首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Senescence of cut rose flowers (Rosa hybrida L. cv. Mercedes)at 22 °C occurred earlier in flowers previously held at2 °C for 10 d or 17 d than in freshly cut flowers. Thisadvanced senescence was observed as an earlier increase in bothethylene production rate and membrane permeability. The risein ethylene production preceded the rise in the level of ionleakage from petals, and this in turn preceded visible symptomsof petal death. Applied ethylene stimulated ion leakage andinhibitors of ethylene synthesis and action (amino-oxyaceticacid and silver thiosulphate respectively) inhibited the normalincrease in ion leakage. The maximum rate of ethylene productionof 22 °C increased markedly in petals of flowers previouslyheld at 2 °C, up to nine times the level in fresh flowers.We conclude that during exposure of rose flowers to 2 °C,in addition to senescence, processes were induced which ledto stimulated ethylene production after transferral to 22 °C.Ethylene apparently caused the subsequent advance in membranepermeability and senescence. Key words: Rose flower, Low temperature, Senescence  相似文献   

2.
Role of ethylene in the senescence of isolated hibiscus petals   总被引:2,自引:1,他引:1       下载免费PDF全文
Senescence of petals isolated from flowers of Hibiscus rosa-sinensis L. (cv Pink Versicolor) was associated with increased ethylene production. Exposure to ethylene (10 microliters per liter) accelerated the onset of senescence, as indicated by petal in-rolling, and stimulated ethylene production. Senescence was also hastened by basal application of 1-aminocyclopropane-1-carboxylic acid (ACC). Aminooxyacetic acid, an inhibitor of ethylene biosynthesis, effectively inhibited ethylene production by petals and delayed petal in-rolling. In marked contrast to these results with mature petals, immature petals isolated from flowers the day before flower opening did not respond to ethylene in terms of an increase in ethylene production or petal in-rolling. Furthermore, treatment with silver thiosulfate the day before flower opening effectively prevented petal senescence, while silver thiosulfate treatment on the morning of flower opening was ineffective. Application of ACC to both immature and mature petals greatly stimulated ethylene production indicating the presence of an active ethylene-forming enzyme in both tissues. Immature petals contained less free ACC than mature, presenescent petals and appeared to possess a more active system for converting ACC into its conjugated form. Thus, while the nature of the lack of responsiveness of immature petals to ethylene is unknown, ethylene production in hibiscus petals appears to be regulated by the control over ACC availability.  相似文献   

3.
K. Manning 《Planta》1986,168(1):61-66
The relationship between ethylene production and the CN--assimilating enzyme -cyanoalanine synthase (CAS; EC 4.4.1.9) was examined in the carnation (Dianthus caryophyllus L.) flower. In petals from cut flowers aged naturally or treated with ethylene to accelerate senescence the several hundred-fold increase in ethylene production which occurred during irreversible wilting was accompanied by a one- to twofold increase in CAS activity. The basal parts of the petal, which produced the most ethylene, had the highest CAS activity. Studies of flower parts (styles, ovaries, receptacles, petals) showed that the styles had a high level of CAS together with the ethylene-forming enzyme (EFE) system for converting 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. The close association between CAS and EFE found in styles could also be observed in detached petals after induction by ACC or ethylene. Treatment of the cut flowers with cycloheximide reduced synthesis of CAS and EFE. The data indicate that CAS and ethylene production are associated, and are discussed in relation to the hypothesis that CN- is formed during the conversion of ACC to ethylene.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AVG aminoethoxyvinylglyoine - CAS -cyanoalanine synthase - CHI cycloheximide - EFE ethylene-forming enzyme  相似文献   

