首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Studies of newly emerged Apis mellifera worker bees have demonstrated that their guts are colonized by a consistent core microbiota within several days of eclosure. We conducted experiments aimed at illuminating the transmission routes and spatiotemporal colonization dynamics of this microbiota. Experimental groups of newly emerged workers were maintained in cup cages and exposed to different potential transmission sources. Colonization patterns were evaluated using quantitative real-time PCR (qPCR) to assess community sizes and using deep sequencing of 16S rRNA gene amplicons to assess community composition. In addition, we monitored the establishment of the ileum and rectum communities within workers sampled over time from natural hive conditions. The study verified that workers initially lack gut bacteria and gain large characteristic communities in the ileum and rectum within 4 to 6 days within hives. Typical communities, resembling those of workers within hives, were established in the presence of nurse workers or nurse worker fecal material, and atypical communities of noncore or highly skewed compositions were established when workers were exposed only to oral trophallaxis or hive components (comb, honey, bee bread). The core species of Gram-negative bacteria, Snodgrassella alvi, Gilliamella apicola, and Frischella perrara, were dependent on the presence of nurses or hindgut material, whereas some Gram-positive species were more often transferred through exposure to hive components. These results indicate aspects of the colony life cycle and behavior that are key to the propagation of the characteristic honey bee gut microbiota.  相似文献   

2.
Surveys of 16S rDNA sequences from the honey bee, Apis mellifera, have revealed the presence of eight distinctive bacterial phylotypes in intestinal tracts of adult worker bees. Because previous studies have been limited to relatively few sequences from samples pooled from multiple hosts, the extent of variation in this microbiota among individuals within and between colonies and locations has been unclear. We surveyed the gut microbiota of 40 individual workers from two sites, Arizona and Maryland USA, sampling four colonies per site. Universal primers were used to amplify regions of 16S ribosomal RNA genes, and amplicons were sequenced using 454 pyrotag methods, enabling analysis of about 330,000 bacterial reads. Over 99% of these sequences belonged to clusters for which the first blastn hits in GenBank were members of the known bee phylotypes. Four phylotypes, one within Gammaproteobacteria (corresponding to "Candidatus Gilliamella apicola") one within Betaproteobacteria ("Candidatus Snodgrassella alvi"), and two within Lactobacillus, were present in every bee, though their frequencies varied. The same typical bacterial phylotypes were present in all colonies and at both sites. Community profiles differed significantly among colonies and between sites, mostly due to the presence in some Arizona colonies of two species of Enterobacteriaceae not retrieved previously from bees. Analysis of Sanger sequences of rRNA of the Snodgrassella and Gilliamella phylotypes revealed that single bees contain numerous distinct strains of each phylotype. Strains showed some differentiation between localities, especially for the Snodgrassella phylotype.  相似文献   

3.
Specialized relationships with bacteria often allow animals to exploit a new diet by providing a novel set of metabolic capabilities. Bees are a monophyletic group of Hymenoptera that transitioned to a completely herbivorous diet from the carnivorous diet of their wasp ancestors. Recent culture-independent studies suggest that a set of distinctive bacterial species inhabits the gut of the honey bee, Apis mellifera. Here we survey the gut microbiotae of diverse bee and wasp species to test whether acquisition of these bacteria was associated with the transition to herbivory in bees generally. We found that most bee species lack phylotypes that are the same or similar to those typical of A. mellifera, rejecting the hypothesis that this dietary transition was symbiont-dependent. The most common bacteria in solitary bee species are a widespread phylotype of Burkholderia and the pervasive insect associate, Wolbachia. In contrast, several social representatives of corbiculate bees do possess distinctive bacterial phylotypes. Samples of A. mellifera harboured the same microbiota as in previous surveys, and closely related bacterial phylotypes were identified in two Asian honey bees (Apis andreniformis and Apis dorsata) and several bumble bee (Bombus) species. Potentially, the sociality of Apis and Bombus species facilitates symbiont transmission and thus is key to the maintenance of a more consistent gut microbiota. Phylogenetic analyses provide a more refined taxonomic placement of the A. mellifera symbionts.  相似文献   

