首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The Δ-6 desaturase (D6D) enzyme is not only critical for the synthesis of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) from α-linolenic acid (ALA), but recent evidence suggests that it also plays a role in adipocyte lipid metabolism and body weight; however, the mechanisms remain largely unexplored. The goal of this study was to investigate if a D6D deficiency would inhibit triacylglycerol storage and alter lipolytic and lipogenic pathways in mouse white adipose tissue (WAT) depots due to a disruption in EPA and DHA production. Male C57BL/6J D6D knockout (KO) and wild-type (WT) mice were fed either a 7% w/w lard or flax (ALA rich) diet for 21 weeks. Energy expenditure, physical activity, and substrate utilization were measured with metabolic caging. Inguinal and epididymal WAT depots were analyzed for changes in tissue weight, fatty acid composition, adipocyte size, and markers of lipogenesis, lipolysis, and insulin signaling. KO mice had lower body weight, higher serum nonesterified fatty acids, smaller WAT depots, and reduced adipocyte size compared to WT mice without altered food intake, energy expenditure, or physical activity, regardless of the diet. Markers of lipogenesis and lipolysis were more highly expressed in KO mice compared to WT mice in both depots, regardless of the diet. These changes were concomitant with lower basal insulin signaling in WAT. Collectively, a D6D deficiency alters triacylglycerol/fatty acid cycling in WAT by promoting lipolysis and reducing fatty acid re-esterification, which may be partially attributed to a reduction in WAT insulin signaling.  相似文献   

2.
3.
Production of Annexin A1 (ANXA1), a protein that mediates the anti-inflammatory action of glucocorticoids, is altered in obesity, but its role in modulation of adiposity has not yet been investigated. The objective of this study was to investigate modulation of ANXA1 in adipose tissue in murine models of obesity and to study the involvement of ANXA1 in diet-induced obesity in mice. Significant induction of ANXA1 mRNA was observed in adipose tissue of both C57BL6 and Balb/c mice with high fat diet (HFD)-induced obesity versus mice on chow diet. Upregulation of ANXA1 mRNA was independent of leptin or IL-6, as demonstrated by use of leptin-deficient ob/ob mice and IL-6 KO mice. Compared to WT mice, female Balb/c ANXA1 KO mice on HFD had increased adiposity, as indicated by significantly elevated body weight, fat mass, leptin levels, and adipocyte size. Whereas Balb/c WT mice upregulated expression of enzymes involved in the lipolytic pathway in response to HFD, this response was absent in ANXA1 KO mice. A significant increase in fasting glucose and insulin levels as well as development of insulin resistance was observed in ANXA1 KO mice on HFD compared to WT mice. Elevated plasma corticosterone levels and blunted downregulation of 11-beta hydroxysteroid dehydrogenase type 1 in adipose tissue was observed in ANXA1 KO mice compared to diet-matched WT mice. However, no differences between WT and KO mice on either chow or HFD were observed in expression of markers of adipose tissue inflammation.These data indicate that ANXA1 is an important modulator of adiposity in mice, with female ANXA1 KO mice on Balb/c background being more susceptible to weight gain and diet-induced insulin resistance compared to WT mice, without significant changes in inflammation.  相似文献   

4.
CD44 is a multifunctional membrane receptor implicated in the regulation of several biological processes, including inflammation. CD44 expression is elevated in liver and white adipose tissue (WAT) during obesity suggesting a possible regulatory role for CD44 in metabolic syndrome. To study this hypothesis, we examined the effect of the loss of CD44 expression on the development of various features of metabolic syndrome using CD44 null mice. Our study demonstrates that CD44-deficient mice (CD44KO) exhibit a significantly reduced susceptibility to the development of high fat-diet (HFD)-induced hepatic steatosis, WAT-associated inflammation, and insulin resistance. The decreased expression of genes involved in fatty acid synthesis and transport (Fasn and Cd36), de novo triglyceride synthesis (Mogat1), and triglyceride accumulation (Cidea, Cidec) appears in part responsible for the reduced hepatic lipid accumulation in CD44KO(HFD) mice. In addition, the expression of various inflammatory and cell matrix genes, including several chemokines and its receptors, osteopontin, and several matrix metalloproteinases and collagen genes was greatly diminished in CD44KO(HFD) liver consistent with reduced inflammation and fibrogenesis. In contrast, lipid accumulation was significantly increased in CD44KO(HFD) WAT, whereas inflammation as indicated by the reduced infiltration of macrophages and expression of macrophage marker genes, was significantly diminished in WAT of CD44KO(HFD) mice compared to WT(HFD) mice. CD44KO(HFD) mice remained considerably more insulin sensitive and glucose tolerant than WT(HFD) mice and exhibited lower blood insulin levels. Our study indicates that CD44 plays a critical role in regulating several aspects of metabolic syndrome and may provide a new therapeutic target in the management of insulin resistance.  相似文献   