4.
5.
The Abscission of Rose Petals   总被引:2,自引:0,他引:2  
Petal abscission was studied in twelve hybrid tea rose (Rosahybrida L.) cultivars. At about 20 °C the time to petalabscission in uncut stems in greenhouses was the same as incut stems placed in water in the greenhouse or in a climate-controlledroom. The time between petal unfolding and abscission dependedon the cultivar, and varied between 12 and 35 d. The time topetal abscission of the cultivars was inversely correlated withtheir flower diameter at full bloom (linear regression, r2 =0·82). In the cultivars with a relatively large flowerdiameter (10-18 cm) the petals fell without visible desiccationsymptoms, whereas in the group with a small diameter the petalswere partially or fully desiccated when shed. Fertilization occurred in some flowers of a few cultivars studied.In cultivars with a relatively large flower diameter (Papa Meilland,Cocktail, Dr. Verhage, Tineke) it had no effect on the timeto abscission in Motrea, Europa, and Carolien roses, which bearsmall flowers, the petals fell after fertilization, whereasin unfertilized flowers of the latter group of cultivars anabscission zone just above the uppermost node became activeand all parts above this node (pedicel and flower) turned brownand desiccated, though remained attached for more than a month. It is concluded that in the cultivars investigated: (a) thetime to petal abscission was inversely related to their flowerdiameter, (b) abscised petals were more desiccated in cultivarsin which the time to abscission was longer, (c) fertilizationhad little effect on the time to abscission in most cultivars,whereas the absence of fertilization prevented petal abscissionin a number of the small-diameter cultivars where it was replacedby flower abscission, and (d) cutting and placement in waterat 20 °C did not affect the time to abscission.Copyright1995, 1999 Academic Press Abscission, fertilization, flowers, petals, Rosa hybrida L., rose, water stress, carbohydrate stress  相似文献   

6.
The effects of low temperature storage on the physiology of cut rose flowers ( Rosa hybridaL. cv. Mercedes) were studied. Extension of cold storage or increase in temperature (from 3 to 8°C) was accompanied by shortening of vase life and advancement of petal senescence, as reflected in an advance in the timing of the rise in ethylene production and an increase in membrane permeability (ion leakage). Although storage at a relative humidity (RH) of 65% reduced petal water content by 20% in comparison with flowers stored at 95% RH, it did not shorten vase life. The progression of petal senescence was measured during storage at 3°C and during aging at 22°C. Both ethylene production rates and membrane microviscosity measured by fluorescence depolarization increased with time at 3°C and at 22°C, but more slowly at 3°C. At 3°C membrane permeability measured by ion leakage did not increase. Following cold storage the rate of ethylene production in the petals was increased by up to eight times the rate in unstored flowers. Silver thiosulphate extended the vase life of both stored and fresh flowers equally by 2 days, but did not increase the life of stored flowers to that of treated fresh flowers. It is concluded that the primary effect of cold storage on roses is to slow down senescence and that the continued slow senescence leads to shorter vase life. The possible occurrence of sequential processes during senescence and the effects of temperature on these processes is discussed.  相似文献   

7.
R. Nichols 《Planta》1977,135(2):155-159
Production of endogenous ethylene from the styles, ovary and petals of pollinated and unpollinated flowers of Dianthus caryophyllus L. was measured. The rate of ethylene production of cut, unpollinated flowers aged in water at 18°C was low until the onset of petal wilting, when a rapid surge of ethylene occurred in all tissues. The flower ethylene production was evolved mostly from the styles and petals. The bases of petals from unpollinated, senescing flowers evolved ethylene faster and sometimes earlier than the upper parts. Treatment of cut flowers with propylene, an ethylene analogue, accelerated wilting of flower petals and promoted endogenous ethylene production in all flower tissues. Pollination of intact flowers also promoted endogenous ethylene production and caused accelerated petal wilting within 2–3 days from pollination. Although the data are consistent with the hypothesis that ethylene forms a link between pollination of the style and petal wilting, in the unpollinated flower the style and petals can evolve a surge of ethylene independently of each other, about the time when the petals irreversibly wilt. The results are discussed in relation to the role of ethylene in flower senescence.  相似文献   

