首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Xylem and phloem are the major conduits for the transport of water and solutes through the plant. Recent work has helped to elucidate the mechanisms that determine the identity and arrangement of these two tissues.  相似文献   

3.
Nicotianamine: mediator of transport of iron and heavy metals in the phloem?   总被引:18,自引:0,他引:18  
Recent work has demonstrated that minerals in plants are circulated between root and shoot. This occurs during the whole life time and renders possible response to changing environmental conditions. This mineral circulation occurs through intensive solute exchange between xylem and phloem in roots, stems, and leaves. The transport form of heavy metals such as iron, manganes, zinc and copper in the phloem, whether ionic or chelated, is unclear in most cases.
The unusual amino acid nicotianamine (NA) is ubiquitous throughout the plant kingdom. It is a chelator of several divalent transition metals. Its physiological role was investigated with the tomato mutant chloronerva, the only known NA-free multicellular plant. The mutant also exhibits disturbances of its iron metabolism and that of other heavy metals. This leads, among others, to a typical intercostal chlorosis and progressive iron accumulation in the leaves. From the heavy metal chelating properties of NA and from the phenotype of the mutant chloronerva it is concluded that NA is needed for normal distribution of heavy metals in young growing tissues fed via the phloem. This function could be fulfilled by mediating phloem loading or unloading of heavy metals as well as by preventing their precipitation in the alkaline phloem sap. An attempt is made to explain the chloronerva phenotype in the light of the phloem transport hypothesis of chelated iron.  相似文献   

4.
How nutritionally imbalanced is phloem sap for aphids?   总被引:8,自引:0,他引:8  
Aphids harbour intracellular symbionts (Buchnera) that provide their host with amino acids present in low amounts in their diet, phloem sap. To find out the extent to which aphids depend on their symbionts for synthesis of individual essential amino acids, we have evaluated how well phloem sap amino acid composition matches the aphids' needs. Amino acid compositions of the ingested phloem sap were compared to amino acids in aphid body proteins and also to available information about optimal diet composition for other plant feeding insects. Phloem sap data from severed stylets of two aphid species, Rhopalosiphum padi (L.) (Homoptera: Aphididae) feeding on wheat, and Uroleucon sonchi (L.) (Homoptera: Aphididae) feeding on Sonchus oleraceus (L.), together with published information on phloem sap compositions from other plant species were used.Phloem sap has in general only around 20% essential amino acids, with a range from 15–48%. Aphid body proteins and optimal diets for two other plant feeding insects have around 50%. The phloem sap of early flowering S. oleraceus ingested by U. sonchi contained 48%, which seems to be exceptional. Aphids feeding on different plants appear to be very differently dependent on their symbionts for their overall essential amino acid synthesis, due to the large variation in proportion of essential amino acids in phloem sap from different plants.The profile of the essential amino acids in phloem sap from different plant species corresponds rather well to profiles of both aphid body proteins and optimal diets determined for plant feeding insects. However, methionine and leucine in phloem sap are in general low in these comparisons, suggesting a higher dependence on the symbiont for synthesis of these amino acids. Concentrations of several essential amino acids in phloem from different plant species seem to vary together, suggesting that levels of symbiont provisioning of different amino acids are adjusted in parallel.  相似文献   

5.
The effects of cold girdling of the transport phloem at the hypocotyl of Ricinus communis on solute and water transport were investigated. Effects on the chemical composition of saps of phloem and xylem as well as of stem tissue were studied by conventional techniques and the water flow in the phloem was investigated by NMR imaging. Cold girdling reduced the concentration of sucrose but not that of inorganic solutes or amino acids in phloem saps. The possibility that cold treatment inhibited the retrieval of sucrose into the phloem, following leaching from the sieve tubes along a chemical gradient is discussed. Leaching of other solutes did not occur, as a result of missing promoting gradients in stem tissue. Following 3 d of cold girdling, sugar concentration increased and starch was synthesized and accumulated in stem tissue above the cold girdling region and along the cold-treated phloem pathway due to leaching of sugars from the phloem. Only in the very first period of cold girdling (<15-30 min) was mass flow inhibited, but recovered in the rest of cold treatment period to values similar to the control period before and the recovery period after the cold treatment. It is concluded that cold treatment affected phloem transport through two independent and reversible processes: (1) a permanent leaching of sucrose from the phloem stem without normal retrieval during cold treatment, and (2) a short-term inhibition of mass flow at the beginning of cold treatment, possibly involving P proteins. Possible further mechanisms for reversible inhibition of water flow are discussed.  相似文献   