5.
HIV protease inhibitors acutely block glucose transporters (GLUTs) in vitro, and this may contribute to altered glucose homeostasis in vivo. However, several GLUT-independent mechanisms have been postulated. To determine the contribution of GLUT blockade to protease inhibitor-mediated glucose dysregulation, the effects of ritonavir were investigated in mice lacking the insulin-sensitive glucose transporter GLUT4 (G4KO). G4KO and control C57BL/6J mice were administered ritonavir or vehicle at the start of an intraperitoneal glucose tolerance test and during hyperinsulinemic-euglycemic clamps. G4KO mice exhibited elevated fasting blood glucose compared with C57BL/6J mice. Ritonavir impaired glucose tolerance in control mice but did not exacerbate glucose intolerance in G4KO mice. Similarly, ritonavir reduced peripheral insulin sensitivity in control mice but not in G4KO mice. Serum insulin levels were reduced in vivo in ritonavir-treated mice. Ritonavir reduced serum leptin levels in C57BL/6J mice but had no effect on serum adiponectin. No change in these adipokines was observed following ritonavir treatment of G4KO mice. These data confirm that a primary effect of ritonavir on peripheral glucose disposal is mediated through direct inhibition of GLUT4 activity in vivo. The ability of GLUT4 blockade to contribute to derangements in the other molecular pathways that influence insulin sensitivity remains to be determined.  相似文献   

6.
To address the role of angiotensinogen (agt) in lipid metabolism and its potential endocrine effects in vivo, we studied the effects of high-fat diet (HFD) on adult, 28-week-old agt knockout (KO) mice compared to wild type (WT) mice. Recent studies (Massiera et al., 2001) have demonstrated that reexpression of agt in adipose tissue of KO mice normalized adiposity, blood pressure, and kidney abnormalities. We therefore used microarray analysis to investigate changes in gene expression profile in kidneys of KO vs. Tg-KO mice, where agt expression is restricted to adipose tissue. Body weight, adiposity and insulin levels were significantly decreased (p < 0.05) in KO mice on a chow diet (CD) compared to WT mice, while circulating leptin levels were similar. On a high-fat diet, KO mice exhibited significantly lower bodyweight (p < 0.05), adiposity (p < 0.05), leptin, and insulin levels (p < 0.05) compared to WT mice. In agreement with previously reported changes in kidney histology, agt KO mice displayed altered expressions of genes involved in blood pressure regulation and renal function, but these levels were corrected by reexpression of agt in adipose tissue. Collectively, these findings further document important endocrine roles of adipocyte agt, in part via regulation of lipid metabolism and kidney homeostasis.  相似文献   

7.
The widespread prevalence of obesity has lead to extensive research on white adipose tissue (WAT), which frequently uses the C57BL/6J mouse strain as a model. In many studies, results obtained in one WAT depot are often extrapolated to all WAT. However, functional differences among WAT depots are now becoming apparent. Thus, to identify the molecular mechanisms responsible for WAT depot-specific differences under "normal" conditions, four C57BL/6J mouse WAT depots (inguinal, mesenteric, epididymal, and retroperitoneal) were analyzed. Depot proteomic profiles, along with weights, protein contents, adipocyte sizes and oxidative stress were determined. Mesenteric WAT had almost twice the protein content of the other depots analyzed. Mean adipocyte size was highest in epididymal and lowest in mesenteric and inguinal depots. The proteome of inguinal WAT displayed low levels of enzymes involved in ATP generation, glucose and lipid metabolism, and antioxidant proteins. Higher levels of these proteins were observed in mesenteric and epididymal WAT, with variable levels in the retroperitoneal depot. Some of these proteins showed depot-specific correlations with plasma levels of insulin, leptin, and adiponectin. In agreement with the proteomic data, levels of the antioxidant protein heat shock protein β1 (HSPβ1) also were lower in inguinal WAT when analyzed by western blotting and immunohistochemistry. Also, lipid peroxidation products showed similar trends. Our results are consistent with lower triglyceride turnover and lower oxidative stress in inguinal than mesenteric and epididymal WAT. The observed WAT depot-specific differences provide clues as to the mechanisms leading to these depots' respective diverse functions.  相似文献   

