首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous inhibitors of the matrix metalloproteinases, the ADAMs (a disintegrin and metalloproteinase) and the ADAM-TS (ADAM with thrombospondin repeats) proteinases. There are four mammalian TIMPs (TIMP-1 to -4), and each TIMP has its own profile of metalloproteinase inhibition. TIMP-4 is the latest member of the TIMPs to be cloned, and it has never been reported to be active against the tumor necrosis factor-alpha-converting enzyme (TACE, ADAM-17). Here we examined the inhibitory properties of the full-length and the N-terminal domain form of TIMP-4 (N-TIMP-4) with TACE and showed that N-TIMP-4 is a far superior inhibitor than its full-length counterpart. Although full-length TIMP-4 displayed negligible activity against TACE, N-TIMP-4 is a slow tight-binding inhibitor with low nanomolar binding affinity. Our findings suggested that the C-terminal subdomains of the TIMPs have a significant impact over their activities with the ADAMs. To elucidate further the molecular basis that underpins TIMP/TACE interactions, we sculpted N-TIMP-4 with the surface residues of TIMP-3, the only native TIMP inhibitor of the enzyme. Transplantation of only three residues, Pro-Phe-Gly, onto the AB-loop of N-TIMP-4 resulted in a 10-fold enhancement in binding affinity; the K(i) values of the resultant mutant were almost comparable with that of TIMP-3. Further mutation at the EF-loop supported our earlier findings on the preference of TACE for leucine at this locus. Drawing together our previous experience in TACE-targeted mutagenesis by using TIMP-1 and -2 scaffolds, we have finally resolved the mystery of the selective sensitivity of TACE to TIMP-3.  相似文献   

2.
The C-terminal domains of TACE weaken the inhibitory action of N-TIMP-3   总被引:2,自引:0,他引:2  
Tumor necrosis factor-alpha converting enzyme (TACE) is an ADAM (a disintegrin and metalloproteinases) that comprises an active catalytic domain and several C-terminal domains. We compare the binding affinity and association rate constants of the N-terminal domain form of wild-type tissue inhibitor of metalloproteinase (TIMP-3; N-TIMP-3) and its mutants against full-length recombinant TACE and the truncated form of its catalytic domain. We show that the C-terminal domains of TACE substantially weaken the inhibitory action of N-TIMP-3. Further probing with hydroxamate inhibitors indicates that both forms of TACE have similar active site configurations. Our findings highlight the potential role of the C-terminal domains of ADAM proteinases in influencing TIMP interactions.  相似文献   

3.
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a dual inhibitor of the matrix metalloproteinases (MMPs) and some adamalysins, two families of extracellular and cell surface metalloproteinases that function in extracellular matrix turnover and the shedding of cell surface proteins. The mechanism of inhibition of MMPs by TIMPs has been well characterized, and since the catalytic domains of MMPs and adamalysins are homologous, it was assumed that the interaction of TIMP-3 with adamalysins is closely similar. Here we report that the inhibition of the extracellular region of ADAM-17 (tumor necrosis factor alpha-converting enzyme (TACE)) by the inhibitory domain of TIMP-3 (N-TIMP-3) shows positive cooperativity. Also, mutations in the core of the MMP interaction surface of N-TIMP-3 dramatically reduce the binding affinity for MMPs but have little effect on the inhibitory activity for TACE. These results suggest that the mechanism of inhibition of ADAM-17 by TIMP-3 may be distinct from that for MMPs. The mutant proteins are also effective inhibitors of tumor necrosis factor alpha (TNF-alpha) release from phorbol ester-stimulated cells, indicating that they provide a lead for engineering TACE-specific inhibitors that may reduce side effects arising from MMP inhibition and are possibly useful for treatment of diseases associated with excessive TNF-alpha levels such as rheumatoid arthritis.  相似文献   

