首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Human replication protein A (RPA), the primary single-stranded DNA-binding protein, was previously found to be inhibited after heat shock by complex formation with nucleolin. Here we show that nucleolin-RPA complex formation is stimulated after genotoxic stresses such as treatment with camptothecin or exposure to ionizing radiation. Complex formation in vitro and in vivo requires a 63-residue glycine-arginine-rich (GAR) domain located at the extreme C terminus of nucleolin, with this domain sufficient to inhibit DNA replication in vitro. Fluorescence resonance energy transfer studies demonstrate that the nucleolin-RPA interaction after stress occurs both in the nucleoplasm and in the nucleolus. Expression of the GAR domain or a nucleolin mutant (TM) with a constitutive interaction with RPA is sufficient to inhibit entry into S phase. Increasing cellular RPA levels by overexpression of the RPA2 subunit minimizes the inhibitory effects of nucleolin GAR or TM expression on chromosomal DNA replication. The arrest is independent of p53 activation by ATM or ATR and does not involve heightened expression of p21. Our data reveal a novel cellular mechanism that represses genomic replication in response to genotoxic stress by inhibition of an essential DNA replication factor.  相似文献   

3.
4.
5.
Recent studies have shown a critical function for the ubiquitin‐proteasome system (UPS) in regulating the signalling network for DNA damage responses and DNA repair. To search for new UPS targets in the DNA damage signalling pathway, we have carried out a non‐biased assay to identify fast‐turnover proteins induced by various types of genotoxic stress. This endeavour led to the identification of Rad17 as a protein exhibiting a distinctive pattern of upregulation followed by subsequent degradation after exposure to UV radiation in human primary cells. Our characterization showed that UV‐induced Rad17 oscillation is mediated by Cdh1/APC, a ubiquitin‐protein ligase. Studies using a degradation‐resistant Rad17 mutant demonstrated that Rad17 stabilization prevents the termination of checkpoint signalling, which in turn attenuates the cellular re‐entry into cell‐cycle progression. The findings provide an insight into how the proteolysis of Rad17 by Cdh1/APC regulates the termination of checkpoint signalling and the recovery from genotoxic stress.  相似文献   

6.
7.
8.
9.
Gag proteins of human immunodeficiency virus type 1 (HIV-1) play a pivotal role in the budding of the virion, in which the zinc finger motifs of the gag proteins recognize the packaging signal of genomic RNA. Nucleolin, an RNA-binding protein, is identified as a cellular protein that binds to murine leukemia virus (MuLV) gag proteins and regulates the viral budding, suggesting that HIV-1 gag proteins, the packaging signal, psi and nucleolin affect the budding of HIV-1. Here we report that nucleolin enhances the release of HIV-1 virions which contain psi. Furthermore, nucleolin and gag proteins form a complex incorporated into virions, and nucleolin promotes the infectivity of HIV-1. Our results suggest that an empty particle which contains neither nucleolin nor the genomic RNA is eliminated during the budding process, and this mechanism is beneficial for escape from the host immune response against HIV-1.  相似文献   

10.
11.
The Src-related tyrosine kinase, Lyn, plays an important role in mediating the cell cycle arrest and cell death response to genotoxic agents such as ionizing radiation. In this report we provide evidence to show that the catalytic function of Lyn is required for ultraviolet radiation (UV)- and methyl methanesulfonate (MMS)- but not for cisplatin (CDDP)- or ionizing radiation (IR)-induced cell death. Consequently, fibroblasts deficient in Lyn function were protected against cell death induction by UV and MMS, but showed normal cell death to IR and CDDP treatment. In Lyn(-/-) cells, UV-induced activation of stress-responsive kinases, Erk1/2 and p38, was normal; however, JNK activation was diminished. In addition, FasL induction by UV was also diminished in these cells. Reintroduction of wild-type Lyn restored JNK activation, FasL induction, and sensitivity to UV and MMS. A role for FasL in the cell death induction by Lyn-JNK signaling is indicated by the inhibition of cell death response by FasL neutralizing antibody. Together, the results support the presence of the Lyn-JNK signaling pathway that mediates the cell death response to UV and MMS treatment through FasL induction.  相似文献   

12.
Perturbation of ribosomal biogenesis has recently emerged as a relevant p53-activating pathway. This pathway can be initiated by depletion of certain ribosomal proteins, which is followed by the binding and inhibition of MDM2 with a different subset of ribosomal proteins that includes L11. Here, we report that depletion of L37 leads to cell cycle arrest in a L11- and p53-dependent manner. DNA damage can initiate ribosomal stress, although little is known about the mechanisms involved. We have found that some genotoxic insults, namely, UV light and cisplatin, lead to proteasomal degradation of L37 in the nucleoplasm and to the ensuing L11-dependent stabilization of p53. Moreover, ectopic L37 overexpression can attenuate the DNA damage response mediated by p53. These results support the concept that DNA damage-induced proteasomal degradation of L37 can constitute a mechanistic link between DNA damage and the ribosomal stress pathway, and a relevant contributing signaling pathway for the activation of p53 in response to DNA damage.  相似文献   

