首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. The metabolism of [1-(14)C]glyoxylate to carbon dioxide, glycine, oxalate, serine, formate and glycollate was investigated in hyperoxaluric and control subjects' kidney and liver tissue in vitro. 2. Only glycine and carbon dioxide became significantly labelled with (14)C, and this was less in the hyperoxaluric patients' kidney tissue than in the control tissue. 3. Liver did not show this difference. 4. The metabolism of [1-(14)C]glycollate was also studied in the liver tissue; glyoxylate formation was demonstrated and the formation of (14)CO(2) from this substrate was likewise unimpaired in the hyperoxaluric patients' liver tissue in these experiments. 5. Glycine was not metabolized by human kidney, liver or blood cells under the conditions used. 6. These observations show that glyoxylate metabolism by the kidney is impaired in primary hyperoxaluria.  相似文献   

2.
Hepatectomy significantly altered the metabolism of [1-14C]glyoxylate and [1-14C]glycollate in the rat. The production of 14CO2 was reduced by 47% and 77%–86%, respectively, indicating the involvement of the liver in the oxidation of both substrates. Unidentified intermediates, assumed to be primary glycine, serine and ethanolamine, were also reduced by over 50%, was would be expected from the removal of the aminotransferase enzymes through the hepatectomy. The biosynthesis of [14C]oxalate from [1-14C]glycollate was reduced by more than 80% in the hepatectomized rat. This suggests that this oxidation is primarily catalyzed by the liver enzymes, glycolic acid oxidase and glycolic acid dehydrogenase, in the intact rat. The limited formation of [14C]oxalate from [141]glycollate observed in the hepatectomized rat is probably catalyzed by lactate dehydrogenase or extrahepatic glycolic acid oxidase. Hepatectomy did not significantly alter the rate of formation of [14C]oxalate from [141]glyoxylate. However, since saturating concentrations of glyoxylate could not be used because of the toxicity of this substrate, the involvement of glycollic acid oxidase in this oxidation reaction in the intact rat can not be ruled out. In the hepatectomized rat, lactate dehydrogenase appears to be the enzyme making the major contribution, although other as yet not identified enzymes may be contributing. The increased deposition of oxalate in the tissues, oxalosis, may result from the shift in oxalate synthesis from the liver to the extrahepatic tissues.  相似文献   

3.
Hydroxypyruvate (HP) brought about the decarboxylation of [1-14C] glyoxylate nonenzymically at all pH values considered. The rate of decomposition of glyoxylate increased with each increase in the concentrations of the reactants, the pH, and temperature and on the addition of the cations Fe2+, Mn2+, Mg2+, Zn2+, Co2+, and Cu2+. The addition of HP to a purified preparation of lactate dehydrogenase (LDH) catalyzing the oxidation of [1-14C]glyoxylate to [14C]oxalate in the presence of either NAD or NADH inhibited the production of oxalate. These observations have their implications in L-glyceric aciduria (primary hyperoxaluria type II), a syndrome characterized by the accumulation of HP and recurrent oxalosis. They suggest that the accumulating HP may reduce the contribution of intracellular glyoxylate to the formation of oxalate by competitively inhibiting the liver LDH. The involvement of liver LDH in oxalate synthesis and its postulated induction by HP and NAD in vivo are, therefore, reexamined.  相似文献   

4.
Hydroxypyruvate inhibited the oxidation of [1-14C]glyoxylate to [14C] oxalate whether catalyzed by a purified preparation of glycolic acid oxidase from human liver, lactate dehydrogenase, a human liver extract, or a lobe of rat liver. It also brought about the nonenzymic decarboxylation of [1-14C]glyoxylate when it was present in the above assay systems. Radioactive isotope dilution and high-performance liquid chromatography analysis revealed the autooxidation of hydroxypyruvate to oxalate on standing in buffered solution at pH 7.4. In view of these observations, the current hypothesis of the role of lactate dehydrogenase in inducing hyperoxaluria in L-glyceric aciduria has been reexamined, and a possible nonenzymic mechanism by which oxalate may originate from hydroxypyruvate under such conditions has been proposed.  相似文献   

