首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intronless genes, a characteristic feature of prokaryotes, constitute a significant portion of the eukaryotic genomes. Our analysis revealed the presence of 11,109 (19.9%) and 5,846 (21.7%) intronless genes in rice and Arabidopsis genomes, respectively, belonging to different cellular role and gene ontology categories. The distribution and conservation of rice and Arabidopsis intronless genes among different taxonomic groups have been analyzed. A total of 301 and 296 intronless genes from rice and Arabidopsis, respectively, are conserved among organisms representing the three major domains of life, i.e., archaea, bacteria, and eukaryotes. These evolutionarily conserved proteins are predicted to be involved in housekeeping cellular functions. Interestingly, among the 68% of rice and 77% of Arabidopsis intronless genes present only in eukaryotic genomes, approximately 51% and 57% genes have orthologs only in plants, and thus may represent the plant-specific genes. Furthermore, 831 and 144 intronless genes of rice and Arabidopsis, respectively, referred to as ORFans, do not exhibit homology to any of the genes in the database and may perform species-specific functions. These data can serve as a resource for further comparative, evolutionary, and functional analysis of intronless genes in plants and other organisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The present study examines 783 human-mouse orthologous gene pairs for their pattern of sequence evolution, contrasting mammalia, eukaryota, coelomata, and bilateria specific human intronless genes. Such comparisons may be of use in understanding the general evolution of human genome. Evolutionary rate analyses indicate that mammalia specific human intronless genes are evolving faster as compared to other intronless genes specific to eukaryotic lineage, indicating towards their rapid evolution. The observations indicates that the genes conserved in eukaryota, coelomata, and bilateria, that is, proteins that arose earlier in evolution as compared to mammalia specific genes evolve slowly and are subjected to negative selection. The cause underlying rate variations was also explored. Although mutational bias might slightly fasten the nonsynonymous rates in mammalia specific genes, it is unlikely to be major cause of rate difference between the various categories. Furthermore, rate of divergence of mammalia specific intronless genes has been related to functional classification using the protein family annotation. Protein function was found in some cases to have larger impact on the rate of evolution of genes. Also, the codon usage pattern of mammalia specific intronless genes do not seem to differ much from those of other intronless genes conserved solely in eukaryotic lineage.  相似文献   

3.
The availability of the complete genome sequences of Homo sapiens together with those of taxonomically diverse organisms provides an opportunity to carry out cross-species comparison. Comparisons of protein sequences from different organisms are significant source of information as these could help in answering questions regarding the fraction of proteins that are shared by humans and organisms representing the three domains of life, viz., archaea, bacteria, and eukaryota. In the present study, a comparative analysis of the proteins encoded by intronless genes in humans was undertaken. We identified 1125 human intronless proteins that are solely present in eukaryotic lineage. More than two-thirds of these eukaryotic specific proteins appear to be mammalia specific while a small fraction of proteins are conserved in bilateria and coelomata, indicating that diversification of these proteins occurred after the divergence of the major lineages of the eukaryotic crown group. A large fraction of mammalia specific proteins are enriched in proteins responsible for transport and binding, cell envelope, and housekeeping function particularly translation. Another 228 intronless proteins are observed that do not exhibit homology to any of the proteins in the database. The distribution of human intronless proteins suggests that lineage specific expansion is one of the most important sources of organizational diversity in crown-group eukaryotes. The presence of these eukaryotic as well as human specific intronless proteins provides the foundation for rapid analysis of some of the basic processes involved in human genome.  相似文献   