8.
Objective: Salt restriction has been reported to increase white adipose tissue (WAT) mass in rodents. The objective of this study was to investigate the effect of different sodium content diets on the lipogenic and lipolytic activities of WAT. Research Methods and Procedures: Male Wistar rats were fed on normal‐sodium (NS; 0.5% Na+), high‐sodium (HS; 3.12% Na+), or low‐sodium (LS; 0.06% Na+) diets for 3, 6, and 9 weeks after weaning. Blood pressure (BP) was measured using a computerized tail‐cuff system. At the end of each period, rats were killed and blood samples were collected for leptin determinations. The WAT from abdominal and inguinal subcutaneous (SC), periepididymal (PE) and retroperitoneal (RP) depots was weighed and processed for adipocyte isolation, rate measurement of lipolysis and d ‐[U‐14C]‐glucose incorporation into lipids, glucose‐6‐phosphate dehydrogenase (G6PDH) and malic enzyme activity evaluation, and determination of G6PDH and leptin mRNA expression. Results: After 6 weeks, HS diet significantly increased BP; SC, PE, and RP WAT masses; PE adipocyte size; plasma leptin concentration; G6PDH activity in SC WAT; and PE depots and malic activity only in SC WAT. The leptin levels correlated positively with WAT masses and adipocyte size. An increase in the basal and isoproterenol‐stimulated lipolysis and in the ability to incorporate glucose into lipids was observed in isolated adipocytes from HS rats. Discussion: HS diet induced higher adiposity characterized by high plasma leptin concentration and adipocyte hypertrophy, probably due to an increased lipogenic capacity of WAT.  相似文献   

9.
Obesity causes white adipose tissue (WAT) inflammation and insulin resistance in some, but not all individuals. Here, we used a mouse model of early postnatal overfeeding to determine the role of neonatal nutrition in lifelong WAT inflammation and metabolic dysfunction. C57BL/6J mice were reared in small litters of 3 (SL) or normal litters of 7 pups (NL) and fed either regular chow or a 60% high fat diet (HFD) from 5 to 17 weeks. At weaning, SL mice did not develop WAT inflammation despite increased fat mass, although there was an up-regulation of WAT Arg1 and Tlr4 expression. On HFD, adult SL mice had greater inguinal fat mass compared to NL mice, however both groups showed similar increases in visceral fat depots and adipocyte hypertrophy. Despite the similar levels of visceral adiposity, SL-HFD mice displayed greater impairments in glucose homeostasis and more pronounced hepatic steatosis compared to NL-HFD mice. In addition, WAT from SL mice fed a HFD displayed greater crown-like structure formation, increased M1 macrophages, and higher cytokine gene expression. Together, these data suggest that early postnatal overnutrition may be a critical determinant of fatty liver and insulin resistance in obese adults by programming the inflammatory capacity of adipose tissue.  相似文献   

10.
alpha2-HS glycoprotein (AHSG), also known as fetuin-A, inhibits insulin receptor autophosphorylation and tyrosine kinase activity in vitro and in vivo. Earlier we have shown that fetuin-null (KO) mice demonstrate improved insulin sensitivity and resistance to diet-induced obesity. Since aging is associated with insulin resistance and impaired glucose handling, we tested the hypothesis that fetuin-null (KO) mice are resilient to changes in insulin sensitivity associated with aging. Aged (80-week-old) fetuin-null mice were leaner and demonstrated significantly lower body weights compared to age- and sex-matched wild-type (WT) littermates. Leanness in aged fetuin KO mice was accompanied by a significant increase in dark-onset energy expenditure, without marked alteration of respiratory quotient. In comparison to WT mice, fetuin KO mice demonstrated a lower fasting insulin resistance index, and significantly lower blood glucose and insulin levels, following a 4h fast. Interestingly, despite significantly decreased insulin levels during a glucose tolerance test, aged fetuin-null mice demonstrated a similar glucose excursion as WT mice, indicative of improved insulin sensitivity. Analysis of aldehyde-fuchsin stained pancreas from aged fetuin KO mice indicated no difference in islet beta-cell size or number. An insulin tolerance test confirmed the increased insulin sensitivity of aged fetuin KO mice. Further, compared to WT mice, aged fetuin-null mice demonstrated increased skeletal muscle and liver IR autophosphorylation and TK activity. Taken together, this study suggests that the absence of fetuin may contribute to the improvement of insulin sensitivity associated with aging.  相似文献   

