首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Three heat shock protein (HSP) genes (hsp70, hsc70, hsp90) were partially cloned from the brown planthopper Nilaparvata lugens and the small brown planthopper Laodelphax striatellus (Homoptera: Delphacidae), which are serious pests of the rice plant. Sequence comparisons at the deduced amino acid level showed that the three HSPs of planthoppers were most homologous to corresponding HSPs of dipteran and lepi‐dopteran species. Identities of both heat shock cognate 70 and HSP90 were higher than HSP70 in both species. Identity of the HSP70 between the two planthopper species was only 81%, a value much lower than seen among fly and moth groups. Effects of heat and cold shocks were demonstrated on expression of the three hsp genes in the two planthopper species. Heat shock (40 °C) upregulated the hsp90 level but did not change the hsc70 level in either the nymph and adult stages of either species. On the other hand, the hsp70 level was only upregulated in L. striatellus. This heat shock response was prompt and lasted only for 1 h after treatment. In contrast, cold shock at 4°C did not change the expression levels of any hsp in either species.  相似文献   

3.
The small heat shock gene (shsp) cluster of Drosophila buzzatii was sequenced and the gene order and DNA sequence were compared with those of the shsps in Drosophila melanogaster. The D. buzzatii shsp cluster contains an inversion and a duplication of hsp26. A phylogenetic tree was constructed based on hsp26 genes from several Drosophila species of the Sophophora and Drosophila subgenera. The tree shows first a separation of the Sophophora and the Drosophila subgenera and then the Drosophila subgenus is divided into the Hawaiian Drosophila and the repleta/virilis groups. Only the latter contain a duplicated hsp26. Comparing the gene organisation of the shsp cluster shows that all the Drosophila subgenus species contain the inversion. Putative heat shock elements (HSE) were found in the promoters of all the shsp and putative regulator elements for tissue specific expression were found in the promoter of hsp23, hsp27 and one of the hsp26 genes. hsp23 was found to be polymorphic for four non-synonymous changes that all lead to exchange of a Valine. The duplicated hsp26 gene in D. buzzatii (phsp26) was polymorphic for two non-synonymous changes. The allele frequencies of these variants were determined in nine D. buzzatii populations covering most of its distribution in Australia using high-resolution melting curves. The allele frequencies of one of the hsp23 variants showed a significant linear regression with longitude and the pooled frequency of the four Valine changes of hsp23 in the nine populations showed a significant linear regression with longitude and with a composite measure of climatic variables.  相似文献   

4.
5.
Ageing and the resulting increased likelihood mortality are the inescapable fate of organisms because selection pressures on genes that exert their function late in life is weak, promoting the evolution of genes that enhance early‐life reproductive performance at the same time as sacrificing late survival. Heat shock proteins (HSP) are known to buffer various environmental stresses and are also involved in protein homeostasis and longevity. The characteristics of genes for HSPs (hsp) imply that they affect various life‐history traits, which in turn affect longevity; however, little is known about the effects of hsp genes on life‐history traits and their interaction with longevity. In the present study, the effects of hsp genes on multiple fitness traits, such as locomotor activity, total fecundity, early fecundity and survival time, are investigated in Drosophila melanogaster Meigen using RNA interference (RNAi). In egg‐laying females, RNAi knockdown of six hsp genes (hsp22, hsp23, hsp67Ba, hsp67Bb, hsp67Bc and hsp27‐like) does not shorten survival but rather increases it. Knockdown of five of those genes on an individual basis reduces early‐life reproduction, suggesting that several hsp genes mediate the trade‐off between early reproduction and late survival. The data indicate a positive effect of hsp genes on early reproduction and also negative effects on survival time, supporting the antagonistic pleiotropic effects predicted by the optimality theory of ageing.  相似文献   

6.
7.
Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30 °C) or cold-stressed over-wintering larvae (⩽0 °C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45 °C or as low as −15 °C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination.  相似文献   