4.
5.
Intronless genes can arise by germline retrotransposition of a cDNA originating as mRNA from an intron-containing source gene. Previously, we described several members of a family of intronless mammalian genes encoding a novel class of zinc-finger proteins, including one that shows imprinted expression and one that escapes X-inactivation. We report here the identification and characterization of the Makorin ring finger protein 1 gene (MKRN1), a highly transcribed, intron-containing source for this family of genes. Phylogenetic analyses clearly indicate that the MKRN1 gene is the ancestral founder of this gene family. We have identified MKRN1 orthologs from human, mouse, wallaby, chicken, fruitfly, and nematode, underscoring the age and conservation of this gene. The MKRN gene family encodes putative ribonucleoproteins with a distinctive array of zinc-finger motifs, including two to four C(3)H zinc-fingers, an unusual Cys/His arrangement that may represent a novel zinc-finger structure, and a highly conserved RING zinc-finger. To date, we have identified nine MKRN family loci distributed throughout the human genome. The human and mouse MKRN1 loci map to a conserved syntenic group near the T-cell receptor beta cluster (TCRB) in chromosome 7q34-q35 and chromosome 6A, respectively. MKRN1 is widely transcribed in mammals, with high levels in murine embryonic nervous system and adult testis. The ancient origin of MKRN1, high degree of conservation, and expression pattern suggest important developmental and functional roles for this gene and its expressed family members.  相似文献   

6.
We isolated a novel mouse gene, RP42, in a systematic search for genes expressed in proliferating neuroblasts whose human orthologs map to susceptibility loci for autism. This gene is intronless and encodes a putative 259-amino-acid protein that exhibits 30-36% overall sequence identity to a fission yeast and a nematode protein (GenPept Accession Nos. CAA17006 and CAB54261). Nevertheless, no homology to any known gene was found. RP42 has developmentally regulated expression, particularly in proliferating neuroblasts from which neocortical neurons originate. Its human ortholog is located in a cluster of embryonic neuronally expressed genes on the 6q16 chromosome, making it a positional candidate susceptibility gene for autism.  相似文献   

7.
8.
Multicopy Y-chromosomal genes in human and mouse have been postulated to play a role in spermatogenesis. The mouse Y long arm (Yq) carries hundreds of supposedly intronless copies of Ssty, for which no protein has hitherto been identified; mice lacking Yq are sterile with grossly abnormal sperm. We have now identified an Ssty-encoded protein (Ssty1) that is expressed in spermatids. The protein is absent from spermatids of mice that lack Yq, but is not reduced in mice with a two-thirds reduction of Ssty copies, implying that most do not produce this protein. Furthermore, no protein was produced by a strongly transcribed intronless Ssty transgene, raising doubts as to the protein-encoding potential of these intronless genes. We have now identified an intron-containing copy that is also present in multiple copies on Yq. One or more intron-containing copies are retained in the Ssty-deficient mice and may be the source of the Ssty1 protein.  相似文献   

9.
A greater understanding of the causes of human disease can come from identifying characteristics that are specific to disease genes. However, a full understanding of the contribution of essential genes to human disease is lacking, due to the premise that these genes tend to cause developmental abnormalities rather than adult disease. We tested the hypothesis that human orthologs of mouse essential genes are associated with a variety of human diseases, rather than only those related to miscarriage and birth defects. We segregated human disease genes according to whether the knockout phenotype of their mouse ortholog was lethal or viable, defining those with orthologs producing lethal knockouts as essential disease genes. We show that the human orthologs of mouse essential genes are associated with a wide spectrum of diseases affecting diverse physiological systems. Notably, human disease genes with essential mouse orthologs are over-represented among disease genes associated with cancer, suggesting links between adult cellular abnormalities and developmental functions. The proteins encoded by essential genes are highly connected in protein-protein interaction networks, which we find correlates with an over-representation of nuclear proteins amongst essential disease genes. Disease genes associated with essential orthologs also are more likely than those with non-essential orthologs to contribute to disease through an autosomal dominant inheritance pattern, suggesting that these diseases may actually result from semi-dominant mutant alleles. Overall, we have described attributes found in disease genes according to the essentiality status of their mouse orthologs. These findings demonstrate that disease genes do occupy highly connected positions in protein-protein interaction networks, and that due to the complexity of disease-associated alleles, essential genes cannot be ignored as candidates for causing diverse human diseases.  相似文献   