4.
TIMP-3 (tissue inhibitor of metalloproteinases 3) is unique among the TIMP inhibitors, in that it effectively inhibits the TNF-α converting enzyme (TACE). In order to understand this selective capability of inhibition, we crystallized the complex formed by the catalytic domain of recombinant human TACE and the N-terminal domain of TIMP-3 (N-TIMP-3), and determined its molecular structure with X-ray data to 2.3 Å resolution. The structure reveals that TIMP-3 exhibits a fold similar to those of TIMP-1 and TIMP-2, and interacts through its functional binding edge, which consists of the N-terminal segment and other loops, with the active-site cleft of TACE in a manner similar to that of matrix metalloproteinases (MMPs). Therefore, the mechanism of TIMP-3 binding toward TACE is not fundamentally different from that previously elucidated for the MMPs. The Phe34 phenyl side chain situated at the tip of the relatively short sA-sB loop of TIMP-3 extends into a unique hydrophobic groove of the TACE surface, and two Leu residues in the adjacent sC-connector and sE-sF loops are tightly packed in the interface allowing favourable interactions, in agreement with predictions obtained by systematic mutations by Gillian Murphy's group. The combination of favourable functional epitopes together with a considerable flexibility renders TIMP-3 an efficient TACE inhibitor. This structure might provide means to design more efficient TIMP inhibitors of TACE.  相似文献   

5.
Tumor necrosis factor-alpha (TNF-alpha)-converting enzyme (TACE, ADAM-17) is a zinc-dependent ADAM (a disintegrin and metalloproteinase) metalloproteinase (MP) of the metzincin superfamily. The enzyme regulates the shedding of a variety of cell surface-anchored molecules such as cytokines, growth factors, and receptors. The activities of the MPs are modulated by the endogenous inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Among the four mammalian TIMPs (TIMP-1 to -4), TACE is selectively inhibited by TIMP-3. The rationale for such selectivity is not fully understood. Here, we examine the molecular basis of TIMP-TACE selectivity using TIMP-2 as the scaffold. By systematically replacing the surface epitopes of TIMP-2 with those of TIMP-3 and a TIMP-1 variant V4S/TIMP-3 AB-loop/V69L/T98L, we created a novel TIMP-2 mutant that exhibits inhibitory potency almost equal to that of the TIMP-3. The affinity of the mutant with TACE is 1.49 nm, a marked improvement in comparison to that of the wild-type protein (Ki 893 nM). The inhibitory pattern of the mutant is typical of that of a slow, tight binding inhibitor. We identify phenylalanine 34, a residue unique to the TIMP-3 AB-loop, as a vital element in TACE association. Mutagenesis carried out on leucine 100 also upholds our previous findings that a leucine on the EF-loop is critical for TACE recognition. Replacement of the residue by other amino acids resulted in a dramatic decrease in binding affinity, although isoleucine (L100I) and methionine (L100M) are still capable of producing the slow, tight binding effect. Our findings here represent a significant advance toward designing tailor-made TIMPs for specific MP targeting.  相似文献   

6.
We previously reported that tumor necrosis factor-alpha converting enzyme (TACE) was specifically inhibited by TIMP-3 but not TIMP-1, -2, and -4. Further mutagenesis studies showed that the N-terminal domain of TIMP-3 (N-TIMP-3) retained full inhibitory activity towards TACE. Full-length TIMP-3 and N-TIMP-3 exhibited indistinguishable values for the association rate constant and inhibitory affinity constant for the active catalytic domain of TACE (k(on) approximately 10(5) M(-1) s(-1) and K(app)(i) approximately 0.20 nM). Moreover, their k(on) (approximately 10(4) M(-1) s(-1)) and K(app)(i) (approximately 1.0 nM) values with a longer form of TACE (which encompasses the complete ectodomain including disintegrin, EGF and Crambin-like domains) were also shown to be similar. Detailed kinetic analyses indicated that TIMP-3 associated more quickly and with tighter final binding with TACE devoid of these C-terminal domains. We conclude that, unlike the interaction between many MMPs and TIMPs, the C-terminal domains of TIMP-3 and TACE are not essential in the formation of a tight binary complex.  相似文献   

