首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase pathway, also known as the MEK-ERK cascade, has been shown to regulate cartilage differentiation in embryonic limb mesoderm and several chondrogenic cell lines. In the present study, we employed the micromass culture system to define the roles of MEK-ERK signaling in the chondrogenic differentiation of neural crest-derived ectomesenchyme cells of the embryonic chick facial primordia. In cultures of frontonasal mesenchyme isolated from stage 24/25 embryos, treatment with the MEK inhibitor U0126 increased type II collagen and glycosaminoglycan deposition into cartilage matrix, elevated mRNA levels for three chondrogenic marker genes (col2a1, aggrecan, and sox9), and increased expression of a Sox9-responsive collagen II enhancer-luciferase reporter gene. Transfection of frontonasal mesenchyme cells with dominant negative ERK increased collagen II enhancer activation, whereas transfection of constitutively active MEK decreased its activity. Thus, MEK-ERK signaling inhibits chondrogenesis in stage 24/25 frontonasal mesenchyme. Conversely, MEK-ERK signaling enhanced chondrogenic differentiation in mesenchyme of the stage 24/25 mandibular arch. In mandibular mesenchyme cultures, pharmacological MEK inhibition decreased cartilage matrix deposition, cartilage-specific RNA levels, and collagen II enhancer activity. Expression of constitutively active MEK increased collagen II enhancer activation in mandibular mesenchyme, while dominant negative ERK had the opposite effect. Interestingly, MEK-ERK modulation had no significant effects on cultures of maxillary or hyoid process mesenchyme cells. Moreover, we observed a striking shift in the response of frontonasal mesenchyme to MEK-ERK modulation by stage 28/29 of development.  相似文献   

3.
4.
Studies of neural, hepatic, and other cells have demonstrated thatin vitroethanol exposure can influence a variety of membrane-associated signaling mechanisms. These include processes such as receptor-kinase phosphorylation, adenylate cyclase and protein kinase C activation, and prostaglandin production that have been implicated as critical regulators of chondrocyte differentiation during embryonic limb development. The potential for ethanol to affect signaling mechanisms controlling chondrogenesis in the developing limb, together with its known ability to promote congenital skeletal deformitiesin vivo,prompted us to examine whether chronic alcohol exposure could influence cartilage differentiation in cultures of prechondrogenic mesenchyme cells isolated from limb buds of stage 23–25 chick embryos. We have made the novel and surprising finding that ethanol is a potent stimulant ofin vitrochondrogenesis at both pre- and posttranslational levels. In high-density cultures of embryonic limb mesenchyme cells, which spontaneously undergo extensive cartilage differentiation, the presence of ethanol in the culture medium promoted increased Alcian-blue-positive cartilage matrix production, a quantitative rise in35SO4incorporation into matrix glycosaminoglycans (GAG), and the precocious accumulation of mRNAs for cartilage-characteristic type II collagen and aggrecan (cartilage proteoglycan). Stimulation of matrix GAG accumulation was maximal at a concentration of 2% ethanol (v/v), although a significant increase was elicited by as little as 0.5% ethanol (approximately 85 mM). The alcohol appears to directly influence differentiation of the chondrogenic progenitor cells of the limb, since ethanol elevated cartilage formation even in cultures prepared from distal subridge mesenchyme of stage 24/25 chick embryo wing buds, which is free of myogenic precursor cells. When limb mesenchyme cells were cultured at low density, which suppresses spontaneous chondrogenesis, ethanol exposure induced the expression of high levels of type II collagen and aggrecan mRNAs and promoted abundant cartilage matrix formation. These stimulatory effects were not specific to ethanol, since methanol, propanol, and tertiary butanol treatments also enhanced cartilage differentiation in embryonic limb mesenchyme cultures. Further investigations of the stimulatory effects of ethanol onin vitrochondrogenesis may provide insights into the mechanisms regulating chondrocyte differentiation during embryogenesis and the molecular basis of alcohol's teratogenic effects on skeletal morphogenesis.  相似文献   

5.
The embryonic chick face is composed of a series of facial primordia, epithelium-covered buds of mesenchyme, which surround the presumptive mouth. The protruding adult upper beak containing the prenasal cartilage is formed from the frontonasal mass, the paired maxillary primordia form the sides of the face, while the lower beak is derived from the paired mandibular primordia which contain the two Meckel's cartilages. When grafted to a host wing bud, the frontonasal mass and the mandibular primordia both form elongated outgrowths, whereas the maxillary primordium forms a ball of tissue. Facial epithelium is required for growth and morphogenesis of all primordia. Recombinations between epithelium and mesenchyme from different primordia show that the epithelia are interchangeable and appear to be equivalent. Even the epithelium from the maxillary primordium that does not grow out in a polarized fashion can support outgrowth of the frontonasal mass and mandibular mesenchyme. The form of the recombined graft is determined by the mesenchymal component.  相似文献   

