首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamines are known to play important roles in plant stress tolerance but it has been difficult to determine precise functions for each type of polyamine and their interrelationships. To dissect the roles of putrescine from the higher polyamines spermidine and spermine, we generated transgenic rice plants constitutively expressing a heterologous S-adenosylmethionine decarboxylase (SAMDC) gene from Datura stramonium so that spermidine and spermine levels could be investigated while maintaining a constant putrescine pool. Whereas transgenic plants expressing arginine decarboxylase (ADC) produced higher levels of putrescine, spermidine and spermine, and were protected from drought stress, transgenic plants expressing SAMDC produced normal levels of putrescine and showed drought symptoms typical of wild type plants under stress, but the transgenic plants showed a much more robust recovery on return to normal conditions (90% full recovery compared to 25% partial recovery for wild type plants). At the molecular level, both wild type and transgenic plants showed transient reductions in the levels of endogenous ADC1 and SAMDC mRNA, but only wild type plants showed a spike in putrescine levels under stress. In transgenic plants, there was no spike in putrescine but a smooth increase in spermine levels at the expense of spermidine. These results confirm and extend the threshold model for polyamine activity in drought stress, and attribute individual roles to putrescine, spermidine and spermine.  相似文献   

2.
The leaves of four reed ecotypes (Phragmites communis Trinius) growing in the desert regions of northwest China were investigated for levels of polyamines and activity of arginine decarboxylase (ADC; EC 4.1.1.19) during the growing season of 5 months. The polyamines in the leaves of all reed ecotypes consisted of putrescine, spermidine and spermine. The polyamine levels of the leaves were lower in the swamp reed than in the terrestrial reed ecotypes. Leaf polyamine levels decreased in all ecotypes over the course of the season. Compared to the swamp reed, the terrestrial reed ecotypes maintained higher ADC activity and a predominance of spermine, resulting in a lower ratio of putrescine to spermidine and spermine. It seems that the adaptation of reed plants to drought and saline habitats may be correlated with putrescine synthesis via the ADC pathway, and with a successful conversion of putrescine to spermidine and spermine.  相似文献   

3.
It was reported recently that overexpression of human ornithine decarboxylase (ODC) cDNA in transgenic rice plants resulted in increased steady-state concentration of polyamines, i.e., enough biosynthetic control is invested at this step to enable adjustment of polyamine levels. To investigate critically whether constitutive overexpression of ODC is sufficient to control steady-state polyamine levels, we expressed an ODC cDNA from Datura stramonium in transgenic tobacco plants. Transgenic progeny of self-fertilised primary transformants exhibited increases in ODC activity of 25-fold in leaves and 5-fold in flower buds. However, the increase in putrescine levels was only 1.5- to 2.1-fold in leaves and 1.1- to 1.3-fold in flower buds. Emphatically, no changes to spermidine or spermine steady-state levels or to soluble or insoluble hydroxycinnamic acid-conjugated polyamines were observed. Ornithine feeding to cell suspension cultures derived from the transgenic plants indicated that putrescine accumulation was limited in part by ornithine availability. These results demonstrate that a large increase in the capacity of the tobacco plants to decarboxylate ornithine does not result in a comparable increase in the level of free or conjugated polyamines. Plant polyamine homeostatic mechanisms efficiently accommodate increased ODC activity, suggesting that polyamine biosynthetic control is invested at multiple interdependent steps.  相似文献   

4.
We introduced the oat adc cDNA into rice under the control of the constitutive maize ubiquitin 1 promoter. We studied molecularly and biochemically sixteen independent transgenic plant lines. Significant increases in mRNA levels, ADC enzyme activity and polyamines were measured in transgenic callus. These increases were not maintained in vegetative tissue or seeds in regenerated plants, with the exception of one lineage. This particular lineage showed very significant increases in putrescine preferentially in seeds (up to 10 times compared to wild type and controls transformed with the hpt selectable marker alone). We have demonstrated that in cereals such as rice, over-expression of the oat adc cDNA results in increased accumulation of polyamines at different stages of development. We have also demonstrated that strong constitutive promoters, such as the maize ubiquitin 1 promoter, are sufficient to facilitate heritable high-level polyamine accumulation in seed. Our results demonstrate that by screening adequate numbers of independently derived transgenic plants, it is possible to identify those individuals which express a desired phenotype or genotype.  相似文献   

