首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vancomycin-resistance in enterococci (VRE) is associated with isolates within ST18, ST17, ST78 Enterococcus faecium (Efm) and ST6 Enterococcus faecalis (Efs) human adapted lineages. Despite of its global spread, vancomycin resistance rates in enterococcal populations greatly vary temporally and geographically. Portugal is one of the European countries where Tn1546 (vanA) is consistently found in a variety of environments. A comprehensive multi-hierarchical analysis of VRE isolates (75 Efm and 29 Efs) from Portuguese hospitals and aquatic surroundings (1996–2008) was performed to clarify the local dynamics of VRE. Clonal relatedness was established by PFGE and MLST while plasmid characterization comprised the analysis of known relaxases, rep initiator proteins and toxin-antitoxin systems (TA) by PCR-based typing schemes, RFLP comparison, hybridization and sequencing. Tn1546 variants were characterized by PCR overlapping/sequencing. Intra- and inter-hospital dissemination of Efm ST18, ST132 and ST280 and Efs ST6 clones, carrying rolling-circle (pEFNP1/pRI1) and theta-replicating (pCIZ2-like, Inc18, pHTβ-like, two pRUM-variants, pLG1-like, and pheromone-responsive) plasmids was documented. Tn1546 variants, mostly containing ISEf1 or IS1216, were located on plasmids (30–150 kb) with a high degree of mosaicism and heterogeneous RFLP patterns that seem to have resulted from the interplay between broad host Inc18 plasmids (pIP501, pRE25, pEF1), and narrow host RepA_N plasmids (pRUM, pAD1-like). TAs of Inc18 (ω-ε-ζ) and pRUM (Axe-Txe) plasmids were infrequently detected. Some plasmid chimeras were persistently recovered over years from different clonal lineages. This work represents the first multi-hierarchical analysis of VRE, revealing a frequent recombinatorial diversification of a limited number of interacting clonal backgrounds, plasmids and transposons at local scale. These interactions provide a continuous process of parapatric clonalization driving a full exploration of the local adaptive landscape, which might assure long-term maintenance of resistant clones and eventually fixation of Tn1546 in particular geographic areas.  相似文献   

2.
The molecular structure and transferability of Tn1546 in 143 vancomycin-resistant Enterococcus faecium (VREF) isolates obtained from patients (n = 49), surface water (n = 28), and urban and hospital sewage (n = 66) in Tehran, Iran, were investigated. Molecular characterization of Tn1546 elements in vanA VREF was performed using a combination of restriction fragment length polymorphism analysis and DNA sequencing of the internal PCR fragments of vanA transposons. Long-PCR amplification showed that the molecular size of Tn1546 elements varied from 10.8 to 12.8 kb. The molecular analysis of Tn1546 showed that 45 isolates (31.5%) harbored a deletion/mutation upstream from nucleotide 170. No horizontal transfer of Tn1546 was observed following filter-mating conjugation with these isolates. Nevertheless, the rates of transferability for other isolates were 10−5 to 10−6 per donor. Insertion sequences IS1216V and IS1542 were present in 103 (72%) and 138 (96.5%) of the isolates, respectively. The molecular analysis of Tn1546 elements resulted in three genomic organizations. The genomic organization lineage 1 was dominated by the isolates from clinical samples (3.4%), lineage 2 was dominated mostly by sewage isolates (24.5%), and lineage 3 contained isolates obtained from all sources (72.1%). The genetic diversity determined using pulsed-field gel electrophoresis (PFGE) revealed a single E. faecium clone, designated 44, which was common to the samples obtained from clinical specimens and hospital and municipal sewage. Furthermore, the results suggest that lineage 3 Tn1546 was highly disseminated among our enterococcal isolates in different PFGE patterns.  相似文献   