11.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

12.
Glycosuria is one of the well-documented characteristics in ClC-5 knockout (KO) mice and patients with Dent's disease. However, the underlying pathophysiology of its occurrence is unknown. In this study, we have compared ClC-5 KO mice with age and gender matched wild-type (WT) control mice to investigate if the underlying cause of manifested glycosuria is an impairment of glucose homeostasis and/or an alteration in expression levels of proximal tubule (PT) glucose transporters. We observed that, the blood glucose concentration (n=12, p<0.01) and the fractional excretion of glucose and insulin (n=6, p<0.05) were higher in KO mice. In contrast, the fasting blood glucose levels (n=7) were not significantly different in the two groups. Plasma glucose increased to a greater extent in KO mice (n=7, p<0.05) when challenged by an intraperitoneal injection of glucose. However, no peripheral tissue insulin resistance was observed following an intraperitoneal injection of insulin (n=9) in the KO mice. ELISA analysis demonstrated low plasma insulin concentrations after a 12 hour fasting period and also following glucose injection in KO mice. The total insulin released during a 2 hour period following glucose challenge was significantly lower in KO mice (n=6, p<0.05). By western blot, we observed a significant decrease in GLUT2 protein expression levels in isolated PT ((n=10, p<0.01)) of KO mice. This decrease in protein levels was corroborated by a significant decrease in GLUT2 mRNA levels estimated semi quantitatively by RT-PCR in isolated PT (n=10, p<0.01). No significant changes in mRNA expression levels of SGLT2, SGLT1 and GLUT1, as analyzed by RT-PCR, could be detected in the isolated PT (n=10). Also, we have shown by western blot analysis that expression of megalin is lower in the renal cortex of KO mice when compared to WT mice (n=3, p<0.05). Our results suggest that low plasma insulin concentration together with renal function changes observed in KO mice significantly contribute towards the glucose intolerance and documented glycosuria observed in this animal.  相似文献   

13.

Background

We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity.

Results

Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice.

Conclusions

These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge.  相似文献   

14.
Group X secretory phospholipase A2 (GX sPLA2) potently hydrolyzes membrane phospholipids to release arachidonic acid (AA). While AA is an activator of glucose-stimulated insulin secretion (GSIS), its metabolite prostaglandin E2 (PGE2) is a known inhibitor. In this study, we determined that GX sPLA2 is expressed in insulin-producing cells of mouse pancreatic islets and investigated its role in beta cell function. GSIS was measured in vivo in wild-type (WT) and GX sPLA2-deficient (GX KO) mice and ex vivo using pancreatic islets isolated from WT and GX KO mice. GSIS was also assessed in vitro using mouse MIN6 pancreatic beta cells with or without GX sPLA2 overexpression or exogenous addition. GSIS was significantly higher in islets isolated from GX KO mice compared with islets from WT mice. Conversely, GSIS was lower in MIN6 cells overexpressing GX sPLA2 (MIN6-GX) compared with control (MIN6-C) cells. PGE2 production was significantly higher in MIN6-GX cells compared with MIN6-C cells and this was associated with significantly reduced cellular cAMP. The effect of GX sPLA2 on GSIS was abolished when cells were treated with NS398 (a COX-2 inhibitor) or L-798,106 (a PGE2-EP3 receptor antagonist). Consistent with enhanced beta cell function, GX KO mice showed significantly increased plasma insulin levels following glucose challenge and were protected from age-related reductions in GSIS and glucose tolerance compared with WT mice. We conclude that GX sPLA2 plays a previously unrecognized role in negatively regulating pancreatic insulin secretion by augmenting COX-2-dependent PGE2 production.  相似文献   

15.
Myostatin knockout in mice increases myogenesis and decreases adipogenesis   总被引:34,自引:0,他引:34  
Growth differentiation factor-8 (GDF-8), or Myostatin, plays an important inhibitory role during muscle development. Since muscle and adipose tissue develop from the same mesenchymal stem cells, we hypothesized that Myostatin gene knockout may cause a switch between myogenesis and adipogenesis. Male and female wild type (WT) and Myostatin knockout (KO) mice were sacrificed at 4, 8, and 12 weeks of age. The gluteus muscle (GM) was larger in KO mice compared to WT mice at 8 (P < 0.01) and 12 (P < 0.001) weeks. At 12 weeks, KO mice had decreased fat depots (P < 0.01). Compared to 12-week-old WT mice, serum leptin concentration in KO mice was lower (P < 0.001) and leptin mRNA expression was decreased (P < 0.01) in inguinal adipose tissue. CCAAT/enhancer binding protein-alpha (C/EBPalpha) and peroxisome proliferator-activated receptor-gamma (PPARgamma) levels in adipose tissue were significantly lower in KO mice compared to WT mice. Thus, increased muscle development in Myostatin knockout mice is associated with reduced adipogenesis and consequently, decreased leptin secretion.  相似文献   