4.
There is growing number of studies demonstrating a close relationship between insect gut microbiota and insecticide resistance. However, the contribution of the honey bee gut microbiota to host detoxification ability has yet to be investigated. In order to address this question, we compared the expression of cytochrome P450s (P450s) genes between gut microbiota deficient (GD) workers and conventional gut community (CV) workers and compared the mortality rates and the pesticide residue levels of GD and CV workers treated with thiacloprid or tau-fluvalinate. Our results showed that gut microbiota promotes the expression of P450 enzymes in the midgut, and the mortality rate and pesticide residue levels of GD workers are significantly higher than those of CV workers. Further comparisons between tetracycline-treated workers and untreated workers demonstrated that antibiotic-induced gut dysbiosis leads to attenuated expression of P450s in the midgut. The co-treatment of antibiotics and pesticides leads to reduced survival rate and a significantly higher amount of pesticide residues in honey bees. Taken together, our results demonstrated that honey bee gut symbiont could contribute to bee health through the modification of the host xenobiotics detoxification pathways and revealed a potential negative impact of antibiotics to honey bee detoxification ability and health.  相似文献   

5.
The gut of insects may harbour one of the largest reservoirs of a yet unexplored microbial diversity. To understand how specific insects select for their own bacterial communities, the structural diversity and variability of bacteria found in the gut of different bee species was analysed. For three successive years, adults and larvae of Apis mellifera ssp. carnica (honey bee), and Bombus terrestris (bumble bee), as well as larvae of Osmia bicornis (red mason bee) were collected at a flowering oilseed rape field. Total DNA was extracted from gut material and the bacterial diversity was analysed, independent of cultivation, by genetic profiling with single-strand conformation polymorphism (SSCP) of polymerase chain reaction (PCR)-amplified partial 16S rRNA genes. The SSCP profiles were specific for all bee species and for larvae and adults. Qualitative and quantitative differences were found in the bacterial community structure of larvae and adults of A. mellifera, but differences in B. terrestris were mainly quantitative. Sequencing of the PCR products revealed a dominance of Alpha-, Beta-, and Gammaproteobacteria, Bacteroidetes, and Firmicutes in all bee species. Single-strand conformation polymorphism profiles suggested a higher abundance and diversity of lactobacilli in adults of A. mellifera than in larvae. Further phylogenetic analyses indicated common bacterial phylotypes for all three bee species, e.g. those related to Simonsiella, Serratia, and Lactobacillus. Clades related to Delftia acidovorans, Pseudomonas aeruginosa or Lactobacillus intestinalis only contained sequences from larvae. Several of the bee-specific clusters also contained identical or highly similar sequences from bacteria detected in other A. mellifera subspecies from South Africa, suggesting the existence of cosmopolitan gut bacteria in bees.  相似文献   

6.
蜜蜂是对农业生产十分重要的授粉昆虫。蜜蜂肠道微生物与蜜蜂健康有密切关系,但肠道微生物也会受多种外界因素的影响。本文就蜜蜂疾病、抗生素等蜂病治疗药物、农药,以及益生菌的应用等对意大利蜜蜂工蜂肠道微生物影响的研究进行了归纳总结,并对蜜蜂与其肠道菌关系研究进行了展望。  相似文献   

7.
8.

Background

In the honeybee Apis mellifera, the bacterial gut community is consistently colonized by eight distinct phylotypes of bacteria. Managed bee colonies are of considerable economic interest and it is therefore important to elucidate the diversity and role of this microbiota in the honeybee. In this study, we have sequenced the genomes of eleven strains of lactobacilli and bifidobacteria isolated from the honey crop of the honeybee A. mellifera.

Results

Single gene phylogenies confirmed that the isolated strains represent the diversity of lactobacilli and bifidobacteria in the gut, as previously identified by 16S rRNA gene sequencing. Core genome phylogenies of the lactobacilli and bifidobacteria further indicated extensive divergence between strains classified as the same phylotype. Phylotype-specific protein families included unique surface proteins. Within phylotypes, we found a remarkably high level of gene content diversity. Carbohydrate metabolism and transport functions contributed up to 45% of the accessory genes, with some genomes having a higher content of genes encoding phosphotransferase systems for the uptake of carbohydrates than any previously sequenced genome. These genes were often located in highly variable genomic segments that also contained genes for enzymes involved in the degradation and modification of sugar residues. Strain-specific gene clusters for the biosynthesis of exopolysaccharides were identified in two phylotypes. The dynamics of these segments contrasted with low recombination frequencies and conserved gene order structures for the core genes. Hits for CRISPR spacers were almost exclusively found within phylotypes, suggesting that the phylotypes are associated with distinct phage populations.