3.
Vancomycin-resistant enterococci (VRE) were detected in samples of sewage obtained downstream of hospitals of the Porto area in Portugal, and in samples from the Douro Estuary. Clonal analysis, Tn1546 typing, and presence of putative virulence traits indicate the clinical origin of these isolates. This observation highlights the importance of hospital sewage in the VRE contamination of the environment.  相似文献   

4.
Cases of bacteremia caused by vancomycin-resistant E. faecium (VRE-fm) increased significantly in Taiwan. The present multicenter surveillance study was performed to reveal the associated epidemiological characteristics. In 2012, 134 non-repetitive VRE-fm isolates were prospectively collected from 12 hospitals in Taiwan. Antimicrobial susceptibility, pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and analysis of van genes and Tn1546 structures were investigated. Two isolates carried vanB genes, while all the remaining isolates carried vanA genes. Three isolates demonstrated a specific vanA genotype - vanB phenotype. Nine (6.7%) isolates demonstrated tigecycline resistance, and all were susceptible to daptomycin and linezolid. Molecular typing revealed 58 pulsotypes and 13 sequence types (STs), all belonged to three major lineages 17, 18, and 78. The most frequent STs were ST17 (n = 48, 35.8%), ST414 (n = 22, 16.4%), and ST78 (n = 16, 11.9%). Among the vanA harboring isolates, eight structure types of the Tn1546-like element were demonstrated. Type I (a partial deletion in the orf1 and insertion of IS1251-like between the vanS - vanH genes) and Type II (Type I with an additional insertion of IS1678 between orf2 - vanS genes) were the most predominant, consisted of 60 (45.5%) and 62 (47.0%) isolates, respectively. The increase of VRE-fm bacteremia in Taiwan may be associated with the inter- and intra-hospital spread of some major STs and horizontal transfer of vanA genes mostly carried on two efficient Tn1546-like elements. The prevailing ST414 and widespread of the Type II Tn1546-like elements are an emerging problem that requires continuous monitoring.  相似文献   

5.
The occurrence, structure, and mobility of Tn1546-like elements were studied in environmental vancomycin-resistant enterococci (VRE) isolated from municipal sewage, activated sludge, pharmaceutical waste derived from antibiotic production, seawater, blue mussels, and soil. Of 200 presumptive VRE isolates tested, 71 (35%) harbored vanA. Pulsed-field gel electrophoresis analysis allowed the detection of 26 subtypes, which were identified as Enterococcus faecium (n = 13), E. casseliflavus (n = 6), E. mundtii (n = 3), E. faecalis (n = 3), and E. durans (n = 1) by phenotypic tests and 16S ribosomal DNA sequencing. Long PCR-restriction fragment length polymorphism (L-PCR-RFLP) analysis of Tn1546-like elements and PCR analysis of internal regions revealed the presence of seven groups among the 29 strains studied. The most common group (group 1) corresponded to the structure of Tn1546 in the prototype strain E. faecium BM4147. Two novel L-PCR-RFLP patterns (groups 3 and 4) were found for E. casseliflavus strains. Indistinguishable Tn1546-like elements occurred in VRE strains belonging to different species or originating from different sources. Interspecies plasmid-mediated transfer of vancomycin resistance to E. faecium BM4105 was demonstrated for E. faecalis, E. mundtii, and E. durans. This study indicates that VRE, including species other than E. faecium and E. faecalis, are widespread in nature and in environments that are not exposed to vancomycin selection and not heavily contaminated with feces, such as seawater, blue mussels, and nonagricultural soil. Tn1546-like elements can readily transfer between enterococci of different species and ecological origins, therefore raising questions about the origin of these transposable elements and their possible transfer between environmental and clinical settings.  相似文献   