7.
We investigated whether the affinity of tissue inhibitor of metalloproteinases (TIMP)-3 for adamalysins with thrombospondin motifs (ADAMTS)-4 and ADAMTS-5 is affected by the non-catalytic ancillary domains of the enzymes. For this purpose, we first established a novel method of purifying recombinant FLAG-tagged TIMP-3 and its inhibitory N-terminal domain (N-TIMP-3) by treating transfected HEK293 cells with sodium chlorate to prevent heparan sulfate proteoglycan-mediated TIMP-3 internalization. TIMP-3 and N-TIMP-3 affinity for selected matrix metalloproteinases and forms of ADAMTS-4 and -5 lacking sequential C-terminal domains was determined. TIMP-3 and N-TIMP-3 displayed similar affinity for various matrix metalloproteinases as has been previously reported for E. coli-expressed N-TIMP-3. ADAMTS-4 and -5 were inhibited more strongly by N-TIMP-3 than by full-length TIMP-3. The C-terminal domains of the enzymes enhanced interaction with N-TIMP-3 and to a lesser extent with the full-length inhibitor. For example, N-TIMP-3 had 7.5-fold better Ki value for full-length ADAMTS-5 than for the catalytic and disintegrin domain alone. We propose that the C-terminal domains of the enzymes affect the structure around the active site, favouring interaction with TIMP-3.  相似文献   

8.
Tissue inhibitors of metalloproteinases (TIMPs) are the endogenous modulators of the zinc-dependent mammalian matrix metalloproteinases (MMPs) and their close associates, proteinases of the ADAM (a disintegrin and metalloproteinase) and ADAM with thrombospondin repeats families. There are four variants of TIMPs, and each has its defined set of metalloproteinase (MP) targets. TIMP-1, in particular, is inactive against several of the membrane-type MMPs (MT-MMPs), MMP-19, and the ADAM proteinase TACE (tumor necrosis factor-alpha-converting enzyme, ADAM-17). The molecular basis for such inactivity is unknown. Previously, we showed that TIMP-1 could be transformed into an active inhibitor against MT1-MMP by the replacement of threonine 98 residue with leucine (T98L). Here, we reveal that the T98L mutation has in fact transformed TIMP-1 into a versatile inhibitor against an array of MPs otherwise insensitive to wild-type TIMP-1; examples include TACE, MMP-19, and MT5-MMP. Using T98L as the scaffold, we created a TIMP-1 variant that is fully active against TACE. The binding affinity of the mutant (V4S/TIMP-3-AB-loop/V69L/T98L) (K (app)(i) 0.14 nm) surpassed that of TIMP-3 (K (app)(i) 0.22 nm), the only natural TIMP inhibitor of the enzyme. The requirement for leucine is absolute for the transformation in inhibitory pattern. On the other hand, the mutation has minimal impact on the MPs already well inhibited by wild-type TIMP-1, such as gelatinase-A and stromelysin-1. Not only have we unlocked the molecular basis for the inactivity of TIMP-1 against several of the MPs, but also our findings fundamentally modify the current beliefs on the molecular mechanism of TIMP-MP recognition and selectivity.  相似文献   

9.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs), enzymes that play central roles in the degradation of extracellular matrix components. The balance between MMPs and TIMPs is important in the maintenance of tissues, and its disruption affects tissue homoeostasis. Four related TIMPs (TIMP-1 to TIMP-4) can each form a complex with MMPs in a 1:1 stoichiometry with high affinity, but their inhibitory activities towards different MMPs are not particularly selective. The three-dimensional structures of TIMP-MMP complexes reveal that TIMPs have an extended ridge structure that slots into the active site of MMPs. Mutation of three separate residues in the ridge, at positions 2, 4 and 68 in the amino acid sequence of the N-terminal inhibitory domain of TIMP-1 (N-TIMP-1), separately and in combination has produced N-TIMP-1 variants with higher binding affinity and specificity for individual MMPs. TIMP-3 is unique in that it inhibits not only MMPs, but also several ADAM (a disintegrin and metalloproteinase) and ADAMTS (ADAM with thrombospondin motifs) metalloproteinases. Inhibition of the latter groups of metalloproteinases, as exemplified with ADAMTS-4 (aggrecanase 1), requires additional structural elements in TIMP-3 that have not yet been identified. Knowledge of the structural basis of the inhibitory action of TIMPs will facilitate the design of selective TIMP variants for investigating the biological roles of specific MMPs and for developing therapeutic interventions for MMP-associated diseases.  相似文献   

