首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Alcamí  G L Smith 《Cell》1992,71(1):153-167
Vaccinia virus gene B15R is shown to encode an abundant, secretory glycoprotein that functions as a soluble interleukin-1 (IL-1) receptor. This IL-1 receptor has novel specificity since, in contrast with cellular counterparts, it binds only IL-1 beta and not IL-1 alpha or the natural competitor IL-1 receptor antagonist. The vaccinia IL-1 beta receptor is secreted when expressed in a baculovirus system and competitively inhibited binding of IL-1 beta to the natural receptor on T cells. Deletion of B15R from vaccinia virus accelerated the appearance of symptoms of illness and mortality in intranasally infected mice, suggesting that the blockade of IL-1 beta by vaccinia virus can diminish the systemic acute phase response to infection and modulate the severity of the disease. The IL-1 beta binding activity is present in other orthopoxviruses.  相似文献   

2.
Interleukin-15 (IL-15) is crucial for the generation of multiple lymphocyte subsets (natural killer (NK), NK-T cells, and memory CD8 T cells), and transpresentation of IL-15 by monocytes and dendritic cells has been suggested to be the dominant activating process of these lymphocytes. We have previously shown that a natural soluble form of IL-15R alpha chain corresponding to the entire extracellular domain of IL-15R alpha behaves as a high affinity IL-15 antagonist. In sharp contrast with this finding, we demonstrate in this report that a recombinant, soluble sushi domain of IL-15R alpha, which bears most of the binding affinity for IL-15, behaves as a potent IL-15 agonist by enhancing its binding and biological effects (proliferation and protection from apoptosis) through the IL-15R beta/gamma heterodimer, whereas it does not affect IL-15 binding and function of the tripartite IL-15R alpha/beta/gamma membrane receptor. Our results suggest that, if naturally produced, such soluble sushi domains might be involved in the IL-15 transpresentation mechanism. Fusion proteins (RLI and ILR), in which IL-15 and IL-15R alpha-sushi are attached by a flexible linker, are even more potent than the combination of IL-15 plus sIL-15R alpha-sushi. After binding to IL-15R beta/gamma, RLI is internalized and induces a biological response very similar to the IL-15 high affinity response. Such hyper-IL-15 fusion proteins appear to constitute potent adjuvants for the expansion of lymphocyte subsets.  相似文献   

3.
In a previous report (Cebo et al. J Biol Chem 276 (2001) 5685–5691), it was established that biologically active recombinant human IL-1α and IL-1β had different carbohydrate-binding properties. IL-1α recognized a di-antennary N-glycan with two α2-3-linked sialic acid residues, whereas IL-1β recognized the GM4, a α2-3-linked sialylated glycosphingolipid. These different carbohydrate-binding properties of two interleukins binding to the same receptor (IL-1R) could explain why these molecules had different biological effects and cell specificities. Molecular modeling of the ligands and in silico docking experiments defined putative carbohydrate-recognition domains localized in the same area of the two molecules, a domain different from that defined as the type I IL-1R binding domain. The calculated pattern of hydrogen bonding and of van der Waals interactions fulfilled the essential features observed for calcium-independent lectins (mammalian, viral or bacterial). The analysis of the same domain of the third members of this family of molecules, the IL-1R-antagonist, indicated it did not fulfill the criteria for carbohydrate-recognition domains. It is proposed that its role as a pure antagonist is due to the absence of lectin activity and consequently explained its inability to associate IL-1R with other surface molecular complexes necessary for signaling.  相似文献   

4.
Dunn EF  Gay NJ  Bristow AF  Gearing DP  O'Neill LA  Pei XY 《Biochemistry》2003,42(37):10938-10944
Interleukin-1 (IL-1) F5 is a novel member of the IL-1 family. The IL-1 family are involved in innate immune responses to infection and injury. These cytokines bind to specific receptors and cause activation of NFkappaB and MAP kinase. IL-1F5 has a sequence identity of 44% to IL-1 receptor antagonist (IL-1Ra), a natural antagonist of the IL-1 system. Here we report the crystal structure of IL-1F5 to a resolution of 1.6 A. It has the same beta-trefoil fold as other IL-1 family members, and the hydrophobic core is well conserved. However, there are substantial differences in the loop conformations, structures that confer binding specificity for the cognate receptor to IL-1beta and the antagonist IL-1Ra. Docking and superimposition of the IL-1F5 structure suggest that is unlikely to bind to the interleukin1 receptor, consistent with biochemical studies. The structure IL-1F5 lacks features that confer antagonist properties on IL-1Ra, and we predict that like IL-1beta it will act as an agonist. These studies give insights into how distinct receptor specificities can evolve within related cytokine families.  相似文献   

