首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Das SB  Dinh C  Shah S  Olson D  Ross A  Selvakumar P  Sharma RK 《Gene》2007,396(2):283-292
Calmodulin-dependent cyclic nucleotide phopshodiesterase (PDE1) has been extensively characterized and is a key enzyme involved in the complex interaction between cyclic nucleotide and Ca(2+) second-messenger systems. It is well established that PDE1 exists in different isozymes. For example, bovine brain tissue has two PDE1 isozymes (PDE1A2 and PDE1B1) whereas only one form (PDE1A1) is reported in bovine cardiac tissue. In this study, we report the cloning of two cDNA splice variants of PDE1: PDE1-small and PDE1-large, from bovine cardiac tissue. Their amino acid sequence similarity to PDE1 sequences from other mammalian species showed that all are very conserved, suggesting their importance in cellular functions. Interestingly, compared to other mammalian species, bovine PDE1A, PDE-small and PDE-large show a deletion at the C-terminal end of the catalytic domain of the gene. Although the significance of this deletion at this crucial location of the gene is not known, we have successfully over-expressed both PDE1-small and PDE1-large splice variants in E. coli and these splice variants are characterized in terms of Western blot, biotinylated calmodulin overlay and peptide mass fingerprinting. Results from these studies suggested that these two splice variants belong to the PDE1 superfamily. To our knowledge, this is the first report on cloning and characterization of these cDNA variants from bovine cardiac tissue. Since there are at least two isoforms of PDE1 in bovine heart tissue, this merits further in-depth study.  相似文献   

2.
包括基质辅助激光解吸电离(MALDI)和电喷雾(ESI)在内的软电离质谱是最近发展起来的质谱技术,由于这些电离方式对样品的破坏性小,质量测定范围大,分子量测定准确,样品纯度要求不高很适合分析成分复杂的微生物样品,MALIDI-TOF-MS结合高分辨率的二维SDS-PAGE可以分析10^-12摩尔水平的蛋白,是细菌蛋白质研究过程中必不可少的工具。最近的研究工作表明,通过MAIDI-TOF-MS或HP  相似文献   

3.
4.
Periplasmic, cyclic β-glucans isolated from Bradyrhizobium elkanii, Bradyrhizobium liaoningense, and Bradyrhizobium yuanmingense strains have been investigated by means of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS), 1D and 2D nuclear magnetic resonance (NMR), as well as standard chemical methods. These compounds are built of 10–13 d-glucose residues. The main fractions contain molecules assembled of 12 hexose units (Mw = 1945.363 Da). Glucose monomers are linked by β-(1→3) or β-(1→6) glycosidic bonds. The ratio of β-(1→3) to β-(1→6) linked glucose is approximately 1:2. Moreover, methylation analysis demonstrated the presence of terminal, non-reducing, as well as branched (i.e., 3- and 6-substituted) glucoses. Thus, the basic structure of the investigated compounds is similar to that of periplasmic oligosaccharides from Bradyrhizobium japonicum and Azorhizobium caulinodans strains. The analyzed cyclic β-glucans are substituted by phosphocholine (PC) (one or two residues per ring) and highly decorated with acetate and succinate. The substituents are arranged diversely in the population of cyclic β-glucan molecules. The concentrations of cyclic β-glucans in Bradyrhizobium periplasmic space are osmotically regulated and increase in response to a decrease of medium osmolarity.  相似文献   

5.
The technique of parallel automated synthesis of oligodeoxynucleotides bearing various local thiophosphoryl internucleotide bonds was optimized using assembling in the standby mode and creation of special program blocks. The selected conditions of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI TOF MS) provided an increase in the method sensitivity (up to 1–10 fmol of oligonucleotide in sample) and registration of reliable spectra of oligodeoxynucleotide thiophosphoryl analogues. This enables to reliably prove the presence of the specified number of thiophosphoryl bonds within synthetic sequences. A series of oligodeoxynucleotides, thioanalogues of d(GGTTGGTGTGGTTGG), a known G-quadruplex antithrombin aptamer, were obtained.  相似文献   