5.
In the present paper, correlation between free polyamines and growth of peach (Prunus persica cv. Yuzora) in vitro callus was investigated. Growth of the callus was divided into three phases based on measurement of fresh weight. Free polyamines, putrescine (Put), spermidine (Spd), and spermine (Spm), could be detected during peach callus growth. Changes in free Put titers followed the callus growth rate, as shown by low and stable levels in the first stage, quick increase at the beginning of the second phase, and slow increase in the last phase, whereas fluctuations of Spd and Spm titers were aberrant from that of Put at early stage. Expressions of five key genes involved in polyamine biosynthesis were characterized, in which only the genes leading to Put synthesis, ADC (arginine decarboxylase) and ODC (ornithine decarboxylase), agreed with callus growth and fluctuation of Put titers. Treatment of the callus with D-arginine, an inhibitor of ADC, led to significant growth inhibition and enormous reduction of endogenous Put, coupled with obvious decrease of mRNA levels of ADC and ODC. Exogenous application of Put partially restored the callus growth, along with resumption of endogenous Put and expression levels of ADC and ODC. Spd and Spm titers experienced minor change in comparison to Put. The data presented here suggested that free Put played an important part in peach callus growth. Putative mechanisms or mode of action underlying the role of Put in peach callus growth and different expression patterns of the genes responsible for polyamine biosynthesis are also discussed.  相似文献   

6.
In the short-day plant, strawberry (Fragaria ananassa Duch.), polyamines (putrescine, spermidine and spermine), conjugated spermidine (water-insoluble compounds) and bound amines (putrescine, spermidine, phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine) accumulated in the shoot tips during floral induction and before floral emergence. Different associations of free amines and conjugated amines were observed during floral induction, as compared with the reproductive phase. During the whole period of floral development, phenylethylamine (an aromatic amine) was the predominant amine, representing 80 to 90% of the total free amine pool. Phenylethylamine conjugates (water-insoluble compounds) were the predominant amides observed prior to fertilization. These substances decreased drastically after fertilization. In vegetative shoot tips from plants grown continously under long days, free polyamines (putrescine, spermidine) and bound polyamines (putrescine, spermidine) were low and no change was observed. Free amines (spermine and phenylethylamine), bound aromatic amines (phenylethylamine, 3-hydroxy, 4-methoxyphenylethylamine), conjugated spermidine and phenylethylamine did not appear. Male-sterile flowers were distinguished by their lack of conjugated spermidine and phenylethyalamine and by a decrease in free phenylethylamine. In normal and sterile strawberry plants -DL-difluoromethylornithine (DFMO), a specific irreversible inhibitor of ornithine decarboxylase (ODC), caused inhibition of flowering and free and polyamine conjugates. When putrescine was added, polyamine titers and flowering were restored. A similar treatment with -DL-difluoromethylarginine (DFMA), a specific, irreversible inhibitor of arginine decarboxylase (ADC), did not affect flowering and polyamine titers. These results suggest that ornithine decarboxylase (ODC) and polyamines are involved in regulating floral initiation in strawberry. The relationship between polyamines, aromatic amines, conjugates, floral initiation and male sterility is discussed.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -DL-difluoromethylarginine - DFMO -DL-difluoromethylornithine - Put putrescine - Spd spermidine - Spm spermine - Phen phenylethylamine - 3H4M Phen 3-hydroxy, 4-methoxyphenylethylamine  相似文献   

7.
The level of the three main polyamines putrescine, spermidine, and spermine and the biosynthetic enzyme arginine decarboxylase (ADC) decreased in Helianthus annuus L. seedlings subjected to increasing (50, 100, and 150 mm) NaCl concentrations. The pattern of polyamines in control plants increased during the initial 72 h and then reached a plateau. The putrescine level showed an increase of 370% after 72 h of development. The lower salt treatment slightly diminished the overall polyamine content. The highest NaCl concentration (150 mm) induced a strong putrescine diminution (from 381 to 78.9 nmol g−1 FW) at 72 h whereas a small decrease in ADC activity was detected. ODC was detected in neither control nor treated plantlets during the experimental period. The level of spermidine also decreased, but the magnitude of the decay was less pronounced than putrescine. The fact that ODC was not detected and ADC activity followed a pattern similar to that of putrescine led us to suppose that the variation in putrescine content could be attributed entirely to the decrease in ADC activity. α-Difluoromethylarginine and α-difluoromethylornithine (ADC and ODC inhibitor, respectively) did not inhibit but delayed the onset of germination of sunflower seeds, and α-difluoromethylornithine increased the content of spermidine and spermine. The present data suggest that polyamines could be involved in the germination process of H. annuus seeds and in response to salt stress. Received April 14, 1997; accepted July 10, 1997  相似文献   

