首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbivory has significant impacts on individual plants and plant communities, both at ecological and evolutionary time scales. In this context, this study aims to evaluate herbivore damage and its relationship with leaf chemical and structural traits, nutritional status, and forest structural complexity along a successional gradient. We predicted that trees in early successional stages support conservative traits related to drought tolerance (high specific leaf mass and phenolics), whereas trees in light-limited, late successional stages tend to enhance light acquisition strategies (high nitrogen content). We sampled 261 trees from 26 species in 15 plots (50 × 20 m; five per successional stage). From each tree, twenty leaves were collected for leaf trait measures. Phenolic content increased whereas specific leaf mass and nitrogen content decreased from early to late stages. However, leaf damage did not differ among successional stages. Our results partially corroborate the hypothesis that early successional plants in tropical dry forests exhibit leaf traits involved in the conservative use of water. The unexpected decrease in nitrogen content along the chronosequence is likely related to the fact that thinner leaves with low specific leaf mass could have less nitrogen-containing mesophyll per unit area. Mechanisms affecting herbivory intensity varied across scales: at the species level, leaf damage was negatively correlated with tannin concentration and specific leaf mass; at the plot level, leaf damage was positively affected by forest structural complexity. Herbivory patterns in tropical forests are difficult to detect because abiotic factors and multiple top-down and bottom-up forces directly and indirectly affect herbivores.  相似文献   

2.
Successful growth of a tree is the result of combined effects of biotic and abiotic factors. It is important to understand how biotic and abiotic factors affect changes in forest structure and dynamics under environmental fluctuations. In this study, we explored the effects of initial size [diameter at breast height (DBH)], neighborhood competition, and site condition on tree growth, based on a 3‐year monitoring of tree growth rate in a permanent plot (120 × 80 m) of montane Fagus engleriana–Cyclobalanopsis multiervis mixed forest on Mt. Shennongjia, China. We measured DBH increments every 6 months from October 2011 to October 2014 by field‐made dendrometers and calculated the mean annual growth rate over the 3 years for each individual tree. We also measured and calculated twelve soil properties and five topographic variables for 384 grids of 5 × 5 m. We defined two distance‐dependent neighborhood competition indices with and without considerations of phylogenetic relatedness between trees and tested for significant differences in growth rates among functional groups. On average, trees in this mixed montane forest grew 0.07 cm year?1 in DBH. Deciduous, canopy, and early‐successional species grew faster than evergreen, small‐statured, and late‐successional species, respectively. Growth rates increased with initial DBH, but were not significantly related to neighborhood competition and site condition for overall trees. Phylogenetic relatedness between trees did not influence the neighborhood competition. Different factors were found to influence tree growth rates of different functional groups: Initial DBH was the dominant factor for all tree groups; neighborhood competition within 5 m radius decreased growth rates of evergreen trees; and site condition tended to be more related to growth rates of fast‐growing trees (deciduous, canopy, pioneer, and early‐successional species) than the slow‐growing trees (evergreen, understory, and late‐successional species).  相似文献   

3.
Community assembly is an integral process in all ecosystems, producing patterns of species distributions, biodiversity, and ecosystem functioning. Environmental filters and colonization history govern the assembly process, but their relative importance varies depending on the study system. Dead wood decomposition is a slow process, allowing decomposer communities to develop within a slowly changing substrate for decades. Despite this, there are few long‐term studies of priority effects from colonization history in this ecosystem. In this study, we investigate the importance of insects in early succession of dead wood on the fungal community present one decade later. Sixty aspen trees were killed in two study landscapes, each tree producing one aspen high stump and log. Insects were sampled with flight interception traps during the first 4 years after tree death, and fungal fruiting bodies were registered in year twelve. We found positive priority effects of two fungivorous beetles, the sap beetle Glischrochilus quadripunctatus and the round fungus beetle Agathidium nigripenne, on the Artist''s bracket (Ganoderma applanatum) and a positive priority effect of wood‐boring beetles on the ascomycete Yellow fairy cup (Bisporella citrina). The Aspen bracket (Phellinus tremulae) did not respond to insects in early succession of the dead wood. Our results suggest that early successional insects can have significant, long‐lasting effects on the late successional fungal community in dead wood. Also, the effect can be specific, with one fungus species depending on one or a few fungivorous beetle species. This has implications for decomposition and biodiversity in dead wood, as loss of early colonizing beetles may also affect the successional pathways they seem to initiate.  相似文献   