5.
The hypothesis that the prior intake of barbiturates may predispose patients to form increased amounts of oxalate following the intravenous infusion of xylitol was investigated in the rat. Phenobarbitone pre-treatment resulted in a 2-3 fold increase in urinary [14C] oxalate concentration following the intraperitoneal injection of [U-14C] xylitol or [l -14C] glycollate. The absence of any marked changes in urine volumes and creatinine excretion implied that this increase in urinary oxalate excretion was due to the enhanced synthesis of oxalate. The activities of key enzymes in hepatic oxalate synthesis, glycollate oxidase, lactate dehydrogenase, catalase and alanine aminotransferase were not altered by phenobarbitone pre-treatment. It is suggested that the increased activity of the microsomal mixed function oxidases, following phenobarbitone treatment, may facilitate the oxidation of glycollate and possibly xylitol. This communication leads experimental support to the concept that the prior intake of drugs, such as barbiturates, may predispose patients to form increased amounts of oxalate.  相似文献   

6.
The metabolism of hydroxypyruvate to oxalate was studied in isolated rat hepatocytes. [14C]Oxalate was produced from [2-14C]- and [3-14C]- but not [1-14C]hydroxypyruvate. No oxalate was produced from similarly labeled pyruvate. The mechanism by which hydroxypyruvate is metabolized to oxalate involves decarboxylation at the carbon 1 position as the initial step. This activity was distinct from that which produced CO2 from the carbon 1 position of pyruvate. Hydroxypyruvate decarboxylase activity was found mainly in the mitochondria, with the remainder (25%) in the cytosol. No activity was present in the peroxisomes, the probable site of oxalate production from glycolate and glyoxylate. Hydroxypyruvate, but not pyruvate stimulated [14C]oxalate production from [U-14C]fructose, suggesting that hydroxypyruvate is either an intermediate in the fructose-oxalate pathway, or that it prevents carbon from leaving that pathway. The lack of effect of pyruvate in this regard is evidence against redox being the primary effect of hydroxypyruvate and focuses attention on hydroxypyruvate and its precursors as important sources of carbon for oxalate synthesis from both carbohydrate and protein.  相似文献   

7.
Glyoxylate decarboxylation during photorespiration   总被引:4,自引:0,他引:4  
Bernard Grodzinski 《Planta》1978,144(1):31-37
At 25° C under aerobic conditions with or without gluamate 10% of the [1-14C]glycollate oxidised in spinach leaf peroxisomes was released as 14CO2. Without glutamate only 5% of the glycollate was converted to glycine, but with it over 80% of the glycollate was metabolised to glycine. CO2 release was probably not due to glycine breakdown in these preparations since glycine decarboxylase activity was not detected. Addition of either unlabelled glycine or isonicotinyl hydrazide (INH) did not reduce 14CO2 release from either [1-14C]glycollate or [1-14C]glyoxylate. Furthermore, the amount of available H2O2 (Grodzinski and Butt, 1976) was sufficient to account for all of the CO2 release by breakdown of glyoxylate. Peroxisomal glycollate metabolism was unaffected by light and isolated leaf chloroplasts alone did not metabolise glycollate. However, in a mixture of peroxisomes and illuminated chloroplasts the rate of glycollate decarboxylation increased three fold while glycine synthesis was reduced by 40%. Although it was not possible to measure available H2O2 directly, the data are best explained by glyoxylate decarboxylation. Catalase reduced CO2 release and enhanced glycine synthesis. In addition, when a model system in which an active preparation of purified glucose oxidase generating H2O2 at a known rate was used to replace the chloroplasts, similar rates of 14CO2 release and [14C]glycine synthesis from [1-14C]glycollate were measured. It is argued that in vivo glyoxylate metabolism in leaf peroxisomes is a key branch point of the glycollate pathway and that a portion of the photorespired CO2 arises during glyoxylate decarboxylation under the action of H2O2. The possibility that peroxisomal catalase exerts a peroxidative function during this process is discussed.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - INH isonicotinylhydrazide - PHMS pyridyl-2-yl--hydroxymethane sulphonic acid  相似文献   