8.
Summary The uncommon polyamines, norspermidine and norspermine, were detected in maizein vitro cultures of three different genotypes. The common polyamines, spermidine and spermine, along with the diamine, putrescine, were also observed. The total amounts of the uncommon polyamines, norspermidine and norspermine, were comparable to the total amounts of the common polyamines, spermidine and spermine, in the maize tissues. The titer for norspermidine was 6- to 15-fold greater than that of its common counterpart (spermidine) in the three genotypes. Norspermidine was the predominant polyamine among all triamines and tetramines detected in cell cultures of two of the three genotypes of maize examined and was predominant along with spermine in the third genotype. Enzyme assays performed with extracts from callus of one of the genotypes suggested a likely mechanism to account for the biosynthesis of the uncommon polyamines in cultured maize cells, through the actions of putrescine aminopropyltransferase, polyamine oxidase, and Schiff-base reductase/decarboxylase enzyme activities. This is the first report of the detection of uncommon polyamines in maize tissues, as well as the first report of these uncommon polyamines in a monocotyledonous plant.  相似文献   

9.
S-adenosylmethionine decarboxylase (SAMDC; EC 4.1.1.50) is a key regulatory enzyme in the polyamine biosynthetic pathway. Numerous studies have shown that the enzyme activity and polyamine levels are generally correlated with cellular growth in plants, animals and bacteria. In order to gain more insight into the role of polyamines in plants, human SAMDC cDNA under control of the 35S promoter of cauliflower mosaic virus, along with a neomycin phosphotransferase gene, was transferred to tobacco (Nicotiana tabacum cv. Xanthi) viaAgrobacterium tumefaciens. Transgenic plants showed the presence of human SAMDC mRNA and a 2-4-fold increase in SAMDC activity. In the transformed tissues, putrescine levels were significantly reduced, while spermidine content was 2–3 times higher than the control tissues. Cellular spermine content was either increased or remained unchanged. Excised leaf segments from transformed plants frequently produced shoots even on callus inducing medium.  相似文献   

10.
The three major polyamines—putrescine, spermidine, and spermine—were studied and changes of their levels were examined in extracts of cerebral ganglia and fat body from adult Acheta domesticus. In nervous tissue, only spermidine and spermine were present and spermine was two- to three-fold more abundant than spermidine. The polyamine levels were high up to day 3, decreased on day 4, and then remained relatively unchanged up to day 10. The spermidine/spermine ratios decreased during the imaginal life. Higher spermidine titres were observed in the neural tissue of egg-laying females compared to virgin females. In the fat body, putrescine was detected together with spermidine and spermine. Spermidine and spermine levels were two-fold higher than putrescine. Fat body of virgin females contained two times more polyamines than male fat body. Low at emergence, spermidine and spermine concentrations peaked on days 2–3 only in females, and egg-laying was characterized by an increase of putrescine and spermidine titres. Starvation did not change polyamine contents, implying homeostatic regulation of the intracellular polyamine metabolism. These data showing tissue specific changes in polyamine levels during the imaginal life of Acheta domesticus point to the physiological importance of polyamines as possible intracellular regulators during adult insect development. © 1993 Wiley-Liss, Inc.  相似文献   