6.
《Gene》1996,171(1):9-17
A striking feature of recent outbreaks of vancomycin-resistant (VmR) enterococci is the apparent horizontal dissemination of resistance determinants. The plasmids pHKK702 and pHKK703 from Enterococcus faecium clinical isolate R7 have been implicated in the conjugal transfer of VmR. pHKK702 is a 41-kb plasmid that contains an element indistinguishable from the glycopeptide-resistance transposon Tn1546. pHKK703 is an approx. 55-kb putative sex pheromone-response plasmid that is required for conjugative mobilization of pHKK702. During experiments in which strain R7 was used as a donor, a highly conjugative VmR transconjugant was isolated that formed constitutive cellular aggregates. Restriction analyses and DNA hybridizations revealed that the transconjugant harbored a single plasmid of approx. 92 kb and this plasmid (pHKK701) was composed of DNA from both pHKK702 and pHKK703. Results from DNA sequence analyses showed that a 39-kb composite transposon (Tn5506) from pHKK702 had inserted into pHKK703. The left end of Tn5506 contained a single insertion sequence (IS) element, IS1216V2, whereas the right end was composed of a tandem IS structure consisting of the novel 1065-bp IS1252 nested within an IS1216V1 element. Transposition of Tn5506 from pHKK702 to pHKK703 created an 8-bp target sequence duplication at the site of insertion and interrupted an ORF (ORFX) that was 91% identical to that of prgX, a gene proposed to negatively regulate sex pheromone response of the E. faecalis plasmid, pCF10. We propose that the interruption of ORFX by Tn5506 led to the constitutive cellular aggregation phenotype and thereby enhanced the efficiency with which VmR was transferred. Similar IS1216V-mediated transposition events may contribute to the horizontal spread of glycopeptide resistance among enterococci in nature.  相似文献   

7.
In this study, internal size variations in the VanA gene cluster Tn1546, encoding resistance to glycopeptides, is described. Studies of previously uncharacterized size variations of an internal region, encoding the vanX and vanY genes of Tn1546, revealed that these variations were due to the presence of the IS sequence, IS1216V. This IS sequence has previously been found integrated in Tn1546. Integration of the IS1216V element created both deletions and a duplication in a non-essential region of Tn1546. In several isolates, the entire vanY gene was deleted, proving that this gene is non-essential for vancomycin resistance.  相似文献   

8.
Vancomycin resistant enterococci (VRE) isolates from humans (23 isolates) and poultry (20 isolates) were characterized by antibiotic susceptibility, vancomycin resistance transferability, pulsed-field gel electrophoresis (PFGE), and structural analysis of Tn1546-like elements. VRE isolates from humans and poultry showed different resistance patterns, transferability, and transfer rate. In addition to these phenotypic differences between humans and poultry VRE, PFGE and the structure of Tn1546-like elements were also distinct. Most poultry isolates (16/20) were identical to the prototype vanA transposon, Tn1546, while most human isolates (21/23) had multiple integrations of insertion sequence. The transmission of VRE and vancomycin resistance determinant between humans and poultry could not be demonstrated in this study.  相似文献   

9.
Aims: To characterize the erm(B)‐ and mef(E)‐mediated erythromycin‐resistant Streptococcus pneumoniae clinical isolates obtained from ten hospitals located different cities in China. Methods and Results: Totally 83 S. pneumoniae were collected, and eighteen representative strains of 66 strains that exhibited erythromycin resistance were used for further characterization by antibiograms, serotyping, PFGE, MLST, DNA sequencing of the macrolide‐resistance elements and mapping of the elements on the chromosome. Twelve isolates showed a high‐level resistance to erythromycin, and six other isolates showed a low‐level resistance to erythromycin. Thirteen isolates harboured a Tn2010 transposon (26·4 kbp) encoding the erm(B), tet(M) and mef(E) genes and were classified into three types by Tn2010 structures. The remaining five isolates harboured a Tn6002 transposon (20·9 kbp) encoding the erm(B) and tet(M) genes and were classified into three types by Tn6002 locations on the chromosome. Three of the Tn6002 elements were located within the Tn5252‐like element, implying that these composed a large mobile element. The MLST analyses showed that several clones had been disseminated and that the CC271 strains carrying the Tn2010 element expressing the high‐level resistance to erythromycin were predominant in China. Four new MLST strains, which were designated as ST3262, ST3263, ST3397 and ST3398 were also identified. Conclusions: The erythromycin resistance determinant of S. pneumoniae that had been isolated in China was located in Tn2010 or the Tn6002 element and several clones had been disseminated, and the CC271 strains carrying the Tn2010 element expressing the high‐level resistance to erythromycin were predominant in China. Significance and Impact of the Study: This is the first molecular analysis of erythromycin‐resistant Streptococcus pneumoniae clinical isolates in China, and the first report of the complete nucleotide sequence of Tn2010 (26 390 bp).  相似文献   