8.
1. Extracts of Pseudomonas sp. grown on butane-2,3-diol oxidized glyoxylate to carbon dioxide, some of the glyoxylate being reduced to glycollate in the process. The oxidation of malate and isocitrate, but not the oxidation of pyruvate, can be coupled to the reduction of glyoxylate to glycollate by the extracts. 2. Extracts of cells grown on butane-2,3-diol decarboxylated oxaloacetate to pyruvate, which was then converted aerobically or anaerobically into lactate, acetyl-coenzyme A and carbon dioxide. The extracts could also convert pyruvate into alanine. However, pyruvate is not an intermediate in the metabolism of glyoxylate since no lactate or alanine could be detected in the reaction products and no labelled pyruvate could be obtained when extracts were incubated with [1-14C]glyoxylate. 3. The 14C was incorporated from [1-14C]glyoxylate by cell-free extracts into carbon dioxide, glycollate, glycine, glutamate and, in trace amounts, into malate, isocitrate and α-oxoglutarate. The 14C was initially incorporated into isocitrate at the same rate as into glycine. 4. The rate of glyoxylate utilization was increased by the addition of succinate, α-oxoglutarate or citrate, and in each case α-oxoglutarate became labelled. 5. The results are consistent with the suggestion that the carbon dioxide arises by the oxidation of glyoxylate via reactions catalysed respectively by isocitratase, isocitrate dehydrogenase and α-oxoglutarate dehydrogenase.  相似文献   

9.
Glycolate oxidase was isolated and partially purified from human and rat liver. The enzyme preparation readily catalyzed the oxidation of glycolate, glyoxylate, lactate, hydroxyisocaproate and α-hydroxybutyrate. The oxidation of glycolate and glyoxylate by glycolate oxidase was completely inhibited by 0.02 m dl-phenyllactate or n-heptanoate. The oxidation of glyoxylate by lactic dehydrogenase or xanthine oxidase was not inhibited by 0.067 m dl-phenyllactate or n-heptanoate. The conversion of [U-14C] glyoxylate to [14C] oxalate by isolated perfused rat liver was completely inhibited by dl-phenyllactate and n-heptanoate confirming the major contribution of glycolate oxidase in oxalate synthesis. Since the inhibition of oxalate was 100%, lactic dehydrogenase and xanthine oxidase do not contribute to oxalate biosynthesis in isolated perfused rat liver. dl-Phenyllactate also inhibited [14C] oxalate synthesis from [1-14C] glycolate, [U-14C] ethylene glycol, [U-14C] glycine, [3-14C] serine, and [U-14C] ethanolamine in isolated perfused rat liver. Oxalate synthesis from ethylene glycol was inhibited by dl-phenyllactate in the intact male rat confirming the role of glycolate oxidase in oxalate synthesis in vivo and indicating the feasibility of regulating oxalate metabolism in primary hyperoxaluria, ethylene glycol poisoning, and kidney stone formation by enzyme inhibitors.  相似文献   

10.
1. In pancreatic islets, a rise in glucose concentration is known to increase the ratio between D-[6-14C]glucose oxidation and D-[5-3H]glucose utilization. The opposite situation was found to prevail in parotid cells. 2. In rat pancreatic islets, D-glucose caused a concentration-related stimulation of 3H2O production from [2-3H]glycerol, but failed to affect 3H2O production from [1(3)-3H]glycerol or 14CO2 production from [U-14C]glycerol. At the low concentration used in most of these experiments (i.e. 1.0 mM), glycerol failed to affect D-[U-14C]glucose oxidation. 3. These findings suggest that the preferential stimulation by D-glucose of mitochondrial oxidative events in pancreatic islets represents an unusual situation in secretory cells and involves an accelerated circulation in the glycerol phosphate shuttle.  相似文献   