10.
ADP-ribosyltransferases including toxins secreted by Vibrio cholera, Pseudomonas aerurginosa, and other pathogenic bacteria inactivate the function of human target proteins by attaching ADP-ribose onto a critical amino acid residue. Cross-species polymerase chain reaction (PCR) and database mining identified the orthologs of these ADP-ribosylating toxins in humans and the mouse. The human genome contains four functional toxin-related ADP-ribosyltransferase genes (ARTs) and two related intron-containing pseudogenes; the mouse has six functional orthologs. The human and mouse ART genes map to chromosomal regions with conserved linkage synteny. The individual ART genes reveal highly restricted expression patterns, which are largely conserved in humans and the mouse. We confirmed the predicted extracellular location of the ART proteins by expressing recombinant ARTs in insect cells. Two human and four mouse ARTs contain the active site motif (R-S-EXE) typical of arginine-specific ADP-ribosyltransferases and exhibit the predicted enzyme activities. Two other human ARTs and their murine orthologues deviate in the active site motif and lack detectable enzyme activity. Conceivably, these ARTs may have acquired a new specificity or function. The position-sensitive iterative database search program PSI-BLAST connected the mammalian ARTs with most known bacterial ADP-ribosylating toxins. In contrast, no related open reading frames occur in the four completed genomes of lower eucaryotes (yeast, worm, fly, and mustard weed). Interestingly, these organisms also lack genes for ADP-ribosylhydrolases, the enzymes that reverse protein ADP-ribosylation. This suggests that the two enzyme families that catalyze reversible mono-ADP-ribosylation either were lost from the genomes of these nonchordata eucaryotes or were subject to horizontal gene transfer between kingdoms.  相似文献   

11.
12.
It has recently been shown that UDP-glucose is a potent agonist of the orphan G-protein-coupled receptor (GPCR) KIAA0001. Here we report cloning and analysis of the rat and mouse orthologs of this receptor. In accordance with GPCR nomenclature, we have renamed the cDNA clone, KIAA0001, and its orthologs GPR105 to reflect their functionality as G-protein-coupled receptors. The rat and mouse orthologs show 80% and 83% amino acid identity, respectively, to the human GPR105 protein. We demonstrate by genomic Southern blot analysis that there are no genes in the mouse or rat genomes with higher sequence similarity. Chromosomal mapping shows that the mouse and human genes are located on syntenic regions of chromosome 3. Further analyses of the rat and mouse GPR105 proteins show that they are activated by the same agonists as the human receptor, responding to UDP-glucose and closely related molecules with similar affinities. The mouse and rat receptors are widely expressed, as is the human receptor. Thus we conclude that we have identified the rat and mouse orthologs of the human gene GPR105.  相似文献   

13.
A mouse intronless gene, encoding a testis-specific poly(A) polymerase (mPAPT), was previously identified. mPAPT may play a role as a putative enzyme that is responsible for polyadenylation regulation during mouse spermatogenesis. In order to understand how PAPT genes are conserved in mammals, we isolated a human cDNA homolog encoding a human PAPT (hPAPT), which was specifically expressed in the testis. The structure of hPAPT was very similar to that of mPAPT. The about 100 residues at the C-terminal region of a nuclear poly(A) polymerase, PAP II, were missing in both PAPT proteins. An analysis of the genomic DNA showed that the hPAPT gene is an intronless gene that is similar to the mPAPT gene. Interestingly, the sequence homology between hPAPT and mPAPT was much lower than the homology between hPAP II and mPAP II. The phylogenetic analysis suggests that PAPTs arose through retrotransposition after the amphibian-amniote split during evolution.  相似文献   

14.
15.

Background

Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change.

Results

Human disease genes are unevenly distributed among human chromosomes and are highly represented (99.5%) among human-rodent ortholog sets. Differences are revealed in evolutionary conservation and selection between different categories of human disease genes. Although selection appears not to have greatly discriminated between disease and non-disease genes, synonymous substitution rates are significantly higher for disease genes. In neurological and malformation syndrome disease systems, associated genes have evolved slowly whereas genes of the immune, hematological and pulmonary disease systems have changed more rapidly. Amino-acid substitutions associated with human inherited disease occur at sites that are more highly conserved than the average; nevertheless, 15 substituting amino acids associated with human disease were identified as wild-type amino acids in the rat. Rodent orthologs of human trinucleotide repeat-expansion disease genes were found to contain substantially fewer of such repeats. Six human genes that share the same characteristics as triplet repeat-expansion disease-associated genes were identified; although four of these genes are expressed in the brain, none is currently known to be associated with disease.