6.
7.
Matrix-Assisted Laser Desorption Ionization-Imaging Mass Spectrometry (MALDI-IMS) is a rapidly evolving method used for the in situ visualization and localization of molecules such as drugs, lipids, peptides, and proteins in tissue sections. Therefore, molecules such as lipids, for which antibodies and other convenient detection reagents do not exist, can be detected, quantified, and correlated with histopathology and disease mechanisms. Furthermore, MALDI-IMS has the potential to enhance our understanding of disease pathogenesis through the use of “biochemical histopathology”. Herein, we review the underlying concepts, basic methods, and practical applications of MALDI-IMS, including post-processing steps such as data analysis and identification of molecules. The potential utility of MALDI-IMS as a companion diagnostic aid for lipid-related pathological states is discussed.  相似文献   

8.
The technique of parallel automated synthesis of oligodeoxynucleotides bearing various local thiophosphoryl internucleotide bonds was optimized using assembling in the standby mode and creation of special program blocks. The selected conditions of Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI TOF MS) provided an increase in the method sensitivity (up to 1-10 fmol of oligonucleotide in sample) and registration of reliable spectra of oligodeoxynucleotide thiophosphoryl analogues. This enables to reliably prove the presence of the specified number of thiophosphoryl bonds within synthetic sequences. A series of oligodeoxynucleotides, thioanalogues of d(GGTTGGTGTGGTTGG), a known G-quadruplex antithrombin aptamer, were obtained.  相似文献   

9.
We have separated 2b myosin heavy chain (MyHC) isoform from the rat extensor digitorum longus muscle by SDS-PAGE and analyzed it by two subsequent mass spectrometry techniques. After tryptic digestion, the obtained peptides were identified by Matrix-Assisted Laser Desorption/Ionisation reflectron Time of Flight mass spectrometry (MALDI-TOF MS) and sequenced by liquid chromatography tandem mass spectrometry (ESI LC/MS/MS). The analyzed peptides proportionally covered 30 % of the 2b MyHC isoform sequence. The results suggest that the primary structure is identical with the highest probability to a NCBI database record ref|NP_062198.1|, representing the last updated record of rat 2b isoform. Nonetheless, four peptides carrying amino acid substitution(s) in comparison with the NCBI database record were identified.  相似文献   

10.
Biological imaging techniques are the most efficient way to locally measure the variation of different parameters on tissue sections. These analyses are gaining increasing interest since 20 years and allow observing extremely complex biological phenomena at lower and lower time and resolution scale. Nevertheless, most of them only target very few compounds of interest, which are chosen a priori, due to their low resolution power and sensitivity. New chemical imaging technique has to be introduced in order to overcome these limitations, leading to more informative and sensitive analyses for biologists and physicians.Two major mass spectrometry methods can be efficiently used to generate the distribution of biological compounds over a tissue section. Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) needs the co-crystallization of the sample with a matrix before to be irradiated by a laser, whereas the analyte is directly desorbed by a primary ion bombardment for Secondary Ion Mass Spectrometry (SIMS) experiments. In both cases, energy used for desorption/ionization is locally deposited -some tens of microns for the laser and some hundreds of nanometers for the ion beam- meaning that small areas over the surface sample can be separately analyzed. Step by step analysis allows spectrum acquisitions over the tissue sections and the data are treated by modern informatics software in order to create ion density maps, i.e., the intensity plot of one specific ion versus the (x,y) position.Main advantages of SIMS and MALDI compared to other chemical imaging techniques lie in the simultaneous acquisition of a large number of biological compounds in mixture with an excellent sensitivity obtained by Time-of-Flight (ToF) mass analyzer. Moreover, data treatment is done a posteriori, due to the fact that no compound is selectively marked, and let us access to the localization of different lipid classes in only one complete acquisition.  相似文献   