Conclusions

The honeybee gut microbiota has been described as consisting of a modest number of phylotypes; however, the genomes sequenced in the current study demonstrated a very high level of gene content diversity within all three described phylotypes of lactobacilli and bifidobacteria, particularly in terms of metabolic functions and surface structures, where many features were strain-specific. Together, these results indicate niche differentiation within phylotypes, suggesting that the honeybee gut microbiota is more complex than previously thought.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1476-6) contains supplementary material, which is available to authorized users.  相似文献   

9.
Hydrolytic enzymes from hypopharyngeal gland extracts of newly emerged, nurse and foraging workers of two eusocial bees, Scaptotrigona postica, a native Brazilian stingless bee, and the Africanized honey bee (Apis mellifera) in Brazil, were compared. The hypopharyngeal gland is rich in enzymes in both species. Fifteen different enzymes were found in the extracts, with only a few quantitative differences between the species. Some of the enzymes present in the extracts may have intracellular functions, while others seem to be digestive enzymes. Scaptotrigona postica, had lower beta-glucosidase and higher lipase esterase activities than A. mellifera. The differences may be due to different feeding habits and behavioral peculiarities of the two species.  相似文献   

10.
The termite gut is a highly structured microhabitat with physicochemically distinct regions. It is generally separated into the foregut, midgut and hindgut. The distribution of gut microbiota is greatly influenced by varying physicochemical conditions within the gut. Thus, each gut compartment has a unique microbial population structure. In this study, the bacterial communities of foregut, midgut and hindgut of wood-feeding higher termite, Bulbitermes sp. were analyzed in detail via metagenomic sequencing of the 16S rRNA V3-V4 region. While the microbiomes of the foregut and midgut shared a similar taxonomic pattern, the hindgut possessed more diverse bacterial phylotypes. The communities in the foregut and midgut were dominated by members of the group Bacilli and Clostridia (Firmicutes) as well as taxon Actinomycetales (Actinobacteria). The main bacterial lineage found in hindgut was Spirochaetaceae (Spirochaetes). The significant difference among the three guts was the relative abundance of the potential lignin-degrading bacteria, Actinomycetales, in both the foregut and midgut. This suggests that lignin modification was probably held in the anterior part of termite gut. Predictive functional profiles of the metagenomes using 16S rRNA marker gene showed that cell motility, energy metabolism and metabolism of cofactors and vitamins were found predominantly in hindgut microbiota, whereas xenobiotics degradation and metabolism mostly occurred in the foregut segment. This was compatible with our 16S rRNA metagenomic results showing that the lignocellulose degradation process was initiated by lignin disruption, increasing the accessibility of celluloses and hemicelluloses.  相似文献   

11.
Studies of Varroa destructor orientation to honey bees were undertaken to isolate discrete chemical compounds that elicit host-finding activity. Petri dish bioassays were used to study cues that evoked invasion behaviour into simulated brood cells and a Y-tube olfactometer was used to evaluate varroa orientation to olfactory volatiles. In Petri dish bioassays, mites were highly attracted to live L5 worker larvae and to live and freshly freeze-killed nurse bees. Olfactometer bioassays indicated olfactory orientation to the same type of hosts, however mites were not attracted to the odour produced by live pollen foragers. The odour of forager hexane extracts also interfered with the ability of mites to localize and infest a restrained nurse bee host. Varroa mites oriented to the odour produced by newly emerged bees (<16 h old) when choosing against a clean airstream, however in choices between the odours of newly emerged workers and nurses, mites readily oriented to nurses when newly emerged workers were <3 h old. The odour produced by newly emerged workers 18–20 h of age was equally as attractive to mites as that of nurse bees, suggesting a changing profile of volatiles is produced as newly emerged workers age. Through fractionation and isolation of active components of nurse bee-derived solvent washes, two honey bee Nasonov pheromone components, geraniol and nerolic acid, were shown to confuse mite orientation. We suggest that V. destructor may detect relative concentrations of these compounds in order to discriminate between adult bee hosts, and preferentially parasitize nurse bees over older workers in honey bee colonies. The volatile profile of newly emerged worker bees also may serve as an initial stimulus for mites to disperse before being guided by allomonal cues produced by older workers to locate nurses. Fatty acid esters, previously identified as putative kairomones for varroa, proved to be inactive in both types of bioassays.  相似文献   