11.
1. Micrococcus denitrificans utilized glycollate as sole carbon source for aerobic growth. Glyoxylate was utilized less well, and though glycine alone did not support growth it enhanced growth on glyoxylate. 2. During growth on glycollate, 14C was incorporated from [2-14C]glycollate into glycine and thence into aspartate, malate and glutamate. No phosphoglycerate was labelled at the earliest times. 3. Glyoxylate was the first product of glycollate utilization, and glycollate oxidase was inducibly formed on transfer of the organism to glycollate-containing media. 4. Extracts of glycollate-grown M. denitrificans contained negligible glyoxylate-carboligase activity and only low tartronate semialdehyde-reductase activity. 5. erythro-β-Hydroxyaspartate is a key intermediate in glyoxylate utilization by this organism. Enzymes catalysing (a) the synthesis of erythro-β-hydroxyaspartate from glyoxylate and glycine, and (b) the conversion of erythro-β-hydroxyaspartate into oxaloacetate, were inducibly formed during growth on glycollate and on other substrates yielding glyoxylate. Methods for the assay of these enzymes were developed. 6. It is concluded that in M. denitrificans the biosynthesis of cell materials from glycollate is accomplished by the `β-hydroxyaspartate pathway', a novel metabolic route that may also perform a catabolic role in glyoxylate oxidation.  相似文献   

12.
The effect of temperature on glycollate decarboxylation in leaf peroxisomes   总被引:1,自引:1,他引:0  
B. Grodzinski  V. S. Butt 《Planta》1977,133(3):261-266
[1-14C]glycollate was oxidised to14CO2 by peroxisomes isolated from leaves of spinach beet about 3 times as rapidly at 35°C as at 25°C; the rate was further increased with rise in temperature to a maximum at 55°C. These increases are shown to be mainly due to the increased H2O2 available to oxidise glyoxylate non-enzymically as a result of the higher temperature coefficient of glycollate oxidase activity relative to that of catalase. These results are compared with similar increases in the rate of14CO2 release between 25°C and 35°C when [1-14C]glycollate was supplied to leaf discs in light or darkness. The role of these reactions in accounting for the temperature effect on the release of photorespiratory CO2 is discussed.Abbreviations PHMS Pyrid-2-yl--hydroxymethane sulphonate - FMN flavin mononucleotide  相似文献   

13.
Hydroxypyruvate and glycolate inhibited the oxidation of [U-14C]glyoxylate to [14C]oxalate in isolated perfused rat liver, but stimulated total oxalate and glycolate synthesis. [14C]Oxalate synthesis from [14C]glycine similarly inhibited by hydroxypyruvate, but conversion of [14C1]glycolate to [4C]oxalate was increased three-fold. Pyruvate had no effect on the synthesis of [14C]oxalate or total oxalate. The inhibition studies suggest that hydroxypyruvate is a precursor of glycolate and oxalate and that the conversion of glycolate to oxalate does not involve free glyoxylate as an intermediate. [14C3]Hydroxypyruvate, but not [14C1]hydroxypyruvate, was oxidized to [14C]oxalate in isolated perfused rat liver. Isotope dilution studies indicate the major pathway involves the decarboxylation of hydroxypyruvate forming glycolaldehyde which is subsequently oxidized to oxalate via glycolate. The oxidation of serine to oxalate appears to proceed predominantly via hydroxypyruvate rather than glycine or ethanolamine. The hyperoxaluria of L-glyceric aciduria, primary hyperoxaluria type II, is induced by the oxidation of the hydroxypyruvate, which accumulates because of the deficiency of D-glyceric dehydrogenase, to oxalate.  相似文献   