5.
Interleukin-5 (IL-5) regulates the production and function of B cells, eosinophils, and basophils. The IL-5 receptor (IL-5R) consists of two distinct membrane proteins, alpha and beta. The alpha chain (IL-5R alpha) is specific to IL-5. The beta chain is the common beta chain (beta c) of receptors for IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF). The cytoplasmic domains of both alpha and beta chains are essential for signal transduction. In this study, we generated cDNAs of IL-5R alpha having various mutations in their cytoplasmic domains and examined the function of these mutants by expressing them in IL-3-dependent FDC-P1 cells. The membrane-proximal proline-rich sequence of the cytoplasmic domain of IL-5R alpha, which is conserved among the alpha chains of IL-5R, IL-3R, and GM-CSF receptor (GM-CSFR), was found to be essential for the IL-5-induced proliferative response, expression of nuclear proto-oncogenes such as c-jun, c-fos, and c-myc, and tyrosine phosphorylation of cellular proteins including JAK2 protein-tyrosine kinase. In addition, analysis using chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c suggested that dimerization of the cytoplasmic domain of beta c may be an important step in activating the IL-5R complex and transducing intracellular growth signals.  相似文献   

6.
The glucagon-like peptide-1 receptor (GLP-1R) belongs to Family B1 of the seven-transmembrane G protein-coupled receptors, and its natural agonist ligand is the peptide hormone glucagon-like peptide-1 (GLP-1). GLP-1 is involved in glucose homeostasis, and activation of GLP-1R in the plasma membrane of pancreatic beta-cells potentiates glucose-dependent insulin secretion. The N-terminal extracellular domain (nGLP-1R) is an important ligand binding domain that binds GLP-1 and the homologous peptide Exendin-4 with differential affinity. Exendin-4 has a C-terminal extension of nine amino acid residues known as the "Trp cage", which is absent in GLP-1. The Trp cage was believed to interact with nGLP-1R and thereby explain the superior affinity of Exendin-4. However, the molecular details that govern ligand binding and specificity of nGLP-1R remain undefined. Here we report the crystal structure of human nGLP-1R in complex with the antagonist Exendin-4(9-39) solved by the multiwavelength anomalous dispersion method to 2.2A resolution. The structure reveals that Exendin-4(9-39) is an amphipathic alpha-helix forming both hydrophobic and hydrophilic interactions with nGLP-1R. The Trp cage of Exendin-4 is not involved in binding to nGLP-1R. The hydrophobic binding site of nGLP-1R is defined by discontinuous segments including primarily a well defined alpha-helix in the N terminus of nGLP-1R and a loop between two antiparallel beta-strands. The structure provides for the first time detailed molecular insight into ligand binding of the human GLP-1 receptor, an established target for treatment of type 2 diabetes.  相似文献   

7.
Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands.  相似文献   

8.
The members of the interleukin-6-type family of cytokines interact with receptors that have a modular structure and are built of several immunoglobulin-like and fibronectin type III-like domains. These receptors have a characteristic cytokine receptor homology region consisting of two fibronectin type III-like domains defined by a set of four conserved cysteines and a tryptophan-serine-X-tryptophan-serine sequence motif. On target cells, interleukin-6 (IL-6) initially binds to its cognate alpha-receptor and subsequently to a homodimer of the signal transducer receptor gp130. The IL-6 receptor (IL-6R) consists of three extracellular domains. The N-terminal immunoglobulin-like domain is not involved in ligand binding, whereas the third membrane-proximal fibronectin-like domain (IL-6R-D3) accounts for more than 90% of the binding energy to IL-6. Here, we present the solution structure of the IL-6R-D3 domain solved by multidimensional heteronuclear NMR spectroscopy.  相似文献   

9.
Abstract

Interleukin-1 (IL-1) alpha and beta are polypeptide hormones that mediate a broad range of biological activities and interact with surface receptors on numerous cell types. Great efforts are made at present to define the interaction domain of IL-1 with its receptor. We have tried to map the domain of IL-1 beta by assessing the receptor interaction of synthetic octapeptide acid amides representing overlapping segments of the IL-1 beta primary sequence. Since the tertiary structure of IL-1 beta is known, the selection of octapeptides could be confined to the surface exposed residues. More than a 100 octapeptides were tested for binding in a competitive binding assay, using a mouse thymoma cell line (EL 4.61) as a receptor source and 125I-IL-1 alpha and beta as radioligands. No binding was found at up to a one hundred fold excess of octapeptide over radioligand. From this lack of binding we conclude that the entropic cost of conformationally freezing the octapeptide is high and that the conformation of the binding domain is per se in terms of free energy and is stabilized by the overall tertiary structure of IL-1.  相似文献   