11.
Genus Bradyrhizobium includes slow growing bacteria able to nodulate different legumes as well as species isolated from plant tumours. The slow growth presented by the members of this genus and the phylogenetic closeness of most of its species difficults their identification. In the present work we applied for the first time Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS) to the analysis of Bradyrhizobium species after the extension of MALDI Biotyper 2.0 database with the currently valid species of this genus. With this methodology it was possible to identify strains belonging to phylogenetically closely related species of genus Bradyrhizobium allowing the discrimination among species with rrs gene identities higher than 99%. The application of MALDI-TOF MS to strains isolated from nodules of different Lupinus species in diverse geographical locations allowed their correct identification when comparing with the results of rrs gene and ITS analyses. The nodulation of Lupinus gredensis, an endemic species of the west of Spain, by B. canariense supports the European origin of this species.  相似文献   

12.
The functional maturation of spermatozoa during epididymal transit in mammals accompanies the changes in their plasma membrane due to the binding or removal of proteins or interactions with the proteases, glycosidases and glycosyltransferases present in the epididymis. In order to study the surface changes in spermatozoa during their maturation in the epididymis, we previously established several monoclonal antibodies against the 54 kDa sialoglycoprotein of mouse cauda epididymal spermatozoa, which gradually increased the expression of antigenic determinants during epididymal transit. One of these monoclonal antibodies, MC121, reacted with mouse sperm glycoproteins on a polyvinylidene fluoride membrane after desialylation of the glycoproteins, and the treatment of the desialylated sperm glycoproteins with β-N-acetylhexosaminidase greatly decreased the expression of the antigenic determinants. In addition to reacting with mouse cauda epididymal spermatozoa, MC121 reacted with human red blood cells (hRBCs). MC121 induced agglutination of sialidase-treated hRBCs and stained hRBCs fixed with formalin vapor much more heavily than it stained hRBCs fixed with methanol. The thin layer chromatography (TLC) immunostaining of the sialidase-treated lipids of hRBCs with MC121 suggested that the epitope-bearing molecule is a glycosphingolipids (GSL), and that MC121 reacts with a pentaose-GSL. Analysis of sialidase-treated GSLs by TLC-Blot-Matrix Assisted Laser Desorption Ionization Time-of-Flight mass spectrometry (MALDI TOF MS) revealed that the GSL bound by MC121 was [HexNAc][HexNAc + Hex][Hex][Hex]-Cer. The lipid band stained with mAb TH2, which is specific for a GSL, GalNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ1-ceramide. These results indicated that the epitope to which MC121 binds is present in a neolacto-series GSL, IV3GalNAcβ-nLc4Cer2 sequence.  相似文献   

13.
Most techniques used to study small molecules, such as pharmaceutical drugs or endogenous metabolites, employ tissue extracts which require the homogenization of the tissue of interest that could potentially cause changes in the metabolic pathways being studied1. Mass spectrometric imaging (MSI) is a powerful analytical tool that can provide spatial information of analytes within intact slices of biological tissue samples1-5. This technique has been used extensively to study various types of compounds including proteins, peptides, lipids, and small molecules such as endogenous metabolites. With matrix-assisted laser desorption/ionization (MALDI)-MSI, spatial distributions of multiple metabolites can be simultaneously detected. Herein, a method developed specifically for conducting untargeted metabolomics MSI experiments on legume roots and root nodules is presented which could reveal insights into the biological processes taking place. The method presented here shows a typical MSI workflow, from sample preparation to image acquisition, and focuses on the matrix application step, demonstrating several matrix application techniques that are useful for detecting small molecules. Once the MS images are generated, the analysis and identification of metabolites of interest is discussed and demonstrated. The standard workflow presented here can be easily modified for different tissue types, molecular species, and instrumentation.  相似文献   