11.
The main free amines identified during growth and development of grapevine microcuttings of rootstock 41 B, (Vitis vinifera cv. Chasselas × Vitis berlandieri) cultivated in vitro were agmatine, putrescine, spermidine, spermine, diaminopropane and tyramine (an aromatic amine). Amine composition differed according to tissue, with diaminopropane the major polyamine in the apical parts, internodes and leaves. Putrescine predominated in the roots. There was also a decreasing general polyamine and specific tyramine gradient along the stem from the top to the bottom. Conjugated amines were only found in roots. The application of exogenous amines (agmatine, putrescine, spermidine, tyramine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these amines can be growth limiting. Diaminopropane (the product of oxidation of spermidine or spermine by polyamine oxydases) strongly inhibited microcutting growth and development. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), led to inhibition of microcutting development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition indicating that polyamines are involved in regulating the growth and development of grapevine microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis from ornithine decarboxylase (ODC), had no effect on microcutting development and growth. We propose that ADC regulates putrescine biosynthesis during microcutting development.  相似文献   

12.
13.
The effect of inhibitors of polyamine biosynthesis on the development of embryogenic cell cultures of celery (Apium graveolus L.) was studied. Several developmental stages of somatic embryos were compared for differences in the content and biosynthesis of free polyamines and for cytokinin content. Cyclohexylamine and particularly methylglyoxal bis(guanylhydrazone), inhibited both cell division and the organization of polar embryos from globular embryos. Difluoromethylornithine slightly promoted embryo development, especially cell division.The free putrescine content of globular embryos was 6-fold that of fully differentiated plantlets, and that of spermidine 2-fold. Only a slight increase in the spermine content was found with embryo development. These differences were confirmed by data from polyamine biosynthesis. Incorporation of 14C-arginine into polyamines was slightly higher than that of 14C-ornithine. Over 96% of this incorporation was detected in the putrescine fraction. Incorporation of 14C into putrescine in globular embryos was 3 to 4-fold that in fully-differentiated plantlets. Incorporation into spermidine and spermine was, however, higher in plantlets than in globular embryos.Cytokinin analysis revealed considerable differences in the biological activity between the developmental stages of embryogenesis. This could be due to endogenous cytokinins and/or BA taken up from the maintenance medium. Cytokinin levels decreased with increased embryo development. Most of the detected cytokinin-like activity co-chromatographed with BA and its metabolites. Some as yet unidentified peaks of activity were recorded in the globular embryos.The results are considered with respect to the possible participation of polyamines and cytokinins in the development of embryogenic cell cultures of celery. It is suggested that the onset of embryogenesis is characterized by a high content of putrescine and cytokinins, while a decrease in putrescine synthesis and cytokinin content, and an increase in spermidine and spermine content, accompany further embryo development and plantlet formation.Abbreviation ADC arginine decarboxylase - ODC ornithine decarboxylase - 2,4-D dichlorophenoxyacetic acid - DFMA difluoromethylarginine - DFMO difluoromethylornithine - MGBG methylglyoxal bis(guanylhydrazone) - CHA cyclohexylamine - BA benzyladenine - BAR benzyladenine riboside  相似文献   

14.
15.
Changes in the concentrations of endogenous free, conjugated and bound polyamine were determined in petals of two different species of rose, viz. Rosa damascena and Rosa bourboniana, from small bud (stage 1) till full bloom (stage 8). High free putrescine and spermidine concentrations were associated with early stages of flower development and then decreased in R. damascena. At full bloom, the concentration of free putrescine was higher than rest of the polyamines measured. A steady increase in conjugated putrescine, spermidine and spermine was observed during entire period of flower development with predominance of conjugated putrescine at full bloom. In R. damascena the bound spermine was higher than rest of the polyamines during full bloom. In R. bourboniana, during the early stages of flower development, similar situation was observed, however, at full bloom, free spermidine concentration was higher than rest of the polyamines. In this species, the concentration of conjugated and bound spermine was higher than rest of the polyamines during full bloom. Polyamine concentrations were generally lower in the petals of R. bourboniana than R. damascena which may be due to genotypic differences. The possible roles of the observed polyamines are discussed in relation to flower development.IHBT Communication no, 0345.  相似文献   