14.
Leishmania major promastigotes were washed and resuspended in an iso-osmotic buffer. The rate of oxidation of 14C-labeled substrates was then measured as a function of osmolality. An acute decrease in osmolality (achieved by adding H2O to the cell suspension) caused an increase in the rates of 14CO2 production from [6-14C]glucose and, to a lesser extent, from [1,(3)-14C]glycerol. An acute increase in osmolality (achieved by adding NaCl, KCl, or mannitol) strongly inhibited the rates of 14CO2 production from [1-14C]alanine,[1-14C]glutamate, and [1,(3)-14C]glycerol. The rates of 14CO2 formation from [1-14C]laurate,[1-14C]acetate, and [2-14C]glucose (all of which form [1-14C]acetyl CoA prior to oxidation) were also inhibited, but less strongly, by increasing osmolality. These data suggest that with increasing osmolality there is an inhibition of mitochondrial oxidative capacity, which could facilitate the increase in alanine pool size that occurs in response to hyper-osmotic stress. Similarly, an increase in oxidative capacity would help prevent a rebuild up of the alanine pool after its rapid loss to the medium in response to hypo-osmotic stress.  相似文献   

15.
The linked utilization of glycollate and L-serine has been studied in peroxisomal preparations from leaves of spinach beet (Beta vulgaris L.). The generation of glycine from glycollate was found to be balanced by the production of hydroxypyruvate from serine and similarly by 2-oxoglutarate when L-glutamate was substituted for L-serine. In the presence of L-malate and catalytic quantities of NAD+, about 40% of the hydroxypyruvate was converted further to glycerate, whereas with substrate quantities of NADH, this conversion was almost quantitative. CO2 was released from the carboxyl groups of both glycollate and serine. Since the decarboxylation of both substrates was greatly in creased by the catalase inhibitor, 3-amino-1,2,4-triazole, and abolished by bovine liver catalase, it was attributed to the nonenzymic attack of H2O2, generated in glycollate oxidation, upon glyoxylate and hydroxypyruvate respectively. At 25–30° C, about 10% of the glyoxylate and hydroxypyruvate accumulated was decarboxylated, and the release of CO2 from each keto-acid was related to the amounts present. It is suggested that hydroxypyruvate decarboxylation might contribute significantly to photorespiration and provide a metabolic route for the complete oxidation of glycollate, the magnitude of this contribution depending upon the concentrations of glyoxylate and hydroxypyruvate in the peroxisomes.  相似文献   

16.
The rate and products of trichloroethylene (TCE) oxidation by Methylomicrobium album BG8 expressing membrane-associated methane monooxygenase (pMMO) were determined using 14C radiotracer techniques. [(14)C]TCE was degraded at a rate of 1.24 nmol (min mg protein)(-1) with the initial production of glyoxylate and then formate. Radiolabeled CO(2) was also found after incubating M. album BG8 for 5 h with [(14)C]TCE. Experiments with purified pMMO from Methylococcus capsulatus Bath showed that TCE could be mineralized to CO(2) by pMMO. Oxygen uptake studies verified that M. album BG8 could oxidize glyoxylate and that pMMO was responsible for the oxidation based on acetylene inactivation studies. Here we propose a pathway of TCE oxidation by pMMO-expressing cells in which TCE is first converted to TCE-epoxide. The epoxide then spontaneously undergoes HCl elimination to form glyoxylate which can be further oxidized by pMMO to formate and CO(2).  相似文献   

17.
Carbon-14 was incorporated from citrate-1,5-14C, glyoxylate-14C(U), or glyoxylate-1-14C into oxalate by cultures of Aspergillus niger pregrown on a medium with glucose as the sole source of carbon. Glyoxylate-14C(U) was superior to glyoxylate-1-14C and citrate-1,5-14C as a source of incorporation. By addition of a great amount of citrate the accumulation of oxalate was accelerated and its maximum yield increased. In a cell-free extract from mycelium forming oxalate from citrate the enzyme oxaloacetate hydrolase (EC3.7.1.1) was identified. Its in vitro activity per flask exceeded the rate of in vivo accumulation of oxalate. Glyoxylate oxidizing enzymes (glycolate oxidase, EC1.1.3.1; glyoxylate oxidase, EC1.2.3.5;NAD(P)-dependent glyoxylate dehydrogenase; glyoxylate dehydrogenase, CoA-oxalylating, EC1.2.1.7) could not be detected in cell-free extracts. It is concluded that in cultures accumulating oxalate from citrate after pregrowth on glucose, oxalate arises by hydrolytic cleavage of oxaloacetate but not by oxidation of glyoxylate.  相似文献   