10.
Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals.  相似文献   

11.
Tn5385 is a ca. 65-kb element integrated into the chromosomes of clinical Enterococcus faecalis strains CH19 and CH116. It confers resistance to erythromycin, gentamicin, mercuric chloride, streptomycin, tetracycline-minocycline, and penicillin via β-lactamase production. Tn5385 is a composite structure containing regions previously found in staphylococcal and enterococcal plasmids. Several transposons and transposon-like elements within Tn5385 have been identified, including conjugative transposon Tn5381, composite transposon Tn5384, and elements indistinguishable from staphylococcal transposons Tn4001 and Tn552. The divergent regions of Tn5385 are linked by a series of insertion sequence (IS) elements (IS256, IS257, and IS1216) of staphylococcal and enterococcal origin. The ends of Tn5385 consist of directly repeated copies of enterococcal IS1216. Within the chromosomes of strains CH19 and CH116, Tn5385 has interrupted an open reading frame with substantial homology to previously described alkyl hydrogen peroxide reductase genes. Segments of this open reading frame in both CH19 and CH116 have been deleted, but the amount of deleted DNA differs for the two insertions. Transfer of Tn5385 from both donors into E. faecalis recipients occurs at a low frequency. Two types of transconjugants have been identified. In one type, the target alkyl hydrogen peroxide reductase open reading frame has been deleted, and sequences flanking Tn5385 in the respective donors are carried over to the transconjugants. These data suggest that the mechanism of Tn5385 insertion into the recipient chromosome in these transconjugants was recombination across flanking regions in the donors and homologous sequences in the recipients. The second type of transconjugant appears to have resulted from excision of Tn5385 from the CH19 chromosome by recombination across the terminal IS1216 elements and insertion into the recipient chromosome by recombination across Tn5381 (within Tn5385) and a previously transferred Tn5381 copy in the recipient chromosome. These data confirm that Tn5385 is a composite structure with genetic material from diverse genera and suggest that it is a functional transposon. They also suggest that chromosomal recombination is a mechanism of genetic exchange in enterococci.  相似文献   

12.
Aim: Isolation and characterization of vancomycin‐resistant enterococci (VRE), mainly Enterococcus faecium, from the faecal pellet of wood frogs (Rana sylvatica). Methods and Results: The frog VRE isolates were tested for their susceptibility to various antibiotics and were found resistant to ampicillin (Am), chloramphenicol (Cm), erythromycin (Em), gentamicin (Gm), tetracycline (Tc), teicoplanin (Tp) and vancomycin (Vn). The linkage of multiple antibiotic resistances to Em, Tc, Tp and Vn was observed in 84% of resistant Ent. faecium. Inducible antibiotic resistance (MIC ≥ 512 μg ml?1) to Vn was also detected in these isolates. PCR analysis revealed the presence of vanA in all strains, and none of the strains were positive for vanB, indicating the existence of vanA phenotype. Furthermore, the PCR–RFLP analysis of the frog vanA amplicon with PstI, BamHI and SphI generated identical restriction patterns similar to Tn1546‐like elements found in human VRE isolates. DNA homoduplex analysis also confirmed that vanA from the frog VRE has DNA sequence homology with the vanA of Tn1546‐like elements of human and animal isolates. Blastx analysis of frog vanA sequence showed similarities with protein sequences generated from protein database of Vn‐resistant Ent. faecium, Baccilus circulans, Paenibacillus apiarius and Oerskovia turbata isolates. Horizontal transfer of Vn resistance was not detected in frog isolates as revealed by filter mating conjugal experiment. Conclusions: In summary, our results demonstrated that wood frogs carry Vn‐resistant bacteria, and resistance genes (vanA) are located on Tn1546‐like elements. Significance and Impact of the Study: This study highlights a previously less recognized role of amphibians as sentinels for multidrug‐resistant bacteria and alerts the public health workers for an emerging risk of zoonotic bacterial infections to humans.  相似文献   

