首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A lipase-negative deletion mutant of Pseudomonas aeruginosa PAO1 still showed extracellular lipolytic activity toward short-chain p-nitrophenylesters. By screening a genomic DNA library of P. aeruginosa PAO1, an esterase gene, estA, was identified, cloned, and sequenced, revealing an open reading frame of 1,941 bp. The product of estA is a 69.5-kDa protein, which is probably processed by removal of an N-terminal signal peptide to yield a 67-kDa mature protein. A molecular mass of 66 kDa was determined for (35)S-labeled EstA by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The amino acid sequence of EstA indicated that the esterase is a member of a novel GDSL family of lipolytic enzymes. The estA gene showed high similarity to an open reading frame of unknown function located in the trpE-trpG region of P. putida and to a gene encoding an outer membrane esterase of Salmonella typhimurium. Amino acid sequence alignments led us to predict that this esterase is an autotransporter protein which possesses a carboxy-terminal beta-barrel domain, allowing the secretion of the amino-terminal passenger domain harboring the catalytic activity. Expression of estA in P. aeruginosa and Escherichia coli and subsequent cell fractionation revealed that the enzyme was associated with the cellular membranes. Trypsin treatment of whole cells released a significant amount of esterase, indicating that the enzyme was located in the outer membrane with the catalytic domain exposed to the surface. To our knowledge, this esterase is unique in that it exemplifies in P. aeruginosa (i) the first enzyme identified in the outer membrane and (ii) the first example of a type IV secretion mechanism.  相似文献   

2.
The functional expression of proteins on the surface of bacteria has proven important for numerous biotechnological applications. In this report, we investigated the N-terminal fusion display of the periplasmic enzyme beta-lactamase (Bla) on the surface of Escherichia coli by using the translocator domain of the Pseudomonas putida outer membrane esterase (EstA), which is a member of the lipolytic autotransporter enzymes. To find out the transport function of a C-terminal domain of EstA, we generated a set of Bla-EstA fusion proteins containing N-terminally truncated derivatives of the EstA C-terminal domain. The surface exposure of the Bla moiety was verified by whole-cell immunoblots, protease accessibility, and fluorescence-activated cell sorting. The investigation of growth kinetics and host cell viability showed that the presence of the EstA translocator domain in the outer membrane neither inhibits cell growth nor affects cell viability. Furthermore, the surface-exposed Bla moiety was shown to be enzymatically active. These results demonstrate for the first time that the translocator domain of a lipolytic autotransporter enzyme is an effective anchoring motif for the functional display of heterologous passenger protein on the surface of E. coli. This investigation also provides a possible topological model of the EstA translocator domain, which might serve as a basis for the construction of fusion proteins containing heterologous passenger domains.  相似文献   

3.
The functional expression of proteins on the surface of bacteria has proven important for numerous biotechnological applications. In this report, we investigated the N-terminal fusion display of the periplasmic enzyme β-lactamase (Bla) on the surface of Escherichia coli by using the translocator domain of the Pseudomonas putida outer membrane esterase (EstA), which is a member of the lipolytic autotransporter enzymes. To find out the transport function of a C-terminal domain of EstA, we generated a set of Bla-EstA fusion proteins containing N-terminally truncated derivatives of the EstA C-terminal domain. The surface exposure of the Bla moiety was verified by whole-cell immunoblots, protease accessibility, and fluorescence-activated cell sorting. The investigation of growth kinetics and host cell viability showed that the presence of the EstA translocator domain in the outer membrane neither inhibits cell growth nor affects cell viability. Furthermore, the surface-exposed Bla moiety was shown to be enzymatically active. These results demonstrate for the first time that the translocator domain of a lipolytic autotransporter enzyme is an effective anchoring motif for the functional display of heterologous passenger protein on the surface of E. coli. This investigation also provides a possible topological model of the EstA translocator domain, which might serve as a basis for the construction of fusion proteins containing heterologous passenger domains.  相似文献   