4.
Deforested tropical areas are often colonized by competitive ferns that inhibit forest succession. In thickets of such a fern (Dicranopteris pectinata), we investigated methods for initiating restoration of tropical montane forest in the Ébano Verde Scientific Reserve (Dominican Republic). In clearings in the thickets, growth and survivorship of 18 common early‐ and late‐successional woody species were tested, with and without fertilizer (poultry litter). Three years after sowing, life history did not affect survivorship, but early‐successional species grew faster than late‐successional species (height increase 153 ± 103 cm vs. 81 ± 67 cm [mean ± 1 SD]). Inga fagifolia, a late‐successional species, and Alchornea latifolia, an early‐successional species, had 160 ± 62 cm mean height increase, and low mortality rates (<4%). In contrast, four late‐successional species (Cyrilla racemiflora, Myrcia deflexa, Prestoea acuminata var. montana, and Mora abbottii), and one early‐successional species, Ocotea leucoxylon, had approximately 39% mortality and height increase of 43 ± 48 cm. Brunellia comocladifolia had high mortality (55%), but averaged 340 ± 201 cm height increase, and was the only species whose growth was improved by fertilization. Fertilization improved survivorship of only one species, Piper aduncum. After three years, soils in the clearings had low pH and available P and did not differ significantly from soils in thickets. However, based on the growth rates and survivorship of sown woody plants, these soils did not appear to be a barrier for restoration. Although a complementary study demonstrated substantial natural regeneration, active planting should be used to increase plant density and diversity, especially where natural regeneration is poor.  相似文献   

5.
To simulate the effects of forest tent caterpillar (FTC) defoliation on trembling aspen growth and mortality, an artificial defoliation experiment was performed over three years in young aspen stands of northwestern Quebec. Defoliation plots of 15 × 15 m were established on three sites, together with associated control stands of pure trembling aspen. In 2007, root collar diameters were measured and positions of all trees were mapped prior defoliation. Severe FTC defoliation was simulated for three successive years (2007–2009) by manually removing all leaves from all but 7–10% of the trees present in the defoliation plots. Yearly surveys of growth and mortality were conducted until 2010 to evaluate defoliation effects on defoliated as well as surrounding undefoliated trees. In absence of other factors, growth and mortality of trembling aspen decreased and increased, respectively, after defoliation. Our study further revealed that small diameter trees died after one year of artificial defoliation, while larger-diameter trees died after repeated defoliations. Distributions of tree mortality tended to be aggregated at small scales (<5 m), corroborating gap patterns observed in mature stands following FTC outbreaks. This experiment revealed that trembling aspen mortality can be directly attributed solely to defoliation. Repeated defoliations during FTC outbreaks have the potential to profoundly modify stand productivity and structure by reducing tree growth and increasing tree mortality in the absence of predisposing factors.  相似文献   

6.
Drought-related tree mortality has become a widespread phenomenon. Scots pine (Pinus sylvestris L.) is a boreal species with high ecological amplitude that reaches its southwestern limit in the Iberian Peninsula. Thus, Iberian Scots pine populations are particularly good models to study the effects of the increase in aridity predicted by climate change models. A total of 78 living and 39 dead Scots pines trees were sampled at two sites located in the NE of the Iberian Peninsula, where recent mortality events have been recorded. Annual tree rings were used to (1) date dead trees; (2) investigate if there was an association between the occurrence of tree death and severe drought periods characterized by exceptionally low ratios of summer precipitation to potential evapotranspiration (P/PET); and (3) to compare the growth patterns of trees that died with those of surviving ones. Mixed models were used to describe the relationships between tree growth (in terms of basal area increment, BAI, and the percentage of latewood, LW%) and climate variables. Our results showed a direct association between Scots pine mortality and severe drought periods characterized by low summer water availability. At the two sites, the growth patterns of dead trees were clearly distinguishable from those of the trees that survived. In particular, the BAI of dead trees was more sensitive to climate dryness (low P/PETsummer, high temperatures) and started to decline below the values of surviving neighbors 15–40 years before the time of death, implying a slow process of growth decline preceding mortality.  相似文献   