8.
The effects of ethylene (C2H4), (2-chloroethyl)phosphonic acid (ethefon) and 1-aminocyclopropane-1-carboxylic acid (ACC) on senescence of isolated intact petals and of upper petal parts of carnation flowers ( Dianthus caryophyllus L. cv. White Sim) were investigated.
Isolated upper petal parts did not respond to treatment with ethefon or ACC. These tissues did, however, show severe wilting in intact petals that were treated with ethefon or ACC. When isolated upper petal parts were simultaneously treated with ACC and ethefon or ACC and ethylene, a marked synergistic effect on senescence was found. Treatment of isolated petals with radiolabeled ACC led to the accumulation of radiolabeled ACC and N-malonyl-ACC (MACC) in the upper parts. The formation of ethylene and the malonylation of ACC were inhibited by pretreatment of the flower with the inhibitor of ethylene action, silver thiosulphate (STS), which indicates that both were induced by endogenously produced ethylene. Treatment of isolated upper parts with ACC slightly increased their ethylene production. However, when these petal parts were simultaneously treated with ethylene and ACC, the conversion of ACC to ethylene was markedly stimulated.
The results indicate that, in intact petals, ethylene may be translocated from the basal to the upper part where it stimulates the activity of the ethylene-forming enzyme (EFE), thereby making the tissue receptive to ACC.
In addition, it was found that upon incubation of petal portions in radiolabeled ACC, both the petal tissue and the incubation solutions produced radiolabeled carbon dioxide. This was shown to be due to microorganisms that were able to metabolize the carbon atoms in the 2 and 3 position of ACC into carbon dioxide.  相似文献   

9.
The application of gibberellic acid via the stem of intact preclimacteric carnation flowers inhibited the climacteric surge of ethylene evolution by the flowers. Gibberellic acid also inhibited the rate of ethylene production by all individual floral parts during both the early preclimacteric (low basal level of ethylene production) and the later climacteric stages of flower development. The extent of inhibition did however, vary from one floral part to another. The most pronounced inhibition was recorded in the petal bases between the preclimacteric and senescing stages. This suggests that the petal base is an important regulatory site for ethylene production and therefore may be involved in controlling the onset and degree of petal inrolling. In all floral parts endogenous levels of ACC were reduced with GA3 treatment, being more pronounced in the petal bases. The potential of the flowers to convert applied ACC to ethylene was not deminished by gibberellic acid.Abbreviations GA3 gibberellic acid - ACC 1-aminocyclopropane-1-carboxylic acid - EFE ethylene forming enzyme  相似文献   

10.
Burdon  J. N.; Sexton  R. 《Annals of botany》1993,72(4):289-294
The time-course of flower development of Rubus idaeus L. cv.Glen Clova was studied on detached buds opened in the laboratory.After sepal and petal opening petal abscission occurred withthe petals from an individual flower being shed over 3-4 h.Abscission was accompanied by a peak in ethylene production.Treatment of flowers with aminoethoxyvinylglycine eliminatedthe peak in ethylene production but did not prevent petal abscission.However, petal loss was much slower, taking place over a periodof days rather than hours. Abscission was more effectively retardedby silver thiosulphate. Exogenous ethylene accelerated the rateof petal abscission and senescence. The increase in ethyleneproduction coincident with petal abscission appears to accelerateand co-ordinate the shedding of the separate petals on an individualflower. If ethylene is important in the induction of abscissionit would appear that the low rate of production sustained inthe presence of aminoethoxyvinylglycine must be sufficient.Copyright1993, 1999 Academic Press Rubus idaeus L., raspberry, flower, petal, abscission, ethylene  相似文献   