8.
9.
10.
The main findings of the current study were that exposing adult sockeye salmon Onchorhynchus nerka to a warm temperature that they regularly encounter during their river migration induced a heat shock response at an mRNA level, and this response was exacerbated with forced swimming. Similar to the heat shock response, increased immune defence‐related responses were also observed after warm temperature treatment and with a swimming challenge in two different populations (Chilko and Nechako), but with some important differences. Microarray analyses revealed that 347 genes were differentially expressed between the cold (12–13° C) and warm (18–19° C) treated fish, with stress response (GO:0006950) and response to fungus (GO:0009620) elevated with warm treatment, while expression for genes involved in oxidative phosphorylation (GO:0006119) and electron transport chain (GO:0022900) elevated for cold‐treated fish. Analysis of single genes with real‐time quantitative PCR revealed that temperature had the most significant effect on mRNA expression levels, with swimming and population having secondary influences. Warm temperature treatment for the Chilko population induced expression of heat shock protein (hsp) 90α, hsp90β and hsp30 as well as interferon‐inducible protein. The Nechako population, which is known to have a narrower thermal tolerance window than the Chilko population, showed even more pronounced stress responses to the warm treatment and there was significant interaction between population and temperature treatment for hsp90β expression. Moreover, significant interactions were noted between temperature treatment and swimming challenge for hsp90α and hsp30, and while swimming challenge alone increased expression of these hsps, the expression levels were significantly elevated in warm‐treated fish swum to exhaustion. In conclusion, it seems that adult O. nerka currently encounter conditions that induce several cellular defence mechanisms during their once‐in‐the‐lifetime migration. As river temperatures continue to increase, it remains to be seen whether or not these cellular defences provide sufficient protection for all O. nerka populations.  相似文献   

11.
12.
13.
Two distinctly different patterns of gut enzyme activity were noted in relation to diapause in pharate first instar larvae of the gypsy moth, Lymantria dispar. Trypsin, chymotrypsin, elastase, aminopeptidase and esterase activities were low at the initiation of diapause and through the period of chilling needed to terminate diapause. At the completion of a 150 day chilling period, activity of each of these enzymes quickly increased when the pharate larvae were transferred to 25°C. By contrast, activity of alkaline phosphatase (ALP) increased rapidly at the onset of diapause, remained elevated throughout diapause, increased again during postdiapause, and then dropped at the time of hatching. In addition, zymogram patterns of ALP activity differed qualitatively in relation to diapause: several bands were detectable during the pre- and postdiapause periods, but only one band, a band of high mobility, was visible during diapause. The ALP isozyme present in diapausing pharate larvae had a pH optimum of 10.6. Diapause in the gypsy moth can be averted by application of an imidazole derivative, KK-42, and pharate larvae treated with KK-42 showed elevated protease and esterase activity, low ALP activity, and expressed ALP isozymes with low mobility. Thus the overall patterns of gut enzyme activity and the ALP zymogram in KK-42 treated individuals were similar to those observed in untreated individuals at the termination of diapause. Our results suggest a unique pattern of enzyme activity in the gut that is regulated by the diapause program. Arch. Insect Biochem. Physiol. 37:197–205, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
15.
16.
Small heat shock proteins (sHSPs) act as molecular chaperones and are widely distributed in all kinds of organisms. Comparative analysis revealed that an orthologous shsp was present during insect evolution. Here, hsp21.8b, one insect orthologous shsp, had been identified in Tribolium castaneum. Quantitative real‐time PCR illustrated that Tchsp21.8b was expressed in all developmental stages, along with the lowest expression at early embryonic stage and relative high expression at other stages especially in late eggs and late pupae. In the adult period, Tchsp21.8b exhibited the highest expression level in central nervous system and followed in elytron, epidermis, ovary and fat body. Moreover, it was upregulated 3.39‐fold in response to enhanced heat stress (45°C) for 4 hr but not to cold stress (4°C) and was upregulated by 1.73‐ to 1.94‐fold under ultraviolet (UV) exposure during 4–6 hr. It was also downregulated by 20.8%–41.8% under starvation in 3 days and had a “down‐up‐down” trend under the pathogen stresses. Larval RNA interference of Tchsp21.8b caused 40.6% insects mortality and reduced the oviposition amount by 66.0% and only 21.0% of the ds‐Tchsp21.8b eggs could hatch into larvae. These results suggested that as an orthologous shsp, Tchsp21.8b not only plays important roles in the growth, development and fecundity of T. castaneum but with the competence to resist the environment stresses, although the response is relatively weak compared to other hsps. Results from this study also uncovered the functions of the orthologous shsp in the development and anti‐stresses ability of T. castanuem. It provided more scientific evidence for revealing the physiological mechanisms of shsps of the insects and enhanced the capabilities to control different pests.  相似文献   