6.
Water and solute flows in the coupled system of xylem and phloem were modeled together with predictions for xylem and whole stem diameter changes. With the model we could produce water circulation between xylem and phloem as presented by the Münch hypothesis. Viscosity was modeled as an explicit function of solute concentration and this was found to vary the resistance of the phloem sap flow by many orders of magnitude in the possible physiological range of sap concentrations. Also, the sensitivity of the predicted phloem translocation to changes in the boundary conditions and parameters such as sugar loading, transpiration, and hydraulic conductivity were studied. The system was found to be quite sensitive to the sugar-loading rate, as too high sugar concentration, (approximately 7 MPa) would cause phloem translocation to be irreversibly hindered and soon totally blocked due to accumulation of sugar at the top of the phloem and the consequent rise in the viscosity of the phloem sap. Too low sugar loading rate, on the other hand, would not induce a sufficient axial water pressure gradient. The model also revealed the existence of Münch “counter flow”, i.e., xylem water flow in the absence of transpiration resulting from water circulation between the xylem and phloem. Modeled diameter changes of the stem were found to be compatible with actual stem diameter measurements from earlier studies. The diurnal diameter variation of the whole stem was approximately 0.1 mm of which the xylem constituted approximately one-third.  相似文献   

7.
The putative role of phloem amino acids as negative feedback signals for root NO3- uptake was investigated in Ricinus communis L. The NO3--grown plants were subjected to N-deficiency due either to complete N-deprivation, or to localized N-deprivation on one side of a split-root system. In comparison with controls, complete N-deprivation resulted in a transient increase in 15NO3- influx, and in profound changes in downward phloem transport of amino acids. Total amino acid concentration in the phloem sap decreased by 40%, but responses markedly differed between the individual amino acids. Concentrations of Gln and Ser were rapidly lowered by 50%, while those of Val, Phe, Leu, and Ile displayed a marked increase. Localized N-deprivation on one side of the split root system also resulted in the up-regulation of 15NO3- influx in the roots still supplied with NO3-. However, the amino acid composition of the phloem sap directed to these roots was not modified by the treatment, and remained similar to that in N-sufficient control plants. Only amino acid transport to the N-deprived roots was affected as observed in response to complete N-deprivation. The results from split-root plants indicate that the response of root NO3- influx to N-deficiency is controlled by shoot-borne regulatory signals, and provide a case study where these signals are not related to a qualitative change or a significant decrease in downward phloem transport of amino acids.  相似文献   

8.
Forisomes are ATP independent, mechanically active proteins from the Fabaceae family (also called Leguminosae). These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisomes are SEO (sieve element occlusion) gene family proteins that have recently been shown to be involved in wound sealing mechanism. Recent findings suggest that forisomes could act as an ideal model to study self assembly mechanism for the development of nanotechnological devices like microinstruments, the microfluidic system frequently used in space exploration missions. Technology enabling improvement in micro instruments has been identified as a key technology by NASA in future space exploration missions. Forisomes are designated as biomimetic smart materials which are calcium-energized motor proteins. Since forisomes are biomolecules from plant systems it can be doctored through genetic engineering. In contrast, “smart” materials which are not derived from plants are difficult to modify in their properties. Current levels of understanding about forisomes conformational shifts with respect to calcium ions and pH changes requires supplement of future advances with relation to its 3D structure to understand self assembly processes. In plant systems it forms blood clots in the form of occlusions to prevent nutrient fluid leakage and thus proves to be a unique damage control system of phloem tissue.  相似文献   