4.
Pseudomonas aeruginosa PAO1 produces the biodetergent rhamnolipid and secretes it into the extracellular environment. The role of rhamnolipids in the life cycle and pathogenicity of P. aeruginosa has not been completely understood, but they are known to affect outer membrane composition, cell motility, and biofilm formation. This report is focused on the influence of the outer membrane-bound esterase EstA of P. aeruginosa PAO1 on rhamnolipid production. EstA is an autotransporter protein which exposes its catalytically active esterase domain on the cell surface. Here we report that the overexpression of EstA in the wild-type background of P. aeruginosa PAO1 results in an increased production of rhamnolipids whereas an estA deletion mutant produced only marginal amounts of rhamnolipids. Also the known rhamnolipid-dependent cellular motility and biofilm formation were affected. Although only a dependence of swarming motility on rhamnolipids has been known so far, the other kinds of motility displayed by P. aeruginosa PAO1, swimming and twitching, were also affected by an estA mutation. In order to demonstrate that EstA enzyme activity is responsible for these effects, inactive variant EstA* was constructed by replacement of the active serine by alanine. None of the mutant phenotypes could be complemented by expression of EstA*, demonstrating that the phenotypes affected by the estA mutation depend on the enzymatically active protein.  相似文献   

5.
EstA is an outer membrane-anchored esterase from Pseudomonas aeruginosa. An inactive EstA variant was used as an anchoring motif for the Escherichia coli cell-surface display of lipolytic enzymes. Flow cytometry analysis and measurement of lipase activity revealed that Bacillus subtilis lipase LipA, Fusarium solani pisi cutinase and one of the largest lipases presently known, namely Serratia marcescens lipase were all efficiently exported by the EstA autotransporter and also retained their lipolytic activities upon cell surface exposition. EstA provides a useful tool for surface display of lipases including variant libraries generated by directed evolution thereby enabling the identification of novel enzymes with interesting biological and biotechnological ramifications.  相似文献   

6.
Crystal Structure of a Full-Length Autotransporter   总被引:1,自引:0,他引:1  
The autotransporter (AT) secretion mechanism is the most common mechanism for the secretion of virulence factors across the outer membrane (OM) from pathogenic Gram-negative bacteria. In addition, ATs have attracted biotechnological and biomedical interest for protein display on bacterial cell surfaces. Despite their importance, the mechanism by which passenger domains of ATs pass the OM is still unclear. The classical view is that the β-barrel domain provides the conduit through which the unfolded passenger moves, with the energy provided by vectorial folding of the β-strand-rich passenger on the extracellular side of the OM. We present here the first structure of a full-length AT, the esterase EstA from Pseudomonas aeruginosa, at a resolution of 2.5 Å. EstA has a relatively narrow, 12-stranded β-barrel that is covalently attached to the passenger domain via a long, curved helix that occupies the lumen of the β-barrel. The passenger has a structure that is dramatically different from that of other known passengers, with a globular fold that is dominated by α-helices and loops. The arrangement of secondary-structure elements suggests that the passenger can fold sequentially, providing the driving force for passenger translocation. The esterase active-site residues are located at the apical surface of the passenger, at the entrance of a large hydrophobic pocket that contains a bound detergent molecule that likely mimics substrate. The EstA structure provides insight into AT mechanism and will facilitate the design of fusion proteins for cell surface display.  相似文献   

7.
Recently we described identification and characterization of GDSL esterase EstA from psychrotrophic bacterium Pseudoalteromonas sp. 643A. Attempts to obtain heterologous overexpression of this enzyme in Escherichia coli system were not satisfactory. The EstA protein was expressed as inclusion bodies, most of that were inactive after purification step, and the recovery of esterolytic activity was very low after refolding. Based on the sequence analysis we found that the esterase EstA gene is clustered with three genes encoding components of ABC transport system. These genes, designated abc1, abc2, and abc3 encode an ATP-binding protein (ABC1) and two permease proteins (ABC2 and ABC3). In present study, to obtain larger amounts of the active cold-adapted EstA esterase from Pseudoalteromonas sp. 643A, we designed a two-plasmid E. coli expression system where the gene encoding EstA enzyme was cloned into pET30b(+) expression vector and three genes encoding components of ABC transport system were cloned into pACYC-pBAD vector. It was shown that the created expression system was useful for extracellular production of active EstA enzyme which was purified from the culture medium. In the presence of all the three transporter proteins the secretion of EstA was at the highest level. When one or two of these components were missing, EstA secretion was also possible, but not so effective. It indicates that ABC2 and ABC3 proteins of Pseudoalteromonas sp. 643A could be replaced with their homologous proteins of E. coli.  相似文献   