16.
17.
The seminal discovery of browning of white adipose tissue (WAT) holds great promise for the treatment of obesity and metabolic syndrome. DJ-1 is evolutionarily conserved across species, and mutations in DJ-1 have been identified in Parkinson's disease. Higher levels of DJ-1 are associated with obesity, but the underlying mechanism is less understood. Here, we report the previously unappreciated role of DJ-1 in white adipocyte biology in mature models of obesity. We used DJ-1 knockout (KO) mouse models and wild-type littermates maintained on a normal diet or high-fat diet as well as in vitro cell models to show the direct effects of DJ-1 depletion on adipocyte phenotype, thermogenic capacity, fat metabolism, and microenvironment profile. Global DJ-1 KO mice show increased sympathetic input to WAT and β3-adrenergic receptor intracellular signaling, leading to a previously unrecognized compensatory mechanism through browning of WAT with associated characteristics, including high mitochondrial contents, reduced lipid accumulation, adequate vascularization and attenuated autophagy. DJ-1 KO mice had normal body weight, energy balance, and adiposity, which were associated with protective effects on healthy WAT expansion by hyperplasia. Our findings revealed that browning of inguinal WAT occurred in DJ-1 KO mice that do not show increased predisposition to obesity and suggest that such potential mechanism may overcome the adverse metabolic consequences of obesity independent of an effect on body weight. Here, we provide the first direct evidence that targeting DJ-1 in adipocyte metabolic health may offer a unique therapeutic strategy for the treatment of obesity.  相似文献   

18.
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

19.
Acylation-stimulating protein (ASP) is a lipogenic hormone secreted by white adipose tissue (WAT). Male C3 knockout (KO; C3(-/-)) ASP-deficient mice have delayed postprandial triglyceride (TG) clearance and reduced WAT mass. The objective of this study was to examine the mechanism(s) by which ASP deficiency induces differences in postprandial TG clearance and body composition in male KO mice. Except for increased (3)H-labeled nonesterified fatty acid (NEFA) trapping in brown adipose tissue (BAT) of KO mice (P = 0.02), there were no intrinsic tissue differences between wild-type (WT) and KO mice in (3)H-NEFA or [(14)C]glucose oxidation, TG synthesis or lipolysis in WAT, muscle, or liver. There were no differences in WAT or skeletal muscle hydrolysis, uptake, and storage of [(3)H]triolein substrate [in situ lipoprotein lipase (LPL) activity]. ASP, however, increased in situ LPL activity in WAT (+64.8%, P = 0.02) but decreased it in muscle (-35.0%, P = 0.0002). In addition, after prelabeling WAT with [(3)H]oleate and [(14)C]glucose, ASP increased (3)H-lipid retention, [(3)H]TG synthesis, and [(3)H]TG-to-[(14)C]TG ratio, whereas it decreased (3)H-NEFA release, indicating increased NEFA trapping in WAT. Conversely, in muscle, ASP induced effects opposite to those in WAT and increased lipolysis, indicating reduced NEFA trapping within muscle by ASP (P < 0.05 for all parameters). In conclusion, novel data in this study suggest that 1) there is little intrinsic difference between KO and WT tissue in the parameters examined and 2) ASP differentially regulates in situ LPL activity and NEFA trapping in WAT and skeletal muscle, which may promote optimal insulin sensitivity in vivo.  相似文献   

20.
We aimed at elucidating the roles of transforming growth factor (TGF)-β and Smad3 signaling in adipocyte differentiation (adipogenesis) and in the pathogenesis of obesity. TGF-β/Smad3 signaling in white adipose tissue (WAT) was determined in genetically obese (ob/ob) mice. The effect of TGF-β on adipogenesis was evaluated in mouse embryonic fibroblasts (MEF) isolated both from WT controls and Smad3 KO mice by Oil red-O staining and gene expression analysis. Phenotypic analyses of high-fat diet (HFD)-induced obesity in Smad3 KO mice compared to WT controls were performed. TGF-β/Smad3 signaling was elevated in WAT from ob/ob mice compared to the controls. TGF-β significantly inhibited adipogenesis in MEF, but the inhibitory effects of TGF-β on adipogenesis were partially abolished in MEF from Smad3 KO mice. TGF-β inhibited adipogenesis independent from the Wnt and β-catenin pathway. Smad3 KO mice were protected against HFD-induced insulin resistance. The size of adipocytes from Smad3 KO mice on the HFD was significantly smaller compared to the controls. In conclusion, the TGF-β/Smad3 signaling pathway plays key roles not only in adipogenesis but also in development of insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号