6.
Retinoids produce facial defects in chicken embryos. Outgrowth of the frontonasal mass with accompanying cartilage differentiation and pattern formation is inhibited. In contrast, the development of the mandibular primordia that give rise to the lower beak proceeds normally. To investigate whether the upper beak defect is based on the inhibition of cartilage differentiation specifically in the frontonasal mass, the effects of retinoids on chondrogenesis in micromass (high density) cultures of cells from facial primordia have been studied. When either 10(-6) M retinoic acid or 10(-8) M (E)-4-[2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-napthalenyl-1- propenyl]benzoic acid (TTNPB; a stable retinoid) is added to the culture medium, cartilage differentiation is inhibited. Both frontonasal mass and mandible cultures are equally affected. The concentration of TTNPB found in both facial primordia in vivo, after a treatment that produces the defect, is also about 10(-8) M. This rules out preferential accumulation of the retinoid by the frontonasal mass as an explanation for the defect. In fact, the concentration of retinoid found in vivo, should, from the culture studies, be sufficient to markedly inhibit chondrogenesis in both the frontonasal mass and mandibles. The effects of exposure to retinoids in the intact face appear to be different to those in culture. Furthermore, when cells from retinoid-treated facial primordia are cultured in micromass, the extent and pattern of chondrogenesis in frontonasal mass cultures is identical to that of cells from untreated primordia. Cartilage differentiation in mandible cultures is slightly affected. These findings suggest that retinoids do not produce the specific facial defect by directly interfering with cartilage differentiation.  相似文献   

7.
The facial primordia in the chick embryo begin as rounded swellings that surround the primitive mouth and these grow out to form the beak. The control of proximodistal outgrowth is not well understood but may involve similar mechanisms to the limb bud. In order to test this hypothesis, combinations were made between epithelium and mesenchyme from facial primordia and limb buds. Signals from all three types of facial mesenchyme (frontonasal mass, mandibular, and maxillary) maintained the thickened apical ectodermal ridge of limb epithelium for up to 48 h. Combinations of tissues from the frontonasal mass mesenchyme and limb epithelium underwent substantial and correct morphogenesis. In contrast, poor development was observed in combinations with mandibular mesenchyme. Signals from frontonasal mass epithelium promoted outgrowth and morphogenesis of limb mesenchyme whereas mandibular and maxillary epithelium did not support joint morphogenesis. The results suggest that signals employed in the epithelial-mesenchymal interactions in facial primordia are similar but not identical to those signals used in the limb bud.  相似文献   

8.
Summary The face develops from small buds of tissue positioned around the primitive mouth. The chondrogenic and myogenic cell populations contained within these facial primordia in mouse embryos have been investigated in short-term micromass culture. Chondrogenesis occurred in frontonasal mass mesenchyme from E11-E13 embryos, in maxillary mesenchyme from E12.5 embryos and was absent in mandibular mesenchyme. Myogenesis was greatest in mandibular mesenchyme, moderate in maxillary mesenchyme and low in the frontonasal mass. When compared with chick embryos the mouse facial primordia have lower chondrogenic potential, which in the case of the frontonasal mass may be related to the relative outgrowth of the primordia in the two species. Chondrogenesis in the mouse mandibular mesenchyme may be affected by the presence of a large population of odontogenic mesenchyme. The behavior of myogenic cell populations is related to the pattern of the musculature of the face, as the mandible contains the most muscle, the maxilla some, and the frontonasal mass none. However, the presence of myoblasts in early mesenchyme of all primordia may indicate that, as with chick, facial primordia are initially seeded with muscle cells and that the size of the cell population is subsequently controlled according to the development of the musculature within the primordia.  相似文献   

9.
Rat frontonasal and mandibular mesenchyme was isolated from day-12 1/2 (stage-22) rat embryos and cultured at high density for up to 12 days. The stage chosen was based on the observation that mandibular mesenchyme at this stage became independent of its epithelium with respect to the production of both cartilage and bone. Frontonasal cultures developed aggregates of anastomosing columns of cells within 2 days. These grew as the cells enlarged, laying down an Alcian-blue-positive matrix by day 3 of culture. Significant mineral was detected by von Kossa staining by day 5 at which time the aggregates covered a large portion of the culture, eventually covering the entire micromass by day 10-12. Mandibular cultures developed centrally located nodular aggregates by 3 days of culture. These nodules increased in number, spreading outwards as the cells enlarged, laying down an Alcian-blue-positive matrix by day 4 and mineral by days 6-7. At this time the nodules began to elongate and coalesce, but never covered the entire culture over the 12-day period. Antibody staining revealed that in both cultures the cells were initially positive for type I collagen. Subsequently, the aggregates began expressing type II collagen, followed by type X, which coincided with the onset of mineralization. At this time some cells were negative for these cartilage markers, but positive for osteoblast markers, bone sialoprotein II, osteocalcin and type I collagen. In addition osteonectin and alkaline phosphatase were demonstrable in all of the aggregate cells late in the culture period. This provided clear evidence that chondroblast and osteoblast differentiation was proceeding within these cultures. The culture of rat facial mesenchyme should prove very useful, not only for the analysis of bone and cartilage induction and lineage relationships, but also in furthering our knowledge of craniofacial differentiation, growth and pattern formation by extending our analysis to a mammalian system.  相似文献   