9.
10.
1,3-β-Glucan synthase activity has been demonstrated in particulate fractions of bark extracts from Mexican lime. With respect to substrate, the enzyme kinetics did not conform to the Michaelis-Menten equation. The value of the Hill coefficient was 1.2 and S0.5 is 1.1 mM. The enzyme had an optimum pH of 7.5. Maltose, sucrose, and especially cellobiose and glucose, were enzyme activators when tested at physiological concentrations. In the presence of 15 mM MgCl2 the enzymic activity was stimulated at 10 μM UDP-glucose but decreased at 1 mM UDP-glucose, suggesting a minor 1,4-β-glucan synthase activity.  相似文献   

11.
Despite the crucial role of carbon transport in whole plant physiology and its impact on plant–environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem–phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment.  相似文献   

12.
Theory suggests that the level of enrichment of (18)O above source water in plant organic material (Delta) may provide an integrative indicator of control of water loss. However, there are still gaps in our understanding of the processes affecting Delta. One such gap is the observed discrepancy between modeled enrichment of water at the sites of evaporation within the leaf and measured enrichment of the leaf water as a whole (Delta(L)). Farquhar and Lloyd (1993) suggested that this may be caused by a Péclet effect. It is also unclear whether organic material formed in the leaf reflects enrichment of water at the sites of evaporation within the leaf or Delta(L). To investigate this question castor bean (Ricinus communis L.) leaves, still attached to the plant, were sealed into a controlled-environment gas exchange chamber and subjected to a step change in leaf-to-air vapor pressure difference. Sucrose was collected from a cut on the petiole of the leaf in the chamber under equilibrium conditions and every hour for 6 h after the change in leaf-to-air vapor pressure difference. Oxygen isotope composition of sucrose in the phloem sap (Delta(suc)) reflected modeled Delta(L). A model is presented describing Delta(suc) at isotopic steady state, and accounts for 96% of variation in measured Delta(suc). The data strongly support the Péclet effect theory.  相似文献   

13.
14.
Singer SD  Hily JM  Cox KD 《Planta》2011,234(3):623-637
Interest in phloem-specific promoters for the engineering of transgenic plants has been increasing in recent years. In this study we isolated two similar, but distinct, alleles of the Citrus sinensis sucrose synthase-1 promoter (CsSUS1p) and inserted them upstream of the β-glucuronidase (GUS) gene to test their ability to drive expression in the phloem of transgenic Arabidopsis thaliana and Nicotiana tabacum. Although both promoter variants were capable of conferring localized GUS expression in the phloem, the CsSUS1p-2 allele also generated a significant level of expression in non-target tissues. Unexpectedly, GUS expression was also instigated in a minority of CsSUS1p::GUS lines in response to wounding in the leaves of transgenic Arabidopsis. Deletion analysis of the CsSUS1p suggested that a fragment comprising nucleotides −410 to −268 relative to the translational start site contained elements required for phloem-specific expression while nucleotides −268 to −103 contained elements necessary for wound-specific expression. Interestingly, the main difference between the two CsSUS1p alleles was the presence of a 94-bp insertion in allele 2. Fusion of this indel to a minimal promoter and GUS reporter gene indicated that it contained stamen and carpel-specific enhancer elements. This finding of highly specific and separable regulatory units within the CsSUS1p suggests that this promoter may have a potential application in the generation of constructs for the use in the development of transgenic plants resistant to a wide variety of target pests.  相似文献   

15.
Plant viruses use sieve elements in phloem as the route of long-distance movement and systemic infection in plants. Plants, in turn, deploy RNA silencing, R-gene mediated defence and other mechanisms to prevent phloem transport of viruses. Cell-to-cell movement of viruses from an initially infected leaf to stem and other parts of the plant could be another possibility for systemic invasion, but it is considered to be too slow. This idea is supported by observations made on viruses that are deficient in phloem loading. The leaf abscission zone forming at the base of the petiole may constitute a barrier that prevents viral cell-to-cell movement. The abscission zone and protective layer are difficult to localize in the petiole until the leaf reaches an advanced stage of senescence. Viruses tagged with the green fluorescent protein are helpful for localization and study of the developing abscission zone.  相似文献   