10.
Atrolysin C is a P-I snake venom metalloproteinase (SVMP) from Crotalus atrox venom, which efficiently degrades capillary basement membranes, extracellular matrix, and cell surface proteins to produce hemorrhage. The tissue inhibitors of metalloproteinases (TIMPs) are effective inhibitors of matrix metalloproteinases which share some structural similarity with the SVMPs. In this work, we evaluated the inhibitory profile of TIMP-1, TIMP-2, and the N-terminal domain of TIMP-3 (N-TIMP-3) on the proteolytic activity of atrolysin C and analyzed the structural requirements and molecular basis of inhibitor-enzyme interaction using molecular modeling. While TIMP-1 and TIMP-2 had no inhibitory activity upon atrolysin C, the N-terminal domain of TIMP-3 (N-TIMP-3) was a potent inhibitor with a K(i) value of approximately 150nM. The predicted docking structures of atrolysin C and TIMPs were submitted to molecular dynamics simulations and the complex atrolysin C/N-TIMP-3 was the only one that maintained the inhibitory conformation. This study is the first to shed light on the structural determinants required for the interaction between a SVMP and a TIMP, and suggests a structural basis for TIMP-3 inhibitory action and related proteins such as the ADAMs.  相似文献   

11.
Wei S  Xie Z  Filenova E  Brew K 《Biochemistry》2003,42(42):12200-12207
The four tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors that regulate the activity of matrix metalloproteinases (MMPs) and certain disintegrin and metalloproteinase (ADAM) family proteases in mammals. The protease inhibitory activity is present in the N-terminal domains of TIMPs (N-TIMPs). In this work, the N-terminal inhibitory domain of the only TIMP produced by Drosophila (dN-TIMP) was expressed in Escherichia coli and folded in vitro. The purified recombinant protein is a potent inhibitor of human MMPs, including membrane-type 1-MMP, although it lacks a disulfide bond that is conserved in all other known N-TIMPs. Titration with the catalytic domain of human MMP-3 [MMP-3(DeltaC)] showed that dN-TIMP prepared by this method is correctly folded and fully active. dN-TIMP also inhibits, in vitro, the activity of the only two MMPs of Drosophila, dm1- and dm2-MMPs, indicating that the Drosophila TIMP is an endogenous inhibitor of the Drosophila MMPs. dN-TIMP resembles mammalian N-TIMP-3 in strongly inhibiting human tumor necrosis factor-alpha-converting enzyme (TACE/ADAM17) but is a weak inhibitor of human ADAM10. Models of the structures of dN-TIMP and N-TIMP-3 are strikingly similar in surface charge distribution, which may explain their functional similarity. Although the gene duplication events that led to the evolutionary development of the four mammalian TIMPs might be expected to be associated with functional specialization, Timp-3 appears to have conserved most of the functions of the ancestral TIMP gene.  相似文献   

12.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

13.
Aggrecanases are considered to play a key role in the destruction of articular cartilage during the progression of arthritis. Here we report that the N-terminal inhibitory domain of tissue inhibitor of metalloproteinases 3 (N-TIMP-3), but not TIMP-1 or TIMP-2, inhibits glycosaminoglycan release from bovine nasal and porcine articular cartilage explants stimulated with interleukin-1alpha or retinoic acid in a dose-dependent manner. This inhibition is due to the blocking of aggrecanase activity induced by the catabolic factors. Little apoptosis of primary porcine chondrocytes is observed at an effective concentration of N-TIMP-3. These results suggest that TIMP-3 may be a candidate agent for use against cartilage degradation.  相似文献   

14.
Catalytic properties of ADAM12 and its domain deletion mutants   总被引:1,自引:0,他引:1  
Human ADAM12 (a disintegrin and metalloproteinase) is a multidomain zinc metalloproteinase expressed at high levels during development and in human tumors. ADAM12 exists as two splice variants: a classical type 1 membrane-anchored form (ADAM12-L) and a secreted splice variant (ADAM12-S) consisting of pro, catalytic, disintegrin, cysteine-rich, and EGF domains. Here we present a novel activity of recombinant ADAM12-S and its domain deletion mutants on S-carboxymethylated transferrin (Cm-Tf). Cleavage of Cm-Tf occurred at multiple sites, and N-terminal sequencing showed that the enzyme exhibits restricted specificity but a consensus sequence could not be defined as its subsite requirements are promiscuous. Kinetic analysis revealed that the noncatalytic C-terminal domains are important regulators of Cm-Tf activity and that ADAM12-PC consisting of the pro domain and catalytic domain is the most active on this substrate. It was also observed that NaCl inhibits ADAM12. Among the tissue inhibitors of metalloproteinases (TIMP) examined, the N-terminal domain of TIMP-3 (N-TIMP-3) inhibits ADAM12-S and ADAM12-PC with low nanomolar Ki(app) values while TIMP-2 inhibits them with a slightly lower affinity (9-44 nM). However, TIMP-1 is a much weaker inhibitor. N-TIMP-3 variants that lack MMP inhibitory activity but retained the ability to inhibit ADAM17/TACE failed to inhibit ADAM12. These results indicate unique enzymatic properties of ADAM12 among the members of the ADAM family of metalloproteinases.  相似文献   