10.
The effect of developmental stage on chondrogenic capacity in high-density cell cultures of chick embryonic wing bud mesenchyme is examined. Mesenchyme from stage 19 embryos forms aggregates of closely associated cells which do not form cartilage matrix, nor contain significant levels of type II collagen that are detectable by immunofluorescence, unless they are treated with dibutyryl cyclic AMP. Mesenchyme from stage 24 embryonic wing buds in high-density cell cultures will spontaneously form cartilage, as defined by electron microscopy and immunofluorescence with antibody to type II collagen. Cultures prepared from stage 26 wings form numerous aggregates which fail to accumulate an Alcian blue-staining matrix and which resemble mesenchyme cells morphologically. However, because these cells show considerable intracellular immunofluorescence for type II collagen, they are actually unexpressed cartilage cells. Several treatments, including exposure to dibutyryl cyclic AMP, ascorbic acid and an atmosphere of 5% oxygen, or mixture with small numbers of stage 24 wing mesenchyme cells, stimulate expression, as determined by the accumulation of an Alcian blue-staining matrix and an ultrastructurally recognizable cartilage matrix. Since the addition of similar numbers of differentiated cartilage cells does not stimulate expression of stage 26 cells, it is proposed that initial cartilage expression is dependent on a mesenchyme-specific influence which might be removed by cell dissociation. These studies demonstrate that there are at least two distinct transitions in cartilage differentiation: one involves the conversion of mesenchyme to unexpressed chondrocytes and the second involves mesenchyme-dependent expression of chondrogenic differentiation.  相似文献   

11.
12.
13.
14.
Differential growth of the three major facial primordia, the frontonasal mass, maxilla and mandible, results in a characteristic face shape. Abnormal growth of any of the primordia can lead to facial defects. In order to dissect out the factors that control growth, we developed a functional assay for cell proliferation using micromass culture and defined medium. Cell number was determined over a 4 day period and BrdU incorporation was used to determine the percentage of cells in S-phase. In defined medium, cell number progressively decreases and proliferation is very reduced in cultures of cells from all three primordia. When foetal calf serum was added, frontonasal mass cell number triples, mandible doubles and maxilla increases by half. The number of cells in S-phase increased in every case but the final cell number reflects a balance between proliferation and cell loss from the culture. The addition of basic fibroblast growth factor (bFGF) to defined medium leads to an increase in cell number in the frontonasal mass, while the cell number of mandibular and maxillary cultures is relatively unaffected. The percentage of cells in S-phase is highest in frontonasal mass cultures. Serum and bFGF both increase chondrogenesis in frontonasal mass cultures when compared to defined medium. In contrast in mandibular cultures, serum does not change the amount of cartilage and with bFGF chondrogenesis is reduced. The coordination of the changes in proliferation and differentiation in frontonasal mass cultures suggest that either these two processes are independently stimulated to the same extent or a single subpopulation of cells is stimulated to divide and differentiate into chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Chondrogenesis of mesenchymal cells from the frontonasal mass, mandibles and maxillae of stage-24 chick embryos has been investigated in micromass (high-density) cultures. Distinct differences in the amount and pattern of cartilage differentiation are found. In cultures of frontonasal mass cells, a central sheet of cartilage develops; in cultures of mandible cells, less cartilage differentiates and nodules form; while in cultures of maxillae cells, virtually no chondrogenesis takes place. The same patterns of cartilage are found in cultures established from stage-20 embryos. At stage 28, frontonasal mass cultures form cartilage nodules and the number of nodules in mandible cultures is markedly decreased. There are striking parallels between the chondrogenic patterns of cells from the face and limb buds in micromass culture. The frontonasal mass cell cultures of stage-20 and -24 chick embryos resemble those established from the progress zone of limb buds. The progress zone is an undifferentiated region of the limb in which positional cues operate. Cultures established from the frontonasal mass of stage-28 chick embryos and from the mandibles of all stages resemble cultures of whole limb buds. These contain a mixture of committed and uncommitted cells. Ectoderm from facial primordia locally inhibits chondrogenesis in micromass cultures and this could provide a positional cue. The differences in chondrogenic potential of cells from facial primordia may underlie the specific retinoid effects on the frontonasal mass.  相似文献   