13.
A new staphylococcal composite transposon, designated Tn5405,carrying the genesaphA-3andaadE,which encode resistance to aminoglycosides, was partially characterized. The transposon is 12 kb long and is flanked by inverted repeated sequences displaying the characteristic features of an insertion sequence, named IS1182.This insertion sequence is 1864 bp long and has 23/33-bp imperfect inverted repeats at its ends. One of the IS1182copies delimiting Tn5405contains a copy of IS1181flanked by 8-bp direct repeats. Tn5405was found in the chromosome of MRSA clinical isolate BM3121, within a Tn552-related transposon, Tn5404.Tn5404was previously characterized following its transposition onto a β-lactamase plasmid harbored by BM3121. Two forms of the recombinant β-lactamase-encoding plasmid generated by the inversion of Tn5405within Tn5404were detected. IS1182was not detected in the DNA of 4 of the 17 tested MRSA isolates containingaphA-3and resistant to streptomycin. Thus,aphA-3andaadEgenes are not disseminated only by Tn5405or related transposons delimited by IS1182.  相似文献   

14.
VanA-type human (n = 69), animal (n = 49), and food (n = 36) glycopeptide-resistant enterococci (GRE) from different geographic areas were investigated to study their possible reservoirs and transmission routes. Pulsed-field gel electrophoresis (PFGE) revealed two small genetically related clusters, M39 (n = 4) and M49 (n = 13), representing Enterococcus faecium isolates from animal and human feces and from clinical and fecal human samples. Multilocus sequence typing showed that both belonged to the epidemic lineage of CC17. purK allele analysis of 28 selected isolates revealed that type 1 was prevalent in human strains (8/11) and types 6 and 3 (14/15) were prevalent in poultry (animals and meat). One hundred and five of the 154 VanA GRE isolates, encompassing different species, origins, and PFGE types, were examined for Tn1546 type and location (plasmid or chromosome) and the incidence of virulence determinants. Hybridization of S1- and I-CeuI-digested total DNA revealed a plasmid location in 98% of the isolates. Human intestinal and animal E. faecium isolates bore large (>150 kb) vanA plasmids. Results of PCR-restriction fragment length polymorphism and sequencing showed the presence of prototype Tn1546 in 80% of strains and the G-to-T mutation at position 8234 in three human intestinal and two pork E. faecium isolates. There were no significant associations (P > 0.5) between Tn1546 type and GRE source or enterococcal species. Virulence determinants were detected in all reservoirs but were significantly more frequent (P < 0.02) among clinical strains. Multiple determinants were found in clinical and meat Enterococcus faecalis isolates. The presence of indistinguishable vanA elements (mostly plasmid borne) and virulence determinants in different species and PFGE-diverse populations in the presence of host-specific purK housekeeping genes suggested that all GRE might be potential reservoirs of resistance determinants and virulence traits transferable to human-adapted clusters.  相似文献   