13.
Rho GTPases are involved in the regulation of NF-kappaB by genotoxic stress   总被引:3,自引:0,他引:3  
A common cellular response to genotoxic agents and inflammatory cytokines is the activation of NF-kappaB. Here, we addressed the question of whether small GTPases of the Rho family are involved in the stimulation of NF-kappaB signaling by genotoxic agents or TNFalpha in HeLa cells. Inhibition of isoprenylation of Rho proteins by use of the HMG-CoA reductase inhibitor lovastatin attenuated UV-, doxorubicin-, and TNFalpha-induced degradation of IkappaBalpha as well as drug-stimulated DNA binding activity of NF-kappaB. Furthermore, NF-kappaB-regulated gene expression stimulated by either UV irradiation or treatment with TNFalpha was abrogated by lovastatin pretreatment. This indicates that isoprenylated regulatory proteins participate in the regulation of NF-kappaB by DNA-damaging agents as well as by TNFalpha. Specific blockage of Rho signaling by Clostridium difficile toxin B attenuated UV- and doxorubicin-induced activation of NF-kappaB, but did not affect stimulation of NF-kappaB by TNFalpha. Obviously, signaling to NF-kappaB by genotoxic and nongenotoxic stimuli occurs via different molecular mechanisms, either involving Rho GTPases or not. Based on the data, we suggest Rho GTPases to be essentially required for genotoxic stress-induced signaling to NF-kappaB.  相似文献   

14.
In normal cells the protein kinase PKR effects apoptosis in response to various extra and intracellular cues and can also function to suppress the neoplastic phenotype. Because most neoplastic cells are resistant to certain apoptotic cues, we reasoned that an early molecular event in carcinogenesis or leukemogenesis might be the inactivation of PKR by expression or activation of intracellular PKR inhibitors. Seeking novel PKR-modulating proteins we report here that nucleophosmin (NPM), a protein frequently overexpressed in a variety of human malignancies, binds to PKR, and inhibits its activation. Co-immunoprecipitation and in vitro binding experiments showed that NPM associated with PKR. Kinase assays demonstrated that recombinant NPM inhibited PKR activation in a dose-dependent manner. In addition, purified recombinant NPM was phosphorylated by activated PKR. Most importantly, overexpression of NPM suppressed PKR activity, enhanced protein synthesis, and inhibited apoptosis. Lymphoblasts from patients with Fanconi anemia (FA) expressed low levels of NPM, which correlated with high ground-state activation of PKR and cellular hypersensitivity to apoptotic cues, but enforced expression of NPM in these mutant cells reduced aberrant apoptotic responses. Inhibition of PKR by NPM may be one mechanism by which neoplastic clones evolve in sporadic malignancies and in neoplastic cells arising in the context of the cancer predisposition syndrome, Fanconi anemia.  相似文献   

15.
Checkpoints, which are integral to the cellular response to DNA damage, coordinate transient cell cycle arrest and the induced expression of DNA repair genes after genotoxic stress. DNA repair ensures cellular survival and genomic stability, utilizing a multipathway network. Here we report evidence that the two systems, DNA damage checkpoint control and DNA repair, are directly connected by demonstrating that the Rad55 double-strand break repair protein of the recombinational repair pathway is a terminal substrate of DNA damage and replication block checkpoints. Rad55p was specifically phosphorylated in response to DNA damage induced by the alkylating agent methyl methanesulfonate, dependent on an active DNA damage checkpoint. Rad55p modification was also observed after gamma ray and UV radiation. The rapid time course of phosphorylation and the recombination defects identified in checkpoint-deficient cells are consistent with a role of the DNA damage checkpoint in activating recombinational repair. Rad55p phosphorylation possibly affects the balance between different competing DNA repair pathways.  相似文献   

16.
Ras-related GTPase Rhob represses NF-kappaB signaling   总被引:2,自引:0,他引:2  
  相似文献   

17.
The p53-mediated pathway cell cycle arrest and apoptosis is central to cancer and an important point of focus for therapeutics development. The p14ARF ("ARF") tumor suppressor induces the p53 pathway in response to oncogene activation or DNA damage. However, ARF is predominantly nucleolar in localization and engages in several interactions with nucleolar proteins, whereas p53 is nucleoplasmic. This raises the question as to how ARF initiates its involvement in the p53 pathway. We have found that UV irradiation of cells disrupts the interaction of ARF with two of its nucleolar binding partners, B23(NPM, nucleophosmin, NO38, numatrin) and topoisomerase I, and promotes an immediate and transient subnuclear redistribution of ARF to the nucleoplasm, where it can engage the p53 pathway (Lee et al, Cancer Research 65:9834-42; 2005). The results support a model in which the nucleolus serves as a p53 upstream sensor of cellular stress, and add to a growing body of evidence that nucleolar sequestration of ARF prevents activation of p53. The results also have therapeutic implications for therapies based on exploiting p53 and other cellular stress response pathways to suppress cancer.  相似文献   

18.
19.
Gadd45a, Gadd45b, and Gadd45g (Gadd45/MyD118/CR6) are genes that are rapidly induced by genotoxic stress and have been implicated in genotoxic stress-induced responses, notably in apoptosis. Recently, using myeloid-enriched bone marrow (BM) cells obtained from wild-type (WT), Gadd45a-deficient, and Gadd45b-deficient mice, we have shown that in hematopoietic cells Gadd45a and Gadd45b play a survival function to protect hematopoietic cells from DNA-damaging agents, including ultra violet (UV)-induced apoptosis. The present study was undertaken to decipher the molecular paths that mediate the survival functions of Gadd45a and Gadd45b against genotoxic stress induced by UV radiation. It is shown that in hematopoietic cells exposed to UV radiation Gaddd45a and Gadd45b cooperate to promote cell survival via two distinct signaling pathways involving activation of the GADD45a-p38-NF-kappaB-mediated survival pathway and GADD45b-mediated inhibition of the stress response MKK4-JNK pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号