16.
The effect of the exogenous application of polyamines on the flowering induction of the short-day plant Pharbtis nil was investigated. Putrescine, spermidine and spermine applied on the cotyledons of 4-day seedlings had no significant effect on the flowering of this plant under conditions of full induction caused by a 16-hour-long inductive night. Under the conditions of partial induction caused by a 13-hour-long subinductive night, polyamines inhibit or stimulate flowering, depending on the time of application. Also, inhibitors of the biosynthesis of polyamines influenced the flowering process. Analysis of endogenous polyamines revealed significant fluctuations in their content in cotyledons during an inductive night, as well as under continuous light conditions. Particularly large changes occurred in spermidine and spermine levels. The putrescine level in induced seedlings was lower than in non-induced ones. However, induced seedlings contained a higher level of spermine and spermidine. The highest spermidine and spermine levels were observed at the 8th h of the night, although the total concentration of spermine during photoinduction was always 2–3 times lower than that of spermidine. A break in the inductive night, leading to a complete inhibition of flowering, had caused significant changes in the polyamine level by the end of the night. The results suggest that the flowering induction of Pharbitis nil took place at a low putrescine level and increased spermidine and spermine levels.  相似文献   

17.
The primary free polyamines identified during growth and development of strawberry (Fragaria × ananassa Duch.) microcuttings cultivated in vitro were putrescine, spermidine and spermine. Polyamine composition differed according to tissue and stages of development; putrescine was predominant in aerial green tissues and roots. -DL-difluoromethylarginine (DFMA), a specific and irreversible inhibitor of the putrescine-synthesizing enzyme, arginine decarboxylase (ADC), strongly inhibited growth and development. Application of agmatine or putrescine to the inhibited system resulted in a reversal of inhibition, indicating that polyamines are involved in regulating the growth and development of strawberry microcuttings. -DL-difluoromethylornithine (DFMO), a specific and irreversible inhibitor of putrescine biosynthesis by ornithine decarboxylase, promoted growth and development. We propose that ADC regulates putrescine biosynthesis during microcutting development. The application of exogenous polyamines (agmatine, putrescine, spermidine) stimulated development and growth of microcuttings, suggesting that the endogenous concentrations of these polyamines can be growth limiting.Abbreviations ADC arginine decarboxylase - ODC ornithine decarboxylase - DFMA -difluoromethylarginine - DFMO -difluoromethylornithine - Put putrescine - Spd spermidine - Sp spermine - DW dry weight - PA polyamine - PPF photosynthetic photon flux  相似文献   

18.
The influence of polyamines, polyamine inhibitors and ethylene inhibitors were tested in Coffea canephora for in vitro morphogenetic response and caffeine biosynthesis. Coffea canephora produced non-embryogenic and embryogenic calli. Somatic embryos were produced only from the embryogenic callus. Endogenous polyamine pools were estimated in these tissues. Somatic embryos were subjected to secondary embryogenesis under the influence of putrescine, silver nitrate and specific inhibitors of polyamine biosynthesis. Estimation of endogenous total polyamines revealed that embryogenic callus contained 11-fold more spermine and 3.3-fold higher spermidine when compared to non-embryogenic callus. Incorporation of polyamines resulted in 58% explant response for embryogenesis when compared to control with 42% response. Incorporation of silver nitrate resulted in 65% response for embryogenesis. Incorporation of polyamine biosynthetic pathway inhibitors DFMO and DFMA resulted in 83% reduction in embryogenic response with concomitant increase in caffeine levels by two-fold as compared to control. These results have clearly demonstrated that polyamines play a crucial role in embryogenesis and caffeine biosynthesis.  相似文献   

19.
We investigated how over-expression of a cDNA for human ornithine decarboxylase (odc) affects the polyamine pools in transgenic rice. We further investigated tissue-specific expression patterns and product accumulation levels of the transgene driven by either constitutive or seed-specific promoters. Our results indicate that: (1) whereas the expression of a heterologous arginine decarboxylase (adc) cDNA in rice resulted in increased putrescine and spermine levels only in seeds, plants engineered to express odc cDNA exhibited significant changes in the levels of all three major polyamines in seeds and also in vegetative tissues (leaves and roots); (2) there was no linear correlation between odc mRNA levels, ODC enzyme activity and polyamine accumulation, suggesting that control of the polyamine pathway in plants is more complex than in mammalian systems; (3) ODC activity and polyamine changes varied in different tissues, indicating that the pathway is regulated in a tissue-specific manner. Our results suggest that ODC rather than ADC is responsible for the regulation of putrescine synthesis in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号