18.
Previous estimates of flux through the pyruvate-dehydrogenase complex were made by measuring 14CO2 generated from oxidation of [1-14C]pyruvate, assuming a 1:1 stoichiometry. However, this method fails to discriminate between 14CO2 produced from pyruvate dehydrogenase and 14CO2 generated from phospho-enolpyruvate carboxykinase and citric-acid-cycle dehydrogenases. While some previous reports have attempted to correct for the additional 14CO2 production by comparing 14CO2 generated by [1-14C]pyruvate with [2-14C]pyruvate or [3-14C]pyruvate, the estimates are flawed by failure to determine the radioactivity and distribution of the 14C label in the oxalacetate pool. The present method circumvents these problems by utilizing [1,4-14C]succinate to radiolabel the oxalacetate pool and by directly measuring the specific radioactivity of malate. The results demonstrate that flux through the pyruvate-dehydrogenase complex is negligible compared to the other reactions which generate 14CO2 from [1-14C]lactate in the fasted state. Phenylephrine did not significantly alter this result in the fasted state. However, 14CO2 production via the pyruvate-dehydrogenase complex is large (approximately 11.5 nmol.min-1.mg mitochondrial protein-1) compared to 14CO2 production via phosphoenolpyruvate carboxykinase and citric-acid-cycle dehydrogenases (approximately 6.4 nmol.min-1.mg-1) when the pyruvate-dehydrogenase complex is activated, in the fed state with 1 mM dichloroacetate.  相似文献   

19.
Our previous report (Marsolais, C., Huot, S., David, F., Garneau, M., and Brunengraber, H. (1987) J. Biol. Chem. 262, 2604-2607) had concluded that a fraction of [14C]formate oxidation in liver occurs in the mitochondrion. This conclusion was based on the labeling patterns of urea and acetoacetate labeled via 14CO2 generated from [14C]formate and other [14C]substrates. We reassessed our interpretation in experiments conducted in (i) perifused mitochondria and (ii) isolated livers perfused with buffer containing [14C]formate, [14C]gluconolactone, 14CO2, or NaH13CO3, in the absence and presence of acetazolamide, an inhibitor of carbonic anhydrase. Our data show that the cytosolic pools of bicarbonate and CO2 are not in isotopic equilibrium when 14CO2 is generated in the cytosol or is supplied as NaH14CO3. We retract our earlier suggestion of a mitochondrial site of [14C]formate oxidation.  相似文献   

20.
The activities of enzymes catalysing glycollate oxidation, formate production and folate-dependent formate utilization were examined in the primary leaves of Hordeum vulgare cv Galt. Seedlings were grown for 6 days in darkness and then transferred to continuous light (500 μinsteins/m2 per sec) for up to 5 days. Cell-free extracts of the primary leaves contained glycollate oxidase (EC 1.1.3.1), 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5, 10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) and ability to enzymically decarboxylate glyoxylate. These activities increased during greening and at the end of the light treatment were 70–450% higher than etiolated controls. Greened primary leaves also incorporated [14C]formate at rates that were three- to four-fold higher than shown by etiolated leaves. The specific activity of 10-formyltetrahydrofolate synthetase was decreased by 20–35% when the leaves were greened in the presence of 10 mM hydroxysulphonate. This inhibitor also reduced the incorporation of [14C]formate by up to 45%. A potential flow of carbon from glycollate to 10-formyltetrahydrofolate via glyoxylate and formate was suggested by the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号