17.
18.
Two highly related 70K heat shock proteins, encoded by the hsc70 and hsp70 genes, are located in the nucleocytoplasmic compartment of mammalian cells. In contrast to rodent cell lines, which express Hsp70 only when stressed, many human cell lines constitutively express Hsp70. The degree to which this reflects constitutive expression of Hsp70 in normal human tissues has not been extensively examined. In this study, we show by immunoblotting that human Hsp70 is constitutively expressed in the ovary, cervix, and endometrium and, by immunohistochemical analysis using Hsp70- and Hsc70-specific antibodies, that Hsp70 and Hsc70 are expressed in distinctive and predominantly overlapping patterns in the cervix and endometrium. In these two tissues, the highest levels of both proteins are seen in differentiated, non-proliferating epithelial cells, which is surprising in light of previous studies suggesting growth stimulation of hsp70 gene expression. These observations sugest the possibility that in certain human tissues, basal expression of the hsp70 and hsc70 genes is coregulated.  相似文献   

19.
We studied various aspects of heat‐shock response with special emphasis on the expression of heat‐shock protein 70 (hsp70) genes at various levels in two congener species of littoral endemic amphipods (Eulimnogammarus cyaneus and E. verrucosus) from Lake Baikal which show striking differences in their vertical distribution and thermal tolerance. Although both the species studied demonstrate high constitutive levels of Hsp70, the thermotolerant E. cyaneus exhibited a 5‐fold higher basal level of Hsp70 proteins under normal physiological conditions (7 °C) and significantly lower induction of Hsp70 after temperature elevation compared with the more thermosensitive E. verrucosus. We isolated the hsp70 genes from both species and analysed their sequences. Two isoforms of the cytosolic Hsp70/Hsc70 proteins were detected in both species under normal physiological conditions and encoded by two distinct hsp/hsc70 family members. While both Hsp70 isoforms were synthesized without heat shock, only one of them was induced by temperature elevation. The observed differences in the Hsp70 expression patterns, including the dynamics of Hsp70 synthesis and threshold of induction, suggest that the increased thermotolerance in E. cyaneus (compared with E. verrucosus) is associated with a complex structural and functional rearrangement of the hsp70 gene family and favoured the involvement of Hsp70 in adaptation to fluctuating thermal conditions. This study provides insights into the molecular mechanisms underlying the thermal adaptation of Baikal amphipods and represents the first report describing the structure and function of the hsp70 genes of endemic Baikal species dwelling in thermally contrasting habitats.  相似文献   

20.
Sex chromosomes have different evolutionary properties compared to autosomes due to their hemizygous nature. In particular, recessive mutations are more readily exposed to selection, which can lead to faster rates of molecular evolution. Here, we report patterns of gene expression and molecular evolution for a group of butterflies. First, we improve the completeness of the Heliconius melpomene reference annotation, a neotropical butterfly with a ZW sex determination system. Then, we analyse RNA from male and female whole abdomens and sequence female ovary and gut tissue to identify sex‐ and tissue‐specific gene expression profiles in H. melpomene. Using these expression profiles, we compare (a) sequence divergence and polymorphism; (b) the strength of positive and negative selection; and (c) rates of adaptive evolution, for Z and autosomal genes between two species of Heliconius butterflies, H. melpomene and H. erato. We show that the rate of adaptive substitutions is higher for Z than autosomal genes, but contrary to expectation, it is also higher for male‐biased than female‐biased genes. Additionally, we find no significant increase in the rate of adaptive evolution or purifying selection on genes expressed in ovary tissue, a heterogametic‐specific tissue. Our results contribute to a growing body of literature from other ZW systems that also provide mixed evidence for a fast‐Z effect where hemizygosity influences the rate of adaptive substitutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号