12.
The bacterial microbiota from the whole gut of soldier and worker castes of the termite Reticulitermes grassei was isolated and studied. In addition, the 16S rDNA bacterial genes from gut DNA were PCR-amplified using Bacteria-selective primers, and the 16S rDNA amplicons subsequently cloned into Escherichia coli. Sequences of the cloned inserts were then used to determine closest relatives by comparison with published sequences and with sequences from our previous work. The clones were found to be affiliated with the phyla Spirochaetes, Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Synergistetes, Verrucomicrobia, and candidate phyla Termite Group 1 (TG1) and Termite Group 2 (TG2). No significant differences were observed with respect to the relative bacterial abundances between soldier and worker phylotypes. The phylotypes obtained in this study were compared with reported sequences from other termites, especially those of phylotypes related to Spirochaetes, Wolbachia (an Alphaproteobacteria), Actinobacteria, and TG1. Many of the clone phylotypes detected in soldiers grouped with those of workers. Moreover, clones CRgS91 (soldiers) and CRgW68 (workers), both affiliated with 'Endomicrobia', were the same phylotype. Soldiers and workers also seemed to have similar relative protist abundances. Heterotrophic, poly-β-hydroxyalkanoate-accumulating bacteria were isolated from the gut of soldiers and shown to be affiliated with Actinobacteria and Gammaproteobacteria. We noted that Wolbachia was detected in soldiers but not in workers. Overall, the maintenance by soldiers and workers of comparable axial and radial redox gradients in the gut is consistent with the similarities in the prokaryotes and protists comprising their microbiota.  相似文献   

13.
在长期的共同进化中,肠道菌群与其宿主形成了紧密的联系,为宿主提供了许多有益的作用。作为一种社会性昆虫,蜜蜂的生活习性为其肠道菌群提供了良好而稳定的传播途径,因此,蜜蜂与其肠道菌群形成了一种紧密的互惠互利共生关系。近年来,随着对蜜蜂肠道菌群了解的不断加深,对蜜蜂肠道菌群功能的研究也不断深入,大量研究表明蜜蜂的肠道菌群在宿主食物的消化代谢、宿主免疫的激活和抵抗致病菌、调节宿主生理等方面都有着重要的作用,同时破坏肠道菌群的稳定对蜜蜂的健康有着明显的负面影响。本文对近年来西方蜜蜂肠道菌群功能研究进行了总结,旨在为进一步深入探索蜜蜂肠道菌群与其宿主的相互作用及在养蜂生产上应用肠道菌群防控疾病提供参考。  相似文献   

14.
The cephalic salivary glands of some species of bees are exclusive and well developed only in Apinae. These glands were studied with light and scanning electron microscopy in workers, queens and males from the honey bee Apis mellifera, and the stingless bee Scaptotrigona postica in different life phases. The results show that the cephalic salivary glands are present in females of both the species, and in males of S. postica. Nevertheless, they are poorly developed in young males of A. mellifera. In both species, gland growth is progressive from the time of emergence to the oldest age but, in A. mellifera males, the gland degenerates with age. Scanning electron microscopy shows that the secretory units of newly emerged workers are collapsed while in older workers they are turgid. Some pits on the surface of the secretory units correspond to open intercellular spaces. The possible functions of these glands in females and males of both species are discussed.  相似文献   

15.
蜜蜂是一种典型的营群居生活的社会性昆虫,相比独居生活的昆虫,其肠道微生物具有独特的区系结构。这种独特肠道微生物与其社会性之间的关系是一个重要的科学问题。现有研究显示,蜜蜂肠道的优势菌包括9大类群。消化道不同区段的优势菌种类和丰度存在差异。主要表现为前肠种类少、丰度低、后肠种类多、数量大,占了全消化道微生物的99%以上。不同社会分工的蜜蜂肠道微生物区系结构存在差异,肠道微生物会通过影响胰岛素信号的传导、保幼激素和卵黄原蛋白的合成以及蜜蜂抗氧化应激的能力等对蜜蜂的级型分化、社会分工、摄食行为及寿命长短产生调节作用。除此之外,蜜蜂肠道微生物还具有激活免疫、抑制病原菌生长、降解食物、促进养分吸收、解毒、发酵蜂蜜和蜂粮等作用。主要针对蜜蜂肠道微生物的基本特征及其与蜜蜂社会性的关系作一简要综述。  相似文献   

16.
【目的】以西方蜜蜂Apis mellifera工蜂肠道为例探究组织透明化技术--丙烯酰胺交联替换脂质透明硬化成像/免疫染色/原位杂交兼容组织水凝胶(clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in situ hybridization-compatible tissue-hYdrogel, CLARITY)在昆虫组织上的应用,确定CLARITY与荧光原位杂交(FISH)相结合在昆虫肠道组织透明化中的适用性。【方法】依照CLARITY技术操作程序,用水凝胶固定西方蜜蜂肠道,并以被动方式透明化,再用靶向东方蜜蜂微孢子虫Nosema ceranae 16S rRNA带异硫氰酸荧光素(fluorescein isothiocyanate, FITC)标记和靶向真核细胞18S rRNA带Texas RED标记的寡核苷酸荧光探针进行肠道组织的荧光原位杂交,然后用DAPI(蓝色)进行细胞核复染,通过激光共聚焦显微镜观察透明化的染色组织。【结果】首次成功将西方蜜蜂肠道组织透明化。在激光共聚焦显微镜下,观察到马氏管的原始分布形态,以及东方蜜蜂微孢子虫在中肠末端分布更密集的空间分布特征,并实现了对肠道组织的3D重构。【结论】CLARITY能应用于蜜蜂肠道组织透明化,透明化组织能进行原位杂交和激光共聚焦观察。CLARITY和FISH相结合免除抗体制备和石蜡切片的麻烦,直观展示肠道内部的真实状态,为昆虫生理病理研究提供了一种可靠特异的标记方法。  相似文献   