15.
16.
Arumugam S  Van Doren SR 《Biochemistry》2003,42(26):7950-7958
Crystal structures of catalytic domains of MMP-3 and MT1-MMP bound to TIMP-1 or TIMP-2, respectively, differ in the orientation of the TIMP in the MMP active site. The orientation in solution of N-TIMP-1 in the MMP-3 active site has been investigated using residual dipolar couplings (RDCs). Fitting of the RDCs to the X-ray structures of the complexes suggests general agreement with the orientation of crystalline MMP-3(DeltaC) and TIMP-1 and a large disparity from the orientation of crystalline MT1-MMP(DeltaC) and TIMP-2. Rigid body docking of MMP-3 and N-TIMP-1 X-ray coordinates using RDCs and intermolecular NOEs provided a time-averaged orientation in solution differing from the crystal structure by a 5 degrees rotation toward the MT1-MMP(DeltaC)/TIMP-2 orientation. The slight discrepancy in orientations in solution and crystal lies within the experimental uncertainties. Intermolecular NOEs used in the docking corroborated the accuracy of mapping the interface by a paramagnetic NMR footprinting assay, a potential alternative source of contacts for docking. Some uncertainty in the N-TIMP-1 orientation in the MMP-3 active site, coupled with microsecond to millisecond fluctuations of the MMP-binding ridge of N-TIMP-1 in the complex and flexibility in MMP-3(DeltaC) S(1)' to S(3)' subsites, leaves open the possibility that N-TIMP-1 might dynamically pivot a few degrees or more in the arc toward the MT1-MMP(DeltaC)/TIMP-2 orientation. Differing TIMP orientations in MMP active sites are more likely to result from structural differences in TIMP AB hairpin loops than from crystal packing artifacts.  相似文献   

17.
Apart from counteracting matrix metalloproteinases, tissue inhibitor of metalloproteinases-3 (TIMP-3) has proapoptotic properties. These features have been attributed to the inhibition of metalloproteinases involved in the shedding of cell surface receptors such as the TNFR. However, little is known about effects of TIMP-3 in cells that are not susceptible to apoptosis by TNF-alpha. In this study, we report that gene transfer of TIMP-3 into human rheumatoid arthritis synovial fibroblasts and MRC-5 human fetal lung fibroblasts facilitates apoptosis and completely reverses the apoptosis-inhibiting effects of TNF-alpha. Although TNF-alpha inhibits Fas/CD95-induced apoptosis in untransfected and mock-transfected cells, fibroblasts ectopically expressing TIMP-3 are sensitized most strongly to Fas/CD95-mediated cell death by TNF-alpha. Neither synthetic MMP inhibitors nor glycosylated bioactive TIMP-3 are able to achieve these effects. Gene transfer of TIMP-3 inhibits the TNF-alpha-induced activation of NF-kappaB in rheumatoid arthritis synovial fibroblasts and reduces the up-regulation of soluble Fas/CD95 by TNF-alpha, but has no effects on the cell surface expression of Fas. Collectively, our data demonstrate that intracellularly produced TIMP-3 not only induces apoptosis, but also modulates the apoptosis-inhibiting effects of TNF-alpha in human rheumatoid arthritis synovial fibroblast-like cells. Thus, our findings may stimulate further studies on the therapeutic potential of gene transfer strategies with TIMP-3.  相似文献   