7.
Standing dead biomass retention is considered one of the most relevant fuel structural traits to affect plant flammability. However, very little is known about the biological significance of this trait and its distribution between different functional groups. Our aim was to analyse how the proportion of dead biomass produced in Mediterranean species is related to the successional niche of species (early‐, mid‐ and late‐successional stages) and the regeneration strategy of species (seeders and resprouters). We evaluated biomass distribution by size classes and standing dead biomass retention in nine dominant species from the Mediterranean Basin in different development stages (5, 9, 14 and 26 years since the last fire). The results revealed significant differences in the standing dead biomass retention of species that presented a distinct successional niche or regeneration strategy. These differences were restricted to the oldest ages studied (>9 years). Tree and small tree resprouters, typical in late‐successional stages, presented slight variations with age and a less marked trend to retain dead biomass, while seeder shrubs and dwarf shrubs, characteristic of early‐successional stages, showed high dead biomass loads. Our results suggest that the species that tend to retain more dead branches are colonising species that may promote fire in early‐successional stages.  相似文献   

8.
Forest structural heterogeneity due to species composition, spatial relationships and tree size are widely studied patterns in forest systems, but their impacts on tree function are not as well documented. The objective of this study was to examine how stand composition, tree proximity relationships and tree size influence the leaf functional traits of aspen, an early successional species, and subalpine fir, a climax species. We measured foliar nutrients, nonstructural carbohydrates (aspen only), defense chemistry and xylem water potential of aspen and subalpine fir trees in three size classes growing in close proximity or independently from other trees under three stand conditions: aspen dominant, aspen-conifer mixed, and conifer dominant stands. Close proximity of subalpine fir to aspen reduced aspen’s storage of starch in foliar tissue by 17% suggesting that competition between these species may have small effects on carbon metabolism in aspen leaves. Simple sugar (glucose + sucrose) concentrations in aspen leaves were slightly higher in larger aspen trees than smaller trees. However, no differences were found in stem water potential, foliar concentrations of nitrogen, phosphorus, or secondary defense chemicals of aspen or subalpine fir across the gradients of stand composition, tree proximity or tree size. These results suggest that mechanisms of coexistence allow both aspen and subalpine fir to maintain leaf function across a wide range of stand structural characteristics. For aspen, resource sharing through its clonal root system and high resource storage capacity may partially contribute to its functional stability in mixed aspen-conifer stands.  相似文献   

9.
Lawson  Dan  Inouye  Richard S.  Huntly  Nancy  Carson  Walter P. 《Plant Ecology》1999,145(2):267-279
We surveyed vegetation along forest margins in a 65-year chronosequence of old-fields at the Cedar Creek Natural History Area in east-central Minnesota, USA, to identify successional patterns of woody plants and to determine if these were correlated with soil nitrogen. We predicted that shrub and tree abundance, size, and distance of occurrence from the forest edge would be correlated with field age or soil nitrogen. Instead we did not find successional trends in the abundance or composition of woody species. Even in the oldest field the abundance of trees and shrubs was low and concentrated in areas close to the forest. Though trees were larger and present further from the forest edges in older fields, average tree height was less than 126 cm in all fields.Since we did not find successional trends we looked at various local factors (local seed sources, deer browsing, and forest edge aspect) and their relation to recruitment, mortality, or growth to explain variation among fields in abundance of trees or shrubs. The three most common tree species (Quercus rubra, Q. macrocarpa,and Populus tremuloides) all had a higher relative abundance of seedlings, and two (Q. rubra and Q. macrocarpa) had a higher relative abundance of large trees adjacent to forests with a high abundance of conspecific adults. Most trees taller than 20 cm were browsed by deer and were shorter in 1995 than they were in 1993. Mortality was higher for trees less than 30 cm indicating that mortality was size-dependent. Forest edge aspect did not significantly influence the abundance or demography of any species. Our results suggest that the patterns of seedling recruitment were largely determined by the proximity of seed sources and that these patterns may persist so that tree communities in old-fields resemble adjacent forests. Deer may be a significant factor in the suppression of tree populations in old-fields through repeated browsing which reduces tree growth and elevates tree mortality by prolonging the period of time trees remain susceptible to size-dependent mortality.  相似文献   