10.
Interleukin-3 (IL-3) is a cytokine produced by activated T-cells and mast cells that is active on a broad range of hematopoietic cells and in the nervous system and appears to be important in several chronic inflammatory diseases. In this study, alanine substitutions were used to investigate the role of residues of the human beta-common (hbetac) receptor and the murine IL-3-specific (beta(IL-3)) receptor in IL-3 binding. We show that the domain 1 residues, Tyr(15) and Phe(79), of the hbetac receptor are important for high affinity IL-3 binding and receptor activation as shown previously for the related cytokines, interleukin-5 and granulocyte-macrophage colony-stimulating factor, which also signal through this receptor subunit. From the x-ray structure of hbetac, it is clear that the domain 1 residues cooperate with domain 4 residues to form a novel ligand-binding interface involving the two protein chains of the intertwined homodimer receptor. We demonstrate by ultracentrifugation that the beta(IL-3) receptor is also a homodimer. Its high sequence homology with hbetac suggests that their structures are homologous, and we identified an analogous binding interface in beta(IL-3) for direct IL-3 binding to the high affinity binding site in hbetac. Tyr(21) (A-B loop), Phe(85), and Asn(87) (E-F loop) of domain 1; Ile(320) of the interdomain loop; and Tyr(348) (B'-C' loop) and Tyr(401) (F'-G' loop) of domain 4 were shown to have critical individual roles and Arg(84) and Tyr(317) major secondary roles in direct murine IL-3 binding to the beta(IL-3)receptor. Most surprising, none of the key residues for direct IL-3 binding were critical for high affinity binding in the presence of the murine IL-3 alpha receptor, indicating a fundamentally different mechanism of high affinity binding to that used by hbetac.  相似文献   

11.
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.  相似文献   

12.
S Guida  A Heguy  M Melli 《Gene》1992,111(2):239-243
The evolutionary conservation of a sequence or part of it can help to identify the essential functional and structural domains within a protein. We have cloned and characterised a cDNA coding for the type-I interleukin-1 receptor (IL-1R) of chick (ch) embryo fibroblasts. The comparison of the amino acid (aa) sequences of the avian with that of murine (m) and human (h) IL-1Rs shows a 60% homology. The intracellular domain is the most conserved region of the chIL-1R, showing 76-79% homology to the murine and human sequences, respectively. The striking conservation of the cytoplasmic region of the receptor is confirmed by its homology with the Toll receptor protein of Drosophila melanogaster. The alignment between the chicken and D. melanogaster proteins shows the presence of four aa blocks with more than 80% homology. The possible functional significance of this homology is discussed. The extracellular binding region of the receptor has a clearly recognisable immunoglobulin-like structure although the sequence divergence is higher than in the cytoplasmic domain.  相似文献   

13.
The interleukin-1 receptor antagonist (IL-1ra) inhibits the binding of interleukin-1 (IL-1) to T-cell lines possessing the type I IL-1 receptor; evidence has been published (Carter, D. B., Deibel, M. R. J., Dunn, C. J., Tomich, C. S., Laborde, A. L., Slightom, J. L., Berger, A. E., Bienkowski, M. J., Sun, F. F., McEwan, R. N., Harris, P. K. W., Yem, A. W., Waszak, G. A., Chosay, J. G., Sieu, L. C., Hardee, M. M., Zurcher-Neely, H. A., Reardon, I. M., Heinrickson, R. L., Truesdell, S. E., Shelly, J. A., Eessalu, T. E., Taylor, B. M., and Tracey, D. E. (1990) Nature 344, 633-638; Hannum, C. H., Wilcox, C. J., Arend, W. P., Joslin, F. G., Dripps, D. J., Heimdal, P. L., Armes, L. G., Sommer, A., Eisenberg, S. P., and Thompson, R. C. (1990) Nature 343, 336-340) that IL-Ira does not bind to the type II IL-1 receptor (IL-1RtII). In this study we examined the ability of human recombinant IL-1ra to block the binding of IL-1 to the IL-1RtII on human polymorphonuclear leukocytes (PMN) and Raji human B-lymphoma cells. The binding of 125I-IL-1 beta to PMN was competively inhibited by IL-1ra. IL-1 beta was more potent in inhibiting the binding of 125I-IL-1 beta than IL-1ra. Incubating PMN with 125I-IL-1ra in the presence of increasing concentrations of IL-1 beta or IL-1ra showed that IL-1 beta was an approximately 40-fold more potent inhibitor of binding of 125I-IL-1ra than unlabeled IL-1ra. The IL-1ra was approximately 500-fold less potent in inhibiting the binding of 125I-IL-1 alpha than IL-1 alpha. IL-1ra was also able to competitively inhibit binding of 125I-IL-1 beta to Raji cells. PMN or Raji cells were also incubated with 125I-IL-1 in the absence or presence of IL-1 or IL-1ra. After cross-linking of IL-1 to cells followed by specific immunoprecipitation, sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a band at 85 kDa corresponding to the 68-kDa IL-1RtII. However, in the presence of an excess of either unlabeled IL-1 or IL-1ra, the 85-kDa IL-1.IL-1RtII complex was not present. These findings demonstrate that the IL-1ra recognizes and blocks IL-1 binding to the IL-1RtII.  相似文献   