16.
Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation‐tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long‐term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X‐ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one‐seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.  相似文献   

17.
18.
Hexoses as phloem transport sugars: the end of a dogma?   总被引:1,自引:0,他引:1  
According to most textbooks, only non-reducing carbohydrate species such as sucrose, sugar alcohols, and raffinose-family sugars function as phloem translocates. Occasional abundance of reducing sugar species (such as hexoses) in sieve-tube sap has been discarded as an experimental artefact. This study, however, discloses a widespread occurrence of hexoses in the sieve-tube sap. Phloem exudation facilitated by EDTA provided evidence that many of the members of two plant families (Ranunculaceae and Papaveraceae) investigated translocate >80% of carbohydrates in the form of hexoses. Representatives of other families also appear to translocate appreciable amounts of hexoses in the sieve tubes. Promoting effects of EDTA, activities of sucrose-degrading enzymes, and sugar uptake by micro-organisms on hexose contents of phloem exudates were checked. The rate of sucrose degradation is far too low to explain the large proportions of hexoses measured in phloem exudates; nor did other factors tested seem to stimulate the occurrence of hexoses. The validity of the approach is further supported by the virtual absence of hexoses in exudates from species that were known as exclusive sucrose transporters. This study urges a rethink of the existing views on carbohydrate transport species in the phloem stream. Hexose translocation is to be regarded as a normal mode of carbohydrate transfer by the phloem equivalent to that of sucrose, raffinose-family sugars, or sugar alcohols.  相似文献   

19.
A time-dependent mathematical expression of the Münch, osmotically driven mass flow hypothesis of phloem transport is presented. The dependent variables include concentration of solutes, pressure, velocity of phloem sap, osmotic flux of water, and concentration dependent unloading of solutes. The model meets conservation requirements during all iterations, and responds realistically to changes in independent variables. Given the same set of independent variables the time-dependent model converges to the same values as the closed-form steady-state model of Goeschl et al. (1976) regardless of the initial conditions.  相似文献   

20.
The Arabidopsis thaliana (L.) Heynh. SUC2 gene encodes a plasma-membrane sucrose-H+ symporter. The DNA sequence of the SUC2 promoter has been determined. Using a translational fusion of this promoter to the N-terminus of -glucuronidase (GUS) and the GUS histochemical assay, the tissue specificity of the SUC2 promoter was studied in Arabidopsis plants transformed with this fusion construct. The SUC2 promoter directed expression of GUS activity with high specificity to the phloem of all green tissues of Arabidopsis such as rosette leaves, stems, and sepals. During leaf development the expression of SUC2-GUS activity was first seen in the tips of young rosette leaves. In older leaves and during their concomitant sink/source transition, expression proceeded from the tips to the bases of the leaves, indicating that expression of the SUC2 sucrose-H+ symporter is tightly coupled to the source-strength of Arabidopsis leaves. Expression of SUC2-GUS activity was also seen, however, in sink tissues such as roots and developing Arabidopsis pods, suggesting that the product of the SUC2 gene might not only be important for phloem loading, but also for phloem unloading. A possible regulatory effect of carbohydrates (glucose and sucrose) on the activity of the SUC2 promoter was studied and excluded, both in excised leaves and young seedlings of transgenic Arabidopsis plants. The overall pattern of SUC2-GUS expression correlated well with that of the Arabidopsis thaliana AHA3 plasma-membrane H+ -ATPase which is also expressed in the phloem and most likely represents the primary pump generating the energy for secondary active transporters such as SUC2.Abbreviations GUS -glucuronidase - MS Murashige & Skocgmedium - X-Gluc 5-bromo-4-chloro-3-indolyl--d-glucuronic acid Accession number for SUC2-promoter sequences: The DNA sequence data reported in this paper will appear in the EMBL, GenBank, and DDBJ nucleotide sequence databases under the accession number X79702 (AtSUC2 promoter sequence)We want to thank Günther Peissig for growing the Arabidopsis thaliana plants. This work was supported by the Deutsche Forschungsgemeinschaft (SFB 43/C5) and a grant to N.S. from the Bundesministerium für Forschung und Technologie.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号