18.
The high-affinity inhibition of stromelysin 1 (MMP-3) by tissue inhibitor of metalloproteinases 1 (TIMP-1) helps control tissue remodeling and tumor development. The interaction of N-TIMP-1 with the catalytic domain of MMP-3 has been investigated by titration calorimetry and 15N NMR. Their unfavorable enthalpy of binding of +6.5 kcal mol(-1) is unusual among protein-protein associations, deviates from structure-based prediction, and is compensated by a net entropy increase providing at least 18 kcal mol(-1) of favorable free energy of binding at a 1M reference state. The small heat capacity of binding agrees well with the heat capacity predicted from 65% of the surface buried on binding being polar, and suggests that the hydrophobic effect can account for only part of the entropy of binding. Using NMR, binding-induced changes in the backbone of N-TIMP-1 were checked as one possible source of conformational entropy changes. MMP binding slightly increases rigidity in some contact sites in TIMP-1 but increases mobility remotely in the otherwise rigid beta-barrel core of N-TIMP-1, increasing 15N relaxation evidence of pico- to nanosecond and micro- to millisecond fluctuations of beta-strands A-F. Residual dipolar couplings suggest dynamic deviations from X-ray coordinates of the complex. These suggest that the beta-barrel has small backbone conformational fluctuations, while segments of strands betaB, betaE and betaF might experience fluctuations only in their backbone environment. This is a distinctive example of affinity between two well-structured proteins being enhanced by increased conformational entropy in the reservoir of a folding core.  相似文献   

19.
Residues 1-127 of human TIMP-2 (N-TIMP-2), comprising three of the disulfide-bonded loops of the TIMP-2 molecule, is a discrete protein domain that folds independently of the C-terminal domain. This domain has been shown to be necessary and sufficient for metalloproteinase inhibition and contains the major sites of interaction with the catalytic N-terminal domain of active matrix metalloproteinases (MMPs). Residues identified as being involved in the interaction with MMPs by NMR chemical shift perturbation studies and TIMP/MMP crystal structures have been altered by site-directed mutagenesis. We show, by measurement of association rates and apparent inhibition constants, that the specificity of these N-TIMP-2 mutants for a range of MMPs can be altered by single site mutations in either the TIMP "ridge" (Cys1-Cys3 and Ser68-Cys72) or the flexible AB loop (Ser31-Ile41). This work demonstrates that it is possible to engineer TIMPs with altered specificity and suggests that this form of protein engineering may be useful in the treatment of diseases such as arthritis and cancer where the selective inhibition of key MMPs is desirable.  相似文献   

20.
Multifunctionality of tissue inhibitor of metalloproteinases-1 (TIMP-1) comprising antiproteolytic as well as cytokinic activity has been attributed to its N-terminal and C-terminal domains, respectively. The molecular basis of the emerging proinflammatory cytokinic activity of TIMP-1 is still not completely understood. The cytokine receptor invariant chain (CD74) is involved in many inflammation-associated diseases and is highly expressed by immune cells. CD74 triggers zeta chain–associated protein kinase-70 (ZAP-70) signaling–associated activation upon interaction with its only known ligand, the macrophage migration inhibitory factor. Here, we demonstrate TIMP-1–CD74 interaction by coimmunoprecipitation and confocal microscopy in cells engineered to overexpress CD74. In silico docking in HADDOCK predicted regions of the N-terminal domain of TIMP-1 (N-TIMP-1) to interact with CD74. This was experimentally confirmed by confocal microscopy demonstrating that recombinant N-TIMP-1 lacking the entire C-terminal domain was sufficient to bind CD74. Interaction of TIMP-1 with endogenously expressed CD74 was demonstrated in the Namalwa B lymphoma cell line by dot blot binding assays as well as confocal microscopy. Functionally, we demonstrated that TIMP-1–CD74 interaction triggered intracellular ZAP-70 activation. N-TIMP-1 was sufficient to induce ZAP-70 activation and interference with the cytokine-binding site of CD74 using a synthetic peptide–abrogated TIMP-1-mediated ZAP-70 activation. Altogether, we here identified CD74 as a receptor and mediator of cytokinic TIMP-1 activity and revealed TIMP-1 as moonlighting protein harboring both cytokinic and antiproteolytic activity within its N-terminal domain. Recognition of this functional TIMP-1–CD74 interaction may shed new light on clinical attempts to therapeutically target ligand-induced CD74 activity in cancer and other inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号