14.
The interleukin-11 receptor (IL-11R) belongs to the hematopoietic receptor superfamily. The functional receptor complex comprises IL-11, IL-11R and the signal-transducing subunit gp130. The extracellular part of the IL-11R consists of three domains: an N-terminal immunoglobulin-like domain, D1, and two fibronectin-type III-like (FNIII) domains and D2 and D3. The two FNIII domains comprise the cytokine receptor-homology region defined by a set of four conserved cysteine residues in the N-terminal domain (D2) and a WSXWS sequence motif in the C-terminal domain (D3). We investigated the structural and functional role of the third extracellular receptor domain of IL-11R. A molecular model of the human IL-11/IL-11R complex allowed the identification of amino acid residues in IL-11R to be involved in ligand binding. Most of them were located in the third extracellular domain, which therefore should be able to bind with high affinity to IL-11. To prove this prediction, domain D3 of the IL-11R was expressed in Escherichia coli, refolded and purified. For structural characterization, circular dichroism, fluorescence and NMR spectroscopy were used. By plasmon resonance experiments, we show that the ligand-binding capacity of this domain is as high as that one for the whole receptor. These results provide a basis for further structural investigations that could be used for the rational design of potential agonists and antagonists essential in human therapy.  相似文献   

15.
IL-1 is a major proinflammatory cytokine which interacts with the IL-1 receptor I (IL-1RI) complex, composed of IL-1RI and IL-1R accessory protein subunits. Currently available strategies to counter pathological IL-1 signaling rely on a recombinant IL-1 receptor antagonist, which directly competes with IL-1 for its binding site. Presently, there are no small antagonists of the IL-1RI complex. Given this void, we derived 15 peptides from loops of IL-1R accessory protein, which are putative interactive sites with the IL-1RI subunit. In this study, we substantiate the merits of one of these peptides, rytvela (we termed "101.10"), as an inhibitor of IL-1R and describe its properties consistent with those of an allosteric negative modulator. 101.10 (IC(50) approximately 1 nM) blocked human thymocyte proliferation in vitro, and demonstrated robust in vivo effects in models of hyperthermia and inflammatory bowel disease as well as topically in contact dermatitis, superior to corticosteroids and IL-1ra; 101.10 did not bind to IL-1RI deficient cells and was ineffective in vivo in IL-1RI knockout mice. Importantly, characterization of 101.10, revealed noncompetitive antagonist actions and functional selectivity by blocking certain IL-1R pathways while not affecting others. Findings describe the discovery of a potent and specific small (peptide) antagonist of IL-1RI, with properties in line with an allosteric negative modulator.  相似文献   