14.
A DNA fragment encoding the hepatitis B virus surface antigen was amplified from a positive blood (hepatitis B) sample and introduced into the pET 32c prokaryotic expression vector. The gene encoding the HBV surface protein antigen was introduced into pCAMBIA 3300, and immobilized into Agrobacterium tumefaciens strain LBA4404. Cotyledonary leaf sections of Cucumis sativus (cucumber) cv ‘Swarnamukhi’ were cocultivated with Agrobacterium harboring the binary vector pCAMBIA 3300 carrying the HBV surface antigen gene driven by the CaMV35S promoter and the herbicide resistance gene phosphinothricin. Putative transformed shoots were induced on a Murashige and Skoog (MS) medium containing phosphinothricin, and these were then rooted on MS basal medium supplemented with 1 mg/L Indole 3-butyric acid (IBA). Integration of the T-DNA into in putative transgenic plants was confirmed by PCR and Southern blot analyses. RT-PCR and Northern blot analyses were conducted to determine RNA expression. Levels of expression in transgenic plants were confirmed by Western blot analysis, and quantification of the protein was determined by enzyme linked immuno assay (ELISA). Molecular mass of the recombinant protein was measured by Matrix-Assisted Laser Desorption Ionization-Time-of-Flight (MALDI-TOF) Mass Spectrometry.  相似文献   

15.
Two hundred and eighteen serum samples from 175 lung cancer patients and 43 healthy individuals were analyzed by using Surface Enhaced Laser Desorption/Ionization Time of Flight Mass Spectrome-try (SELDI-TOF-MS). The data analyzed by both Biomarker Wizard™ and Biomarker Patterns™ software showed that a protein peak with the molecular weight of 11.6 kDa significantly increased in lung cancer. Meanwhile, the level of this biomarker was progressively increased with the clinical stages of lung cancer. The candidate biomarker was then obtained from tricine one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis by matching the molecular weight with peaks on WCX2 chips and was identified as Serum Amyloid A protein (SAA) by MALDI/MS-MS and database searching. It was further validated in the same serum samples by immunoprecipitation with commercial SAA antibody. To confirm the SAA differential expression in lung cancer patients, the same set of serum samples was measured by ELISA assay. The result showed that at the cutoff point 0.446 (OD value) on the Receiver Operating Characteristic (ROC) curve, SAA could better discriminate lung cancer from healthy individuals with sensitivity of 84.1% and specificity of 80%. These findings demonstrated that SAA could be characterized as a biomarker related to pathological stages of lung cancer.  相似文献   

16.
Acute phase proteins (APP) have been identified in whey and sera from healthy and mastitis cows through the proteomic analysis using two-dimensional electrophoresis (2-DE) coupled with Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Although normal and mastitis serum samples show relatively similar protein composition, marked differences in expression levels and patterns can be observed. Conversely, normal and mastitis whey showed a very different composition, likely due to extravasation of blood proteins to the mammary gland. Different isoforms from the most abundant protein in milk, casein, were detected in both normal and mastitis whey. Other proteins, such as lactotransferrin, were only detected in the inflamed animal samples. Immunoglobulins showed different patterns but not increased levels in the inflamed whey. Also, many cellular proteins in mastitis cow's whey, that were absent from healthy cow's milk. They are responsible for the great change in composition between normal and mastitis whey, especially those which exert a biological function related to immune defense. Data collected in this work are of interest for gaining information about physiological changes in protein patterns in different fluids and, the correspondent modifications as result of an acute phase process in farm. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