8.
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg(-1) protein for Kre1/EstA/Cwp2p and 72 mU mg(-1) protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg(-1) protein for Kre1/EstA/Cwp2p and 1.27 U mg(-1) protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.  相似文献   

9.
A psychrotrophic bacterium producing a cold-adapted esterase upon growth at low temperatures was isolated from the alimentary tract of Antarctic krill Euphasia superba Dana, and classified as Pseudoalteromonas sp. strain 643A. A genomic DNA library of strain 643A was introduced into Escherichia coli TOP10F', and screening on tributyrin-containing agar plates led to the isolation of esterase gene. The esterase gene (estA, 621 bp) encoded a protein (EstA) of 207 amino acid residues with molecular mass of 23,036 Da. Analysis of the amino acid sequence of EstA suggests that it is a member of the GDSL-lipolytic enzymes family. The purification and characterization of native EstA esterase were performed. The enzyme displayed 20-50% of maximum activity at 0-20 degrees C. The optimal temperature for EstA was 35 degrees C. EstA was stable between pH 9 and 11.5. The enzyme showed activity for esters of short- to medium-chain (C(4) and C(10)) fatty acids, and exhibited no activity for long-chain fatty acid esters like that of palmitate and stearate. EstA was strongly inhibited by phenylmethylsulfonyl fluoride, 2-mercaptoethanol, dithiothreitol and glutathione. Addition of selected divalent ions e.g. Mg(2+), Co(2+) and Cu(2+) led to the reduction of enzymatic activity and the enzyme was slightly activated ( approximately 30%) by Ca(2+) ions.  相似文献   

10.
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg−1 protein for Kre1/EstA/Cwp2p and 72 mU mg−1 protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg−1 protein for Kre1/EstA/Cwp2p and 1.27 U mg−1 protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.  相似文献   

11.
We report a first of its kind functional cell surface display of nucleic acid polymerase and its directed evolution to efficiently incorporate 2′-O-methyl nucleotide triphosphates (2′-OMe-NTPs). In the development of polymerase cell surface display, two autotransporter proteins (Escherichia coli adhesin involved in diffuse adherence and Pseudomonas aeruginosa esterase A [EstA]) were employed to transport and anchor the 68-kDa Klenow fragment (KF) of E. coli DNA polymerase I on the surface of E. coli. The localization and function of the displayed KF were verified by analysis of cell outer membrane fractions, immunostaining, and fluorometric detection of synthesized DNA products. The EstA cell surface display system was applied to evolve KF for the incorporation of 2′-OMe-NTPs and a KF variant with a 50.7-fold increased ability to successively incorporate 2′-OMe-NTPs was discovered. Expanding the scope of cell-surface displayable proteins to the realm of polymerases provides a novel screening tool for tailoring polymerases to diverse application demands in a polymerase chain reaction and sequencing-based biotechnological and medical applications. Especially, cell surface display enables novel polymerase screening strategies in which the heat-lysis step is bypassed and thus allows the screening of mesophilic polymerases with broad application potentials ranging from diagnostics and DNA sequencing to replication of synthetic genetic polymers.  相似文献   

12.
A Novel Intein-Like Autoproteolytic Mechanism in Autotransporter Proteins   总被引:1,自引:0,他引:1  
Many virulence factors secreted by pathogenic Gram-negative bacteria are found to be members of the autotransporter protein family. These proteins share a common mechanism by which they exit the periplasm, involving the formation of a 12-stranded β-barrel domain in the outer membrane. The role of this barrel in the secretion of the N-terminal passenger domain is controversial, and no model currently explains satisfactorily the entire body of experimental data. After secretion, some autotransporter barrels autoproteolytically cleave away the passenger, and one crystal structure is known for a barrel of this type in the postcleavage state. Hbp is an autotransporter of the self-cleaving type, which cuts the polypeptide between two absolutely conserved asparagine residues buried within the barrel lumen. Mutation of the first asparagine residue to isosteric aspartic acid prevents proteolysis. Here we present the crystal structure of a truncated Hbp mutant carrying the C-terminal residues of the passenger domain attached to the barrel. This model mimics the state of the protein immediately prior to separation of the passenger and barrel domains, and shows the role of residues in the so-called “linker” between the passenger and β domains. This high-resolution membrane protein crystal structure also reveals the sites of many water molecules within the barrel. The cleavage mechanism shows similarities to those of inteins and some viral proteins, but with a novel means of promoting nucleophilic attack.  相似文献   