10.
Fungi play a crucial role in dead wood decay, being the major decomposers of wood and affecting microbiota associated with dead wood. We sampled dead wood from five deciduous tree species over more than forty years of decay in a natural European floodplain forest with high tree species diversity. While the assembly of dead wood fungal communities shows a high level of stochasticity, it also indicates clear successional patterns, with fungal taxa either specific for early or late stages of wood decay. No clear patterns of fungal biomass content over time were observed. Out of 220 major fungal operational taxonomic units, less than 8% were associated with a single tree species, most of them with Quercus robur. Tree species and wood chemistry, particularly pH, were the most important drivers of fungal community composition. This study highlights the importance of dead wood and tree species diversity for preserving the biodiversity of fungi.  相似文献   

11.
12.
Despite research demonstrating that water and nutrient availability exert strong effects on multiple ecosystem processes in tropical forests, little is known about the effect of these factors on the demography and population dynamics of tropical trees. Over the course of 5 years, we monitored two common Amazonian secondary forest species—Lacistema pubescens and Myrcia sylvatica—in dry-season irrigation, litter-removal and control plots. We then evaluated the effects of altered water and nutrient availability on population demography and dynamics using matrix models and life table response experiments. Our results show that despite prolonged experimental manipulation of water and nutrient availability, there were nearly no consistent and unidirectional treatment effects on the demography of either species. The patterns and significance of observed treatment effects were largely dependent on cross-year variability not related to rainfall patterns, and disappeared once we pooled data across years. Furthermore, most of these transient treatment effects had little effect on population growth rates. Our results suggest that despite major experimental manipulations of water and nutrient availability—factors considered critical to the ecology of tropical pioneer tree species—autogenic light limitation appears to be the primary regulator of tree demography at early/mid successional stages. Indeed, the effects of light availability may completely override those of other factors thought to influence the successional development of Amazonian secondary forests.  相似文献   

13.
The landscapes colonized by invasive earthworms in the eastern U.S. are often patchworks of forest stands in various stages of successional development. We established six field sites in tulip poplar dominated forests in the Smithsonian Environmental Research Center in Edgewater, MD, that span mid (50–70 years-three plots) and late (120–150 years-three plots) successional stages where younger sites had greater earthworm density and biomass than older sites and were dominated by non-native lumbricid species. In particular Lumbricus rubellus, a litter-feeding species, was abundant in mid successional forests. Here, we separated particulate organic matter (POM) from the bulk soil by a combination of size and density fractionation and found that patterns in soil POM chemistry were similar to those found previously during litter decay: in younger forests with high abundance of earthworms, organic carbon normalized cutin- and suberin-derived substituted fatty acid (SFA) concentration was lower and lignin-derived phenols greater than in older forests where earthworms were less abundant. The chemistry of the dominant litter from mid versus late successional tree species did not fully explain the differences in POM chemistry between age classes. Instead, the differences in leaf body versus petiole and leaf versus root chemistry were the dominant drivers of POM chemistry in mid versus late successional stands, although aspects of stand age and tree species also impacted POM chemistry. Our results indicate that preferential ingestion of leaf body tissue by earthworms and the subsequent shifts in sources of plant biopolymers in soil influenced POM chemistry in mid successional forests. These results indicate that invasive earthworm activity in North American forests contributes to a shift in the aromatic and aliphatic composition of POM and thus potentially influences carbon stabilization in soil.  相似文献   