11.
Ethylene production and expression patterns of an 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (CARAO1) and of two ACC synthase (EC 4.4.1.14) genes (CARACC3 and CARAS1) were studied in floral organs of cut carnation flowers (Dianthus caryophyllus L.) cv. White Sim. During the vase life and after treatment of fresh flowers with ethylene, production of ethylene and expression of ethylene biosynthetic genes first started in the ovary followed by the styles and the petals. ACC oxidase was expressed in all the floral organs whereas, during the vase life, tissue-specific expression of the two ACC synthase genes was observed. After treatment with a high ethylene concentration, tissue specificity of the two ACC synthase genes was lost and only a temporal difference in expression remained. In styles, poor correlation between ethylene production and ACC synthase (CARAS1) gene expression was observed suggesting that either activity is regulated at the translational level or that the CARAS1 gene product requires an additional factor for activity.Isolated petals showed no increase in ethylene production and expression of ethylene biosynthetic genes when excised from the flower before the increase in petal ethylene production (before day 7); showed rapid cessation of ethylene production and gene expression when excised during the early phase of petal ethylene production (day 7) and showed a pattern of ethylene production and gene expression similar to the pattern observed in the attached petals when isolated at day 8. The interorgan regulation of gene expression and ethylene as a signal molecule in flower senescence are discussed.  相似文献   

12.
13.
Calcium regulation of senescence in rose petals   总被引:5,自引:0,他引:5  
Rose plants grown at high relative humidity (RH) produce flowers with a shorter vase life than those grown at low RH. The calcium content of the former is lower than that of the latter. The present study was conducted to examine the possible involvement of calcium in the regulation of rose flower senescence. In whole cut flowers and in detached petals of cvs Mercedes and Baroness, CaCl2 treatment promoted bud-opening and delayed senescence. The treated flowers stayed turgid and continued their initial postharvest growth for longer periods of time. The membrane protein content in detached petals decreased with time, in parallel to the decline in membrane phospholipids (PLs). Calcium treatment delayed the decrease in both membrane proteins and PL and increased ATPase activity in the aging petals. Electrolyte leakage, which is a reliable indicator of petal-membrane senescence, was postponed in calcium-treated flowers. Calcium treatments also sukppressed ethylene production with age. We suggest that the calcium-induced delay in rose petal senescence involves the protection of membrane proteins and PLs from degradation, thus preserving the integrity of the membranes, reducing ethylene production, and hence maintaining solute transport and tissue vitality.  相似文献   

14.
Categories of Petal Senescence and Abscission: A Re-evaluation   总被引:6,自引:2,他引:4  
van Doorn  W. G. 《Annals of botany》2001,87(4):447-456
In a previous paper (Woltering and van Doorn, 1988, Journalof Experimental Botany39: 1605–1616) we identified threetypes of flower life cessation: by petal wilting or withering,which was either ethylene-sensitive or insensitive, and by abscissionof turgid petals, which was ethylene-sensitive. These categoriestended to be consistent within families. Here we re-examinethese relationships by testing a further 200 species, and anumber of other families. As previously, flowering shoots wereexposed to 3 ppm ethylene for 24 h at 20 °C, in darkness.Most monocotyledonous species tested showed ethylene-insensitivepetal wilting, although ethylene-sensitive wilting occurredin the Alismataceae and Commelinaceae. Petals of the dicotyledonousspecies tested were generally sensitive to ethylene, exceptfor a few groups showing wilting (Crassulaceae, Gentianaceaeand Fumariaceae, and one subfamily in both the Ericaceae andSaxifragaceae). Petal abscission was generally ethylene-sensitive,but ethylene insensitivity was found in some Tulipa cultivarsand three Saxifraga species. In most tulip cultivars tested,the petals wilted and then fell. It is concluded that (a) theresponse to ethylene is often consistent within either familiesor subfamilies; and (b) a fourth category, ethylene-insensitivepetal abscission, exists both in monocotyledons and dicotyledons.Copyright 2001 Annals of Botany Company Ethylene sensitivity, flower longevity, petal abscission, petal wilting, petal withering, petal senescence, taxonomic categories  相似文献   