17.
Next‐generation sequencing (NGS) technologies are getting cheaper and easier and hence becoming readily accessible for many researchers in biological disciplines including ecology. In this issue of Molecular Ecology, Sudakaran et al. (2012) show how the NGS revolution contributes to our better and more comprehensive understanding of ecological interactions between gut symbiotic microbiota and the host organism. Using the European red firebug Pyrrhocoris apterus as a model system, they demonstrated that the gut microbiota consists of a small number of major bacterial phylotypes plus other minor bacterial associates. The major bacteria are localized in a specific anoxic section of the midgut and quantitatively account for most of the gut microbiota irrespective of host's geographic populations. The specific gut microbiota is established through early nymphal development of the host insect. Interestingly, the host feeding on different food, namely linden seeds, sunflower seeds or wasp larvae, scarcely affected the symbiont composition, suggesting homoeostatic control over the major symbiotic microbiota in the anoxic section of the midgut. Some of the minor components of the gut microbiota, which conventional PCR/cloning/sequencing approaches would have failed to detect, were convincingly shown to be food‐derived. These findings rest on the robust basis of high‐throughput sequencing data, and some of them could not be practically obtained by conventional molecular techniques, highlighting the significant impact of NGS approaches on ecological aspects of host–symbiont interactions in a nonmodel organism.  相似文献   

18.
Interactions between pathogens might contribute to honey bee colony losses. Here we investigated if there is an association between the microsporidian Nosema ceranae and the deformed wing virus (DWV) in different body sections of individual honey bee workers (Apis mellifera ligustica) under exclusion of the vector Varroa destructor. Our data provide correlational evidence for antagonistic interactions between the two pathogens in the midgut of the bees.  相似文献   

19.
The honey bee (Apis mellifera) is highly valued as a commercial crop pollinator and a model animal in research. Over the past several years, governments, beekeepers, and the general public in the United States and Europe have become concerned by increased losses of honey bee colonies, calling for more research on how to keep colonies healthy while still employing them extensively in agriculture. The honey bee, like virtually all multicellular organisms, has a mutually beneficial relationship with specific microbes. The microbiota of the gut can contribute essential nutrients and vitamins and prevent colonization by non-indigenous and potentially harmful species. The gut microbiota is also of interest as a resource for paratransgenesis; a Trojan horse strategy based on genetically modified symbiotic microbes that express effector molecules antagonizing development or transmission of pathogens. Paratransgenesis was originally engineered to combat human diseases and agricultural pests that are vectored by insects. We suggest an alternative use, as a method to promote health of honey bees and to expand the molecular toolbox for research on this beneficial social insect. The honey bees' gut microbiota contains lactic acid bacteria including the genus Lactobacillus that has paratransgenic potential. We present a strategy for transforming one Lactobacillus species, L. kunkeei, for use as a vector to promote health of honey bees and functional genetic research.  相似文献   

20.
Insecticidal properties of protease inhibitors have been established in transgenic plants. In the wake of continuous research and rapid development of protease inhibitors it is important to assess possible effects on beneficial insects like the honey bee (Apis mellifera L.). In this study, newly emerged caged bees were fed pollen diets containing three different concentrations (0.1%, 0.5% and 1% w:w) of soybean trypsin inhibitor (SBTI). Hypopharyngeal gland protein content, total midgut proteolytic enzyme activity of these bees, and survival were measured. Bees fed 1% SBTI had significantly reduced hypopharyngeal gland protein content and midgut proteolytic enzyme activity. There were no significant differences between control, 0.1% and 0.5% SBTI treatments. Bees fed a diet containing 1% SBTI had the lowest survival, followed by 0.5% and 0.1%, over a 30-day period. We concluded that nurse bees fed a pollen diet containing at least 1% SBTI would be poor producers of larval food, potentially threatening colony growth and maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号