14.
We examined relationships between mortality rate, relative growth rate (RGR), and spatial patterns of three growth stages (small, medium, and large trees) for 11 dipterocarp species in the Pasoh 50-ha plot. Mortality rates for these species tended to be positively correlated with RGRs, although the correlation was significant only at the small-tree stage. Seven species with high growth and mortality rates exhibited peaks in spatial aggregation at small distances (<100 m) in small trees, but this aggregation disappeared in medium and large trees. In contrast, the other four species with low growth and mortality rates aggregated at large distances (>200 m) throughout the three growth stages in all but one species. Negative associations between different growth stages were observed only for the high-mortality species, suggesting density-dependent mortality. The high-mortality species showed habitat associations with topography, soil type, and the forest regeneration phase after gap formation, whereas the three low-mortality species only had associations with the forest regeneration phase. A randomization procedure revealed that these habitat associations explained little of their spatial aggregation. Our results suggest that the growth strategy has a large effect on the structuring of the spatial distribution of tree species through mortality processes.  相似文献   

15.
To maintain biodiversity in managed, boreal forest in Scandinavia, aspen trees (Populus tremula) are often retained at clearcutting. In this study, the habitat availability for beetles associated with aspen coarse woody debris (CWD) was predicted for forests and clearcuts with a model of CWD dynamics. Habitat requirements of eight beetle species (Agathidium bicolor, Cerylon ferrugineum, Cyphaea curtula, Endomychus coccineus, Homalota plana, Mycetophagus fulvicollis, Ptilinus fuscus and Xylotrechus rusticus) were obtained from their occurrence patterns in relation to characteristics of CWD objects in forest and on clearcuts in a study landscape in central Sweden. Three species were more frequent in forest and three at clearcuts. Five species increased with increasing girth of the CWD. Three were more frequent on standing CWD, and two on lying CWD. From the same study area, we also obtained field data on the recruitment of CWD (i.e., tree mortality) and amounts of different types of CWD. Annual tree mortality of aspen was higher for recent clearcuts (6.3%) compared with older clearcuts (1.1%). For all species, the habitat availability was higher on clearcuts, because enhanced tree mortality increased the amount of recently dead CWD. As a conclusion, green-tree retention of aspen is a conservation effort that is beneficial for species associated with aspen CWD.  相似文献   

16.
Question: How does typhoon‐related disturbance (more specifically, disturbance in the understorey due to tree‐fall and branch‐fall) affect different species mortality rates in a vertically well‐structured forest community? Location: Cool‐temperate, old‐growth forest in the Daisen Forest Reserve, Japan. Methods: We investigated the canopy dynamics and mortality rate trends of trees ≥5 cm diameter at breast height in a 4‐ha study plot, and analysed the effects of tree diameter and spatial structure on the mortality risks for major tree species in the understorey. Results: Significant differences were found in the mortality rates and proportions of injured dead stems between census periods, which were more pronounced in the understorey than in the canopy. Acer micranthum, which showed increased mortality during typhoon disturbance periods, had a clumped distribution. In contrast, Acer japonicum and Viburnum furcatum, which showed similar mortality rates between census periods, had a loosely clumped spatial distribution and a negative association with canopy trees, respectively. In the understorey stems of Acanthopanax sciadophylloides and Fagus crenata, whose spatial distribution patterns depended on canopy gaps, significant increases in mortality rates were observed only during severe typhoon‐related disturbance periods. Conclusions: The sensitivity of trees to typhoon‐related canopy disturbance is more pronounced in the lower layers of vertically structured forest communities. Differences in mortality patterns generated through the combined effects of spatial variation in disturbance regime and species‐specific spatial distribution patterns (spatial aggregation, association with canopy trees, and canopy gap dependency) contribute to the co‐existence of understorey species in forest communities that are subject to typhoon‐related disturbance.  相似文献   