17.
Specific enzymatic degradation in combination with chromatographic and spectrometric techniques was used to understand acetyl group distribution over the amylopectin populations of differently sized granule fractions from potato and sweet potato starches. The hydrolysates obtained after -amylase, ß-amylase, pullulanase, and the combination of pullulanase, -amylase and amyloglucosidase treatment were investigated by high-performance size-exclusion chromatography (HPSEC), high-performance anion-exchange chromatography (HPAEC) and Maldi-Tof-MS (Matrix-Assisted Laser Desorption/Ionisation Time-Of-Flight Mass Spectrometry). The acetyl groups were found to be located near the branching point, in the external chain and in the internal chain regions. The acetyl group distributions were different for amylopectin from different granule size fractions. Higher DP (degree of polymerization) fragments were present in the digests of acetylated amylopectin populations of the small size granule starches. Our studies confirmed that acetyl groups were unevenly distributed over the amylopectin populations.  相似文献   

18.
Two hundred and eighteen serum samples from 175 lung cancer patients and 43 healthy individuals were analyzed by using Surface Enhaced Laser Desorption/Ionization Time of Flight Mass Spectrome-try (SELDI-TOF-MS). The data analyzed by both Biomarker Wizard™ and Biomarker Patterns™ software showed that a protein peak with the molecular weight of 11.6 kDa significantly increased in lung cancer. Meanwhile,the level of this biomarker was progressively increased with the clinical stages of lung cancer. The candidate biomarker was then obtained from tricine one-dimensional sodium dodecyl sul-fate-polyacrylamide gel electrophoresis by matching the molecular weight with peaks on WCX2 chips and was identified as Serum Amyloid A protein (SAA) by MALDI/MS-MS and database searching. It was further validated in the same serum samples by immunoprecipitation with commercial SAA antibody. To confirm the SAA differential expression in lung cancer patients, the same set of serum samples was measured by ELISA assay. The result showed that at the cutoff point 0.446(OD value)on the Receiver Operating Characteristic (ROC) curve, SAA could better discriminate lung cancer from healthy indi-viduals with sensitivity of 84.1% and specificity of 80%. These findings demonstrated that SAA could be characterized as a biomarker related to pathological stages of lung cancer.  相似文献   

19.
The Streptococcus bovis/equinus complex is a heterogeneous group within the group D streptococci with important clinical relevance regarding infective endocarditis, sepsis and colon carcinoma. The taxonomic identification of species and sub-species of this complex, by the standard methods remains difficult.In the present study, we compared the cluster analysis of 88 strains of species of the S. bovis/equinus complex by sequence analysis of the manganese-dependent superoxide dismutase gene (sodA) and by Matrix Assisted Laser Desorption/Ionization-Time Of Flight Mass Spectrometry (MALDI-TOF MS). We observed a high congruence of strain grouping by MALDI-TOF MS in comparison with sodA sequence analyses, demonstrating the accuracy and reliability of MALDI-TOF MS in comparison to DNA sequence-based method.By generating mass spectra for each species and sub-species, we were able to discriminate all members of the S. bovis/equinus complex. Furthermore, we demonstrated reliable identifications to the species level by MALDI-TOF MS, independently of cultivation conditions.  相似文献   

20.
Proteomics approach as a research tool has gained popularity in a growing number of basic and clinical researches. However, proteomic research has yet to gain significant momentum in eye research. Hence, we decided to build a retinal proteome database using postnatal retinal tissue from chick, a commonly used animal model in eye research. Employing 2-D gels with the coverage of 3-10 pH gradients, we were able to resolve hundreds of proteins from young chick retinae. Among them, 155 high abundant proteins were identified by Peptide Mass Fingerprinting (PMF) after the Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS). These proteins were then classified according to their functions. Making use of the retinal database, we were able to identify several differentially expressed proteins that might be involved in early retinal development by comparing the 2-DE maps of chick retinal tissues (3, 10, and 20 days after hatching). With the current proteomics approach, we not only documented the most abundant soluble proteins in the chick retinal tissue, but also demonstrated the dynamic protein expression changes during early ocular development. This represents one of the first steps in building a complete protein database in chick retinae which is applicable to the study of eye diseases from a few selected protein candidates to the whole proteome. Proteomic technology may provide a high throughput platform for advancing eye research in the feasible future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号