15.
The extent and nature of tetracycline resistance in bacterial populations of two apple orchards with no or a limited history of oxytetracycline usage were assessed. Tetracycline-resistant (Tcr) bacteria were mostly gram negative and represented from 0 to 47% of the total bacterial population on blossoms and leaves (versus 26 to 84% for streptomycin-resistant bacteria). A total of 87 isolates were screened for the presence of specific Tcr determinants. Tcr was determined to be due to the presence of Tet B in Pantoea agglomerans and other members of the family Enterobacteriacae and Tet A, Tet C, or Tet G in most Pseudomonas isolates. The cause of Tcr was not identified in 16% of the isolates studied. The Tcr genes were almost always found on large plasmids which also carried the streptomycin resistance transposon Tn5393. Transposable elements with Tcr determinants were detected by entrapment following introduction into Escherichia coli. Tet B was found within Tn10. Two of eighteen Tet B-containing isolates had an insertion sequence within Tn10; one had IS911 located within IS10-R and one had Tn1000 located upstream of Tet B. Tet A was found within a novel variant of Tn1721, named Tn1720, which lacks the left-end orfI of Tn1721. Tet C was located within a 19-kb transposon, Tn1404, with transposition genes similar to those of Tn501, streptomycin (aadA2) and sulfonamide (sulI) resistance genes within an integron, Tet C flanked by direct repeats of IS26, and four open reading frames, one of which may encode a sulfate permease. Two variants of Tet G with 92% sequence identity were detected.  相似文献   

16.
In last decade methicillin-resistant Staphylococcus aureus with high level of vancomycin-resistance (VRSA) have been reported and generally the patients with VRSA infection were also infected with a vancomycin-resistant Enterococcus (VRE). Considering that the high level of vancomycin-resistance in VRSA isolates seems to involve the horizontal transfer of Tn1546 transposon containing vanA gene from coinfecting VRE strains, the authors have studied the “in vitro” conjugative transfer of this resistance from VanA enterococci to S. aureus. Out of 25 matings performed combining five vancomycin-resistant enterococci as donors (three Enterococcus faecalis and two Enterococcus faecium), and five S. aureus as recipients, all clinical isolates, two have been successful using E. faecalis as donor. The transfer of vancomycin-resistance was confirmed by vanA gene amplification in both transconjugants and the resistance was expressed at lower levels (MIC 32 μg/ml) in comparison with the respective VRE donors (MIC > 128 μg/ml). The vancomycin-resistance of trasconjugants was maintained even after subsequent overnight passages on MSA plates containing subinhibitory levels of vancomycin. This study shows that the vanA gene transfer can be achieved through techniques “in vitro” without the use of laboratory animals employed, in the only similar experiment previously carried out by other authors, as substrate for the trasconjugant growth. Moreover, in that previous experiment, contrary to this study, the vancomycin resistant S. aureus trasconjugants were selected on erythromycin agar and not by direct vancomycin agar selection.  相似文献   

17.
We have assessed the performance of semi-automated rep-PCR (Diversilab®) and multilocus sequence typing (MLST) in comparison to pulsed-field gel electrophoresis (PFGE) for typing a collection of 29 epidemiologically characterized vancomycin-resistant Enterococcus faecium (VRE). Sixteen strains that harbored the Tn1546 element were typed by PCR mapping. The discriminative power of the typing methods was calculated by the Simpson's index of diversity, and the concordance between methods was evaluated by the Kendall's coefficient of concordance. Semi-automated rep-PCR appeared as discriminative as PFGE and was further compared with PFGE for typing 67 VRE isolated during a hospital outbreak. Rep-PCR appeared to be more discriminative than PFGE for this second set of strains. Reproducibility of DiversiLab® was also tested against 35 selected isolates. Only three showed less than 97% similarity, indicating high reproducibility at this level of discrimination. In conclusion, semi-automated rep-PCR is a useful tool for rapid screening of VRE isolates during an outbreak, although cost of the system may be limiting for routine implementation. PFGE, which remains the reference method, should be used for confirmation and evaluation of the genetic relatedness of epidemic isolates.  相似文献   