17.
Question: What are tree mortality rates and how and why do they vary in late‐successional Picea abies‐dominated forests? Do observed tree mortality patterns allow comparative assessment of models of long‐term stand development? Location: Northern boreal Fennoscandia. Methods: We measured stand structure in 10 stands in two different areas. We determined age distributions and constructed a chronology of tree deaths by cross‐dating the years of death of randomly sampled dead trees. Results: The stands in the two areas had contrasting tree age distributions, despite similar live tree structure. In one area, stands were relatively even‐aged and originated following a stand‐replacing fire 317 years earlier. The stands in the second area had an uneven age structure and virtually no signs of past fires, suggesting a very long period since the last major disturbance. The younger stands were characterized by a high mortality rate and inter‐annual variation, which we attributed to senescence of the relatively even‐aged stands approaching the maximum age of P. abies. In contrast, the tree mortality rates in the older stands were low and relatively stable. Conclusions: Patterns of tree mortality were, to a large extent, dependent on the time since the last stand‐replacing disturbance, suggesting that northern boreal P. abies stands eventually reach a shifting mosaic state maintained through small‐scale dynamics, but the time needed to reach this state appears to be lengthy; even 300 years after a forest fire stands showed changes in patterns of tree mortality that were related to the developmental stage of the stands.  相似文献   

18.
Standing dead trees (or snags) are an important component of forest ecosystems, especially for tree cavity‐nesting vertebrate species, but their prevalence in South African forests remains under studied. Consequently, we investigated forest structure, and the presence and abundance of snags in six southern mistbelt forests in the Eastern Cape, South Africa. These forests have had varying levels of timber extraction over the past 150 years or more. We found snags were relatively rare in all six forests (<4.3% of trees sampled). Mean diameter at breast height (dbh) of snags ranged from 52 to 82 cm across the forests, with smaller snags in Kologha Forest and larger snags in Tyume Forest. A bimodal distribution of snag successional stages was found, with frequencies peaking at early and late stages, and few in the intermediate stages. Tree species diversity in the forests was relatively low (twelve–nineteen species across forests; only 28 species in total). There was no significant difference in dbh of trees between forests, with most occurring in the 20–29‐cm dbh size class. Future studies are required to identify trees that most likely support suitable cavities for tree cavity‐nesting bird species, and to determine cavity‐nester assemblage requirements in southern African forests.  相似文献   

19.
《Global Change Biology》2017,23(4):1675-1690
Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan‐continental tree‐ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1–100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long‐lasting declines were found for gymnosperms, shade‐ and drought‐tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark‐beetles) typically showed relatively small and short‐term growth reductions. Our analysis did not highlight any universal trade‐off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark‐beetle attack, while long‐term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth‐based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark‐beetle outbreaks.  相似文献   

20.
Open-canopy moss-rich woodlands dominated by Picea abies and Betula pubescens in northern Finland may undergo cyclic development with reciprocal replacement of the tree species due to the positive feedbacks on soil conditions. Although relations to the abiotic environment are well understood, intra- and interspecific interactions during development of sparse boreal forests have received less attention. We studied tree regeneration, growth and survival with respect to size and density of neighboring trees in four stands representing roughly four stages of the Picea–Betula forest cycle. We conducted spatial analysis (Ripley’s K-function) of mapped locations of live and dead stems to reconstruct the distribution of stems prior to mortality, and to infer possible causes of tree population decline. The prevalence of standing dead stems enabled us to test if mortality was associated with density and size of neighboring trees. Logistic regression was used to test for relationships between tree survival and local crowding indices. We also examined spatial autocorrelations of individual size characteristics to determine the mode and spatial extent of tree interactions. Picea abies had reduced recruitment in open areas occupied by mosses and dwarf-shrubs, and preferentially regenerated near B. pubescens, whereas B. pubescens formed small clumps (and occasionally these consisted entirely of stems from a single tree) that showed local repulsion from large P. abies trees. Size of neighboring trees was the primary determinant of individual growth and survival, whereas neighborhood density per se had only a weak effect. Picea abies had negatively correlated sizes among close neighbors (0–4 m radius) indicating that dominant trees suppress their smaller neighbors. Negative autocorrelations prevailed at the transition stages where the patches of smaller trees were concentrated around evenly spaced large trees. Tree sizes became spatially independent at the mature phase. We hypothesize that both low light and soil nutrient availability causes the P. abies population decline. Dominant trees in this high latitude forest have large light depletion zones and shallow root system to promote strong above- and below-ground competition with younger trees. Higher mortality rates within canopy patches were not compensated for by recruitment in gaps, causing P. abies population to decline steadily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号