15.
Although the role of the gynoecium in natural senescence of the carnation flower has long been suggested, it has remained a matter of dispute because petal senescence in the cut carnation flower was not delayed by the removal of gynoecium. In this study, the gynoecium was snapped off by hand, in contrast to previous investigations where removal was achieved by forceps or scissors. The removal of the gynoecium by hand prevented the onset of ethylene production and prolonged the vase life of the flower, demonstrating a decisive role of the gynoecium in controlling natural senescence of the carnation flower. Abscisic acid (ABA) and indole-3-acetic acid (IAA), which induced ethylene production and accelerated petal senescence in carnation flowers, did not stimulate ethylene production in the flowers with gynoecia removed (-Gyn flowers). Application of 1-aminocyclopropane-1-carboxylate (ACC), the ethylene precursor, induced substantial ethylene production and petal wilting in the flowers with gynoecia left intact, but was less effective at stimulating ethylene production in the -Gyn flowers and negligible petal in-rolling was observed. Exogenous ethylene induced autocatalytic production of the gas and petal wilting in the -Gyn flowers. These results indicated that ethylene generated in the gynoecium triggers the onset of ethylene production in the petals of carnation during natural senescence.  相似文献   

16.
Pollination of flowers of standard carnation (Dianthus caryophyllus L. cv. White Sim) with pollen from flowers of miniature carnations (D. caryophyllus L. cv. Exquisite) caused them to wilt irreversibly within 1 to 2 days. Pollination stimulated a sequential increase in ethylene production by stigmas, ovaries, receptacles, and petals of the flowers. The ACC content of the stigmas increased rapidly in the first few hours after pollination. The possibility that subsequent production of ethylene by other parts of the flower is stimulated by translocated ACC is discussed. Ethylene production and ACC content of other parts of the flower reached their maximum 24 h after pollination. The petal tissues contributed the bulk of the ethylene productionper flower thereafter. There appears to be a qualitative difference between the enzyme in the stigmas converting ACC to ethylene and that in other parts of the flower.  相似文献   

17.
18.
19.
To study the cause of the uneven production of ethylene by upper and basal portions of detached petals of carnation ( Dianthus caryophyllus L. cv. White Sim), the petals were divided and exposed to ethylene (30 μl 1-1 for 16 h). The treatment induced rapid wilting and autocatalytic ethylene production in the basal portion similar to that induced in entire petals. In contrast to the response in entire petals and the basal portions, the upper portions responded to ethylene by delayed wilting and much lower ethylene production. Aminocyclopropane carboxylic acid (ACC)-synthase activity in the basal portion of the petals was 38 to 400 times that in the upper portion. In untreated detached petal pieces from senescing carnation flowers, ethylene production by the upper portion declined after 6 h while the basal portion was still producing ethylene at a steady rate 18 h later. Application of ACC to the upper portion of senescing petals increased their ethylene production. α-Aminooxyacetic acid (0.5 m M ), reduced the ethylene production of the senescing basal portion more than that of the upper portion. Endogenous ACC content in basal portions of senescing carnation petals was 3 to 4 times higher than in the upper parts. When detached senescing petals were divided immediately after detaching, the endogenous ACC levels in upper portions remained steady or declined during 24 h after division, while in the basal portions the ACC level rose steadily as in the intact petals. There was no change in the conjugated ACC in either portion after 24 h. Benzyladenine (BA) applied as a pretreatment to entire preclimacteric petals greatly reduced the development of ACC-synthase activity of the basal portion, but had little effect on the activity in the upper portion of the petal. In both portions, however, BA effectively reduced the conversion of ACC to ethylene.  相似文献   

20.
Ethylene production and senescence of petals of pollinated carnation flowers were not prevented by removal of the ethylene produced by the gynoecium, suggesting that these events are a response to movement from the gynoecium of some stimulus other than ethylene gas. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) to the stigmas caused an initial increase in gynoecium and petal ethylene production similar to that reported for pollinated flowers. This response was not seen in flowers whose stigmas were treated with indoleacetic acid (IAA). When [2-14C]ACC was applied to the stigmas of carnation flowers, radioactive ethylene was produced both by the gynoecia and by the petals. The possibility that ACC, transported from the stigmas to the petals, is responsible for the postpollination changes in carnation flowers is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号