18.
The bleomycin resistance gene (ble) of transposon Tn5 is known to decrease the death rate of Escherichia coli during stationary phase. Bleomycin is a DNA-damaging agent and bleomycin resistance is produced by improved DNA repair which also requires the host genes aidC and polA coding, respectively, for an alkylation-inducible gene product and DNA polymerase I. In the absence of the drug, this DNA repair system is believed to cause the slower death rate of bleomycin-resistant bacteria. In this study, the effect of ble and aidC genes on the viability of bacteria and their growth rate in chemostat competitions was studied. The results indicate, that bleomycin-resistant bacteria display greater fitness under these conditions. Another beneficial effect of transposon Tn5 had been previously attributed to the insertion sequence IS50R. We were not able to reproduce this result with IS50R, however, the complete transposon was beneficial under similar conditions. Moreover, we showed the Tn5 fitness effect to be aidC-dependent. The ble gene was discovered after the fitness effect of IS50R had been established; it has not previously been considered to mediate the beneficial effect of Tn5. This possibility is discussed based on the molecular mechanism of bleomycin resistance.  相似文献   

19.
The purpose of the present study was to determine the relatedness of Enterococcus faecium isolates from fresh produce to E. faecium strains from other sources by using multi-locus sequence typing (MLST) and to determine the antimicrobial resistance of the isolates. MLST analysis of 22 E. faecium isolates from fresh produce revealed 7 different sequence types (ST 22, ST 26, ST 43, ST 46, ST 55, ST 94 and ST 296). Most isolates belonged to ST 296 (40.9 %), followed by ST 94 (27.3 %). All isolates were sensitive to vancomycin and to imipenem, and only one was resistant to ampicillin (MIC 32 mg/l). However, all were resistant to cefotaxime and ceftazidine. E. faecium isolates from fresh produce were inhibited by quaternary compounds (benzalkonium chloride, cetrimide, hexadecylpyridinium chloride, didecyldimethylammonium bromide), biguanides (chlorhexidine), polyguanides [poly-(hexamethylene guanidinium) hydrochloride], bisphenols (triclosan, hexachlorophene) and biocidal solutions of P3 oxonia and P3 topax 66. Didecyldimethylammonium bromide and triclosan were the least effective biocides in growth inhibition, while hexadecylpyridinium chloride was the most effective. Results from MLST typing and antibiotic resistance suggest that the studied E. faecium isolates from fresh produce are not related to the clinically-relevant clonal complex CC17.  相似文献   

20.
In this project, enterococci from the digestive tracts of 260 houseflies (Musca domestica L.) collected from five restaurants were characterized. Houseflies frequently (97% of the flies were positive) carried enterococci (mean, 3.1 × 103 CFU/fly). Using multiplex PCR, 205 of 355 randomly selected enterococcal isolates were identified and characterized. The majority of these isolates were Enterococcus faecalis (88.2%); in addition, 6.8% were E. faecium, and 4.9% were E. casseliflavus. E. faecalis isolates were phenotypically resistant to tetracycline (66.3%), erythromycin (23.8%), streptomycin (11.6%), ciprofloxacin (9.9%), and kanamycin (8.3%). Tetracycline resistance in E. faecalis was encoded by tet(M) (65.8%), tet(O) (1.7%), and tet(W) (0.8%). The majority (78.3%) of the erythromycin-resistant E. faecalis isolates carried erm(B). The conjugative transposon Tn916 and members of the Tn916/Tn1545 family were detected in 30.2% and 34.6% of the identified isolates, respectively. E. faecalis carried virulence genes, including a gelatinase gene (gelE; 70.7%), an aggregation substance gene (asa1; 33.2%), an enterococcus surface protein gene (esp; 8.8%), and a cytolysin gene (cylA; 8.8%). Phenotypic assays showed that 91.4% of the isolates with the gelE gene were gelatinolytic and that 46.7% of the isolates with the asa1 gene aggregated. All isolates with the cylA gene were hemolytic on human blood. This study showed that houseflies in food-handling and -serving facilities carry antibiotic-resistant and potentially virulent enterococci that have the capacity for horizontal transfer of antibiotic resistance genes to other bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号