16.
The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1.  相似文献   

17.
Soluble or cell-bound IL-1 receptor accessory protein (IL-1RAcP) does not bind IL-1 but rather forms a complex with IL-1 and IL-1 receptor type I (IL-1RI) resulting in signal transduction. Synthetic peptides to various regions in the Ig-like domains of IL-1RAcP were used to produce antibodies and these antibodies were affinity-purified using the respective antigens. An anti-peptide-4 antibody which targets domain III inhibited 70% of IL-1beta-induced productions of IL-6 and PGE(2) from 3T3-L1 cells. Anti-peptide-2 or 3 also inhibited IL-1-induced IL-6 production by 30%. However, anti-peptide-1 which is directed against domain I had no effect. The antibody was more effective against IL-1beta compared to IL-1alpha. IL-1-induced IL-6 production was augmented by coincubation with PGE(2). The COX inhibitor ibuprofen blocked IL-1-induced IL-6 and PGE(2) production. These results confirm that IL-1RAcP is essential for IL-1 signaling and that increased production of IL-6 by IL-1 needs the co-induction of PGE(2). However, the effect of PGE(2) is independent of expressions of IL-1RI and IL-1RAcP. Our data suggest that domain III of IL-1RAcP may be involved in the formation or stabilization of the IL-1RI/IL-1 complex by binding to epitopes on domain III of the IL-1RI created following IL-1 binding to the IL-1RI.  相似文献   

18.
IL-12 is a heterodimeric cytokine, composed of p40 and p35 subunits, that exerts its biological effects by binding to specific cell surface receptors. Two human IL-12 receptor proteins, designated IL-12R beta 1 and IL-12R beta 2, have been previously identified. IL-12R beta 2 has box 1 motif, box 2 motif, and three tyrosine residues in its cytoplasmic domain. In response to IL-12, Jak2 and Tyk2, family members of Janus family protein tyrosine kinases, are phosphorylated in PHA-activated T lymphocytes. The present study demonstrates that Jak2 binds to the cytoplasmic membrane-proximal region of IL-12R beta 2, and box 2 motif and tyrosine residues in the cytoplasmic domain were not required for binding. The amino-terminus of Jak2 is necessary for association with IL-12R beta 2.  相似文献   

19.
BACKGROUND: Cytokines and cytokine antagonists modulate human immunodeficiency virus (HIV) replication in vitro and may be involved in HIV disease pathogenesis. An understanding of these cytokine networks may suggest novel treatment strategies for HIV-seropositive persons. MATERIALS AND METHODS: U1 cells, a chronically infected promonocytic cell line, were stimulated with interleukin 1 alpha (IL-1 alpha), IL-1 beta or tumor necrosis factor (TNF) for 24 hr. The effects of these cytokines, and of anti-IL-1 receptor type 1 and type 2 (IL-1RI and II) antibody, IL-1 receptor antagonist (IL-1Ra), and recombinant human TNF binding protein type 1 (rhTBP-1, a form of TNF receptor p55), on HIV-1 replication, as measured by ELISA for HIV-1 p24 antigen, were determined. The effects of IL-1 and IL-1Ra on nuclear factor-kappa B (NF-kappa B) DNA binding activity, as measured by electrophoretic mobility shift assays, were also determined. RESULTS: IL-1 alpha and IL-1 beta increased p24 antigen production in a concentration-dependent manner. IL-1Ra completely, and rhTBP-1 partially, suppressed IL-1-induced p24 antigen production. IL-1 increased NF-kappa B DNA binding activity and IL-1Ra blocked this effect. Since IL-1Ra blocks IL-1 from binding to both the IL-1RI and Il-1RII, monoclonal antibodies directed against each receptor were used to ascertain which IL-1R mediates IL-1-induced HIV-1 expression. Antibody to the IL-1RI reduced IL-1-induced p24 antigen production. Although anti-IL-1RII antibody blocked the binding of 125IL-1-1 alpha to U1 cells by 99%, this antibody did not affect IL-1-induced p24 antigen production. IL-1 beta enhanced TNF alpha-induced HIV expression when added before or simultaneously with TNF alpha. CONCLUSIONS: IL-1 induces HIV-1 expression (via the IL-1RI) and NF-kappa B activity in U1 cells. These effects are blocked by IL-1Ra and partially mediated by TNF. IL-1 enhances TNF alpha-induced HIV replication in U1 cells.  相似文献   

20.
A preliminary model has been calculated for the activating interaction of the interleukin 1 receptor (IL-1R) accessory protein IL-1RAcP with the ligand/receptor complex IL-1beta/IL-1R(I). First, IL-1RAcP was modeled on the crystal structure of IL-1R(I) bound to IL-1beta. Then, the IL-1RAcP model was docked using specific programs to the crystal structure of the IL-1beta/IL-1R(I) complex. Two types of models were predicted, with comparable probability. Experimental data obtained with the use of IL-1beta peptides and antibodies, and with mutated IL-1beta proteins, support the BACK model, in which IL-1RAcP establishes contacts with the back of IL-1R(I) wrapped around IL-1beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号