Conclusions

Most human disease genes have been retained in rodent genomes. Synonymous nucleotide substitutions occur at a higher rate in disease genes, a finding that may reflect increased mutation rates in the chromosomal regions in which disease genes are found. Rodent orthologs associated with neurological function exhibit the greatest evolutionary conservation; this suggests that rodent models of human neurological disease are likely to most faithfully represent human disease processes. However, with regard to neurological triplet repeat expansion-associated human disease genes, the contraction, relative to human, of rodent trinucleotide repeats suggests that rodent loci may not achieve a 'critical repeat threshold' necessary to undergo spontaneous pathological repeat expansions. The identification of six genes in this study that have multiple characteristics associated with repeat expansion-disease genes raises the possibility that not all human loci capable of facilitating neurological disease by repeat expansion have as yet been identified.  相似文献   

16.
The dead ringer (dri) gene of Drosophila melanogaster is a member of the recently discovered ARID-box family of eukaryotic genes that encode proteins with a conserved DNA binding domain. dri itself is highly conserved, with specific orthologs in the human, mouse, zebrafish and C. elegans genomes. We have generated dri mutant alleles to show that dri is essential for anterior-posterior patterning and for muscle development in the embryo. Consistent with the mutant phenotype and the sequence-specific DNA-binding properties of its product, dri was found to be essential for the normal early embryonic expression pattern of several key regulatory genes. In dri mutant embryos, expression of argos in the terminal domains was severely reduced, accounting for the dri mutant head phenotype. Conversely, buttonhead expression was found to be deregulated in the trunk region, accounting for the appearance of ectopic cephalic furrows. Curiously, dri was found also to be required for maintenance of expression of the ventrolateral region of even-skipped stripe four. This study establishes dri as an essential co-factor in the regulated expression of specific patterning genes during early embryogenesis.  相似文献   

17.
The orthodenticle/ otx and orthopedia/ otp classes of homeobox gene families have been identified in all three major classes of bilaterians: deuterostomes, lophotrochozoans, and ecdysozoans. Otx genes have been studied extensively and play a role in the development of anterior neural structures. Otp genes have been found to be involved in nervous system development in mouse and Drosophila. To date, no members of these genes are known in molluscs. We cloned orthologs of orthodenticle/ otx and orthopedia/ otpfrom the gastropod Patella vulgata, and designated them Pv-otx and Pv-otprespectively. Our analysis of the spatio-temporal expression pattern of otx and otp orthologs during P. vulgata embryogenesis leads to the following conclusions. First, Pv-otx is expressed in and around the stomodaeum and our analysis thus supports the previously suggested conservation of the protostome and deuterostome larval mouth regions. Second, we find that Pv-otp is involved in the development of the larval apical sensory organ, suggesting a conserved role for this gene family in nervous system development. A similar conserved role in nervous system development has been proposed for orthodenticle/otx genes and we suggest that part of the cells expressing Pv-otx are involved in the development of the anterior nervous system. Last, we postulate that otx genes were ancestrally involved in the development of ciliary bands in bilaterians.  相似文献   

18.
19.
20.
OXCT/SCOT is the rate-determining enzyme in ketolysis in mitochondria of many extrahepatic organs. Two testicular isoforms, Oxct2a and Oxct2b, are highly homologous and specifically expressed in haploid spermatids of the mouse. In this report, we analyzed the structure and evolution of Oxct2a and Oxct2b. Both Oxct2's are single-copy intronless genes, of which nucleotide sequences are conserved with Oxct, indicating that these genes are transposons generated from Oxct. A CpG island was found within both Oxct2's. Oxct2a and Oxct2b are located in the third introns of Bmp8a and Bmp8b, and they are positioned within a 240-kb region in a tail-to-tail orientation on chromosome 4. This structural feature was also conserved in a syntenic region of human 1p34.3. Structural similarity between mice and humans indicated that these two sets of genes were generated by a segmental gene duplication, which occurred before the primate-rodent split. Dot matrix and phylogenetic tree analyses demonstrated that multiple rounds of intrachromosomal gene conversion between the two loci occurred in each species independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号