13.
A novel esterase that belongs to the amidase signature family was found in a psychrotrophic bacterium, Acinetobacter sp. strain no. 6, isolated from Siberian soil. The gene coding for the esterase, named EstA8, was cloned, and an open reading frame of 1488 bp corresponding to 496 amino acid residues was identified. EstA8 showed 30% sequence identity with 6-aminohexanoate-cyclic-dimer hydrolases from Pseudomonas sp. strain NK87 and Flavobacterium sp. strain K172, which degrade a by-product of the nylon-6 industry. EstA8 was overproduced in Escherichia coli JM109 under the control of the lac promoter of pUC118 and purified. Consistent with the fact that the source microorganism is cold-adapted, the enzyme was unstable at moderate temperatures. It lost 75% of its original activity by incubation at 40 °C for 30 min. Despite its structural similarity to 6-aminohexanoate-cyclic-dimer hydrolase, 6-aminohexanoate cyclic dimer did not serve as the substrate. EstA8 is a member of the amidase signature family, but its esterase activity toward p-nitrophenyl esters, such as p-nitrophenyl acetate, was much higher than its amidase activity toward p-nitroanilides, such as p-nitroacetanilide.  相似文献   

14.
The immunoglobulin A protease family of secreted proteins are derived from self-translocating polyprotein precursors which contain C-terminal domains promoting the translocation of the N-terminally attached passenger domains across gram-negative bacterial outer membranes. Computer predictions identified the C-terminal domain of the Escherichia coli adhesin involved in diffuse adherence (AIDA-I) as a member of the autotransporter family. A model of the beta-barrel structure, proposed to be responsible for outer membrane translocation, served as a basis for the construction of fusion proteins containing heterologous passengers. Autotransporter-mediated surface display (autodisplay) was investigated for the cholera toxin B subunit and the peptide antigen tag PEYFK. Up to 5% of total cellular protein was detectable in the outer membrane as passenger autotransporter fusion protein synthesized under control of the constitutive P(TK) promoter. Efficient presentation of the passenger domains was demonstrated in the outer membrane protease T-deficient (ompT) strain E. coli UT5600 and the ompT dsbA double mutant JK321. Surface exposure was ascertained by enzyme-linked immunosorbent assay, immunofluorescence microscopy, and immunogold electron microscopy using antisera specific for the passenger domains. In strain UT2300 (ompT+), the passenger domains were released from the cell surface by the OmpT protease at a novel specific cleavage site, R / V. Autodisplay represents a useful tool for future protein translocation studies with interesting biotechnological possibilities.  相似文献   

15.
A new esterase gene from Xanthomonas vesicatoria (formerly X. campestris) DSM 50861 was identified, cloned from a chromosomal gene library and overexpressed in Escherichia coli. The corresponding DNA fragment contains an ORF of 1,818 bp, encoding a hydrolase of the GDSL esterase family. A protein of about 67 kDa, named Xv_EstE, was expressed from this fragment. A N-terminal signal peptide was processed under low-expression conditions, yielding a 63-kDa mature protein. The predicted amino acid sequence showed distinct homology to esterases of the GDSL family. Based on homology, a catalytic triad Gly-Asp-Ser could be defined. Amino acid sequence alignments and computer-assisted structure prediction indicated the presence of a carboxyl-terminal beta-barrel membrane domain which might facilitate binding of Xv_EstE to the outer membrane. This could be verified by differential cell fractionation experiments, in which Xv_EstE was exclusively found in the outer membrane fraction. Xv_EstE showed preferential hydrolytic activity on short chain (up to C(8)) and para-substituted nitrophenylesters as substrates. However, only long-chain 1-hydroxy-pyrene-3,6,8-trisulfonic acid (HPTS)-fatty acid esters were hydrolyzed. Xv_EstE was also found to be active on a series of substrates of industrial interest, such as 1-methylprop-2-ynyl acetate, for which an enantioselectivity up to 93% ee could be recognized.  相似文献   

