoxify propionate by oxidation to pyruvate via the 2‐methylcitrate cycle (2‐MCC). Phylogenetic analysis provides evidence that the 2‐MCC was acquired via horizontal gene transfer. In T. gondii tachyzoites, this pathway is split between the cytosol and the mitochondrion. Although the rate‐limiting enzyme 2‐methylisocitrate lyase is dispensable for parasite survival, its substrates accumulate in parasites deficient in the enzyme and its absence confers increased sensitivity to propionic acid. BCAA is also dispensable in tachyzoites, leaving unresolved the source of mitochondrial acetyl‐CoA.  相似文献   

19.
Toxoplasma gondii results in ocular toxoplasmosis characterized by chorioretinitis with inflammation and necrosis of the neuroretina, pigment epithelium, and choroid. After invasion, T. gondii replicates in host cells before cell lysis, which releases the parasites to invade neighboring cells to repeat the life cycle and establish a chronic retinal infection. The mechanism by which T. gondii avoids innate immune defense, however, is unknown. Therefore, we determined whether PI3K/Akt signaling pathway activation by T. gondii is essential for subversion of host immunity and parasite proliferation. T. gondii infection or excretory/secretory protein (ESP) treatment of the human retinal pigment epithelium cell line ARPE-19 induced Akt phosphorylation, and PI3K inhibitors effectively reduced T. gondii proliferation in host cells. Furthermore, T. gondii reduced intracellular reactive oxygen species (ROS) while activating the PI3K/Akt signaling pathway. While searching for the main source of these ROS, we found that NADPH oxidase 4 (Nox4) was prominently expressed in ARPE-19 cells, and this expression was significantly reduced by T. gondii infection or ESP treatment along with decreased ROS levels. In addition, artificial reduction of host Nox4 levels with specific siRNA increased replication of intracellular T. gondii compared to controls. Interestingly, these T. gondii-induced effects were reversed by PI3K inhibitors, suggesting that activation of the PI3K/Akt signaling pathway is important for suppression of both Nox4 expression and ROS levels by T. gondii infection. These findings demonstrate that manipulation of the host PI3K/Akt signaling pathway and Nox4 gene expression is a novel mechanism involved in T. gondii survival and proliferation.  相似文献   

20.
Toxoplasma gondii has a complex life cycle involving different hosts and is dependent on fast responses, as the parasite reacts to changing environmental conditions. T. gondii causes disease by lysing the host cells that it infects and it does this by reiterating its lytic cycle, which consists of host cell invasion, replication inside the host cell, and egress causing host cell lysis. Calcium ion (Ca2+) signaling triggers activation of molecules involved in the stimulation and enhancement of each step of the parasite lytic cycle. Ca2+ signaling is essential for the cellular and developmental changes that support T. gondii parasitism.The characterization of the molecular players and pathways directly activated by Ca2+ signaling in Toxoplasma is sketchy and incomplete. The evolutionary distance between Toxoplasma and other eukaryotic model systems makes the comparison sometimes not informative. The advent of new genomic information and new genetic tools applicable for studying Toxoplasma biology is rapidly changing this scenario. The Toxoplasma genome reveals the presence of many genes potentially involved in Ca2+ signaling, even though the role of most of them is not known. The use of Genetically Encoded Calcium Indicators (GECIs) has allowed studies on the role of novel calcium-related proteins on egress, an essential step for the virulence and dissemination of Toxoplasma. In addition, the discovery of new Ca2+ players is generating novel targets for drugs, vaccines, and diagnostic tools and a better understanding of the biology of these parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号