16.
17.
Gram-negative bacterial autotransporter proteins are a growing group of virulence factors that are characterized by their ability to cross the outer membrane without the help of accessory proteins. A conserved C-terminal beta-domain is critical for targeting of autotransporters to the outer membrane and for translocation of the N-terminal "passenger" domain to the bacterial surface. We have demonstrated previously that the Haemophilus influenzae Hia adhesin belongs to the autotransporter family, with translocator activity residing in the C-terminal 319 residues. To gain further insight into the mechanism of autotransporter protein translocation, we performed a structure-function analysis on Hia. In initial experiments, we generated a series of in-frame deletions and a set of chimeric proteins containing varying regions of the Hia C terminus fused to a heterologous passenger domain and discovered that the final 76 residues of Hia are both necessary and sufficient for translocation. Analysis by flow cytometry revealed that the region N-terminal to this shortened translocator domain is surface localized, further suggesting that this region is not involved in beta-barrel formation or in translocation of the passenger domain. Western analysis demonstrated that the translocation-competent regions of the C terminus migrated at masses consistent with trimers, suggesting that the Hia C terminus oligomerizes. Furthermore, fusion proteins containing a heterologous passenger domain demonstrated that similarly small C-terminal regions of Yersinia sp. YadA and Neisseria meningitidis NhhA are translocation-competent. These data provide experimental support for a unique subclass of autotransporters characterized by a short trimeric translocator domain.  相似文献   

18.
Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle   总被引:1,自引:0,他引:1  
The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.  相似文献   

19.
Bacteriophage phi29 encodes a DNA-dependent DNA polymerase belonging to the eukaryotic-type (family B) subgroup of DNA polymerases that use a protein as primer for initiation of DNA replication. By multiple sequence alignments of DNA polymerases from such a family, we have been able to identify two amino acid residues specifically conserved in the protein-priming subgroup of DNA polymerases, a phenylalanine contained in the (S/T)Lx(2)h motif, and a glutamate belonging to the Exo III motif. Here, we have studied the functional role of these residues in reactions that are specific for DNA polymerases that use a protein-primed DNA replication mechanism, by site-directed mutagenesis in the corresponding amino acid residues, Phe128 and Glu161 of phi29 DNA polymerase. Mutations introduced at residue Phe128 severely impaired the protein-primed replication capacity of the polymerase, being the interaction with the terminal protein (TP) moderately (mutant F128A) or severely (mutant F128Y) diminished. As a consequence, very few initiation products were obtained, and essentially no transition products were detected. Interestingly, phi29 DNA polymerase mutant F128Y showed a decreased binding affinity for short template DNA molecules. These results, together with the high degree of conservation of Phe128 residue among protein-primed DNA polymerases, suggest a functional role for this amino acid residue in making contacts with the TP during the first steps of genome replication and with DNA in the further replication steps.  相似文献   

20.
Lysine 1423 of neurofibromin (neurofibromatosis type I gene product [NF1]) plays a crucial role in the function of NF1. Mutations of this lysine were detected in samples from a neurofibromatosis patient as well as from cancer patients. To further understand the significance of this residue, we have mutated it to all possible amino acids. Functional assays using yeast ira complementation have revealed that lysine is the only amino acid that produced functional NF1. Quantitative analyses of different mutant proteins have suggested that their GTPase-activating protein (GAP) activity is drastically reduced as a result of a decrease in their Ras affinity. Such a requirement for a specific residue is not observed in the case of other conserved residues within the GAP-related domain. We also report that another residue, phenylalanine 1434, plays an important role in NF1 function. This was first indicated by the finding that defective NF1s due to an alteration of lysine 1423 to other amino acids can be rescued by a second site intragenic mutation at residue 1434. The mutation partially restored GAP activity in the lysine mutant. When the mutation phenylalanine 1434 to serine was introduced into a wild-type NF1 protein, the resulting protein acquired the ability to suppress activated phenotypes of RAS2Val-19 cells. This suppression, however, does not involve Ras interaction, since the phenylalanine mutant does not stimulate the intrinsic GTPase activity of RAS2Val-19 protein and does not have an increased affinity for Ras proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号