16.
We have examined whether the production of hypertrophic cartilage matrix reflecting a late stage in the development of chondrocytes which participate in endochondral bone formation, is the result of cell lineage, environmental influence, or both. We have compared the ability of cultured limb mesenchyme and mesectoderm to synthesize type X collagen, a marker highly selective for hypertrophic cartilage. High density cultures of limb mesenchyme from stage 23 and 24 chick embryos contain many cells that react positively for type II collagen by immunohistochemistry, but only a few of these initiate type X collagen synthesis. When limb mesenchyme cells are cultured in or on hydrated collagen gels or in agarose (conditions previously shown to promote chondrogenesis in low density cultures), almost all initiate synthesis of both collagen types. Similarly, collagen gel cultures of limb mesenchyme from stage 17 embryos synthesize type II collagen and with some additional delay type X collagen. However, cytochalasin D treatment of subconfluent cultures on plastic substrates, another treatment known to promote chondrogenesis, induces the production of type II collagen, but not type X collagen. These results demonstrate that the appearance of type X collagen in limb cartilage is environmentally regulated. Mesectodermal cells from the maxillary process of stages 24 and 28 chick embryos were cultured in or on hydrated collagen gels. Such cells initiate synthesis of type II collagen, and eventually type X collagen. Some cells contain only type II collagen and some contain both types II and X collagen. On the other hand, cultures of mandibular processes from stage 29 embryos contain chondrocytes with both collagen types and a larger overall number of chondrogenic foci than the maxillary process cultures. Since the maxillary process does not produce cartilage in situ and the mandibular process forms Meckel's cartilage which does not hypertrophy in situ, environmental influences, probably inhibitory in nature, must regulate chondrogenesis in mesectodermal derivatives. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Mesenchyme cells derived from embryonic mouse limb buds were cultured at high cell density. During the first 24 h in culture, groups of mesenchyme cells condensed and formed cell contacts and specialized junctions. These condensations were the nodule primordia which gave rise to cartilage nodules. The cell contacts were lost as the mesenchyme cells in the primordia developed into cartilage nodules. The mature nodules contained chondrocytes isolated from one another by an extensive extracellular matrix consisting of cartilage type collagen fibrils and proteoglycan granules. The differentiation of the mesenchyme cells to chondrocytes was also characterized by the loss of a 240,000-MW cell surface glycoprotein and the appearance of an 80,000-MW surface protein. The addition of vitamin A to the medium on Day 1 inhibited chondrogenesis. The cells were closely packed together, and the limited extracellular space contained thick, banded collagen fibrils with no proteoglycan granules. The cells exhibited extensive areas of close membrane contact and specialized junctions. Vitamin A-treated cultures also retained the 240,000-MW surface glycoprotein and retarded the appearance of the 80,000-MW cell surface protein. The results of this study suggest that cell surface features normally present on mesenchyme cells are maintained and exaggerated by vitamin A.  相似文献   

18.
The development of the chick face involves outgrowth of buds of tissue, accompanied by the differentiation of cartilage and bone in spatially defined patterns. To investigate the role of epithelial-mesenchymal interactions in facial morphogenesis, small fragments of facial tissue have been grafted to host chick wing buds to continue their development in isolation. Fragments of the frontonasal mass give rise to typical upper-beak-like structures: a long central rod of cartilage, the prenasal cartilage and an egg tooth. Meckel's cartilage, characteristic of the lower beak, develops from fragments of the mandible. Removal of the ectoderm prior to grafting leads to truncated development. In fragments of frontonasal mass mesenchyme only a small spur of cartilage differentiates and there is no outgrowth. The mandible is less affected; a rod of cartilage still forms but the amount of outgrowth is reduced. Retinoid treatment of chick embryos specifically affects the development of the upper beak and outgrowth and cartilage differentiation in the frontonasal mass are inhibited. The mandibles, however, are unaffected and develop normally. In order to investigate whether the epithelium or the mesenchyme of the frontonasal mass is the target of retinoid action, recombinations of retinoid-treated and untreated facial tissue have been grafted to host wing buds. Recombinations of retinoid-treated frontonasal mass ectoderm with untreated mesenchyme develop normally whereas recombinations of untreated ectoderm with retinoid-treated mesenchyme lead to truncations. The amount of outgrowth in fragments of mandibular tissue is slightly reduced when either the ectoderm or the mesenchyme has been treated with retinoids. These recombination experiments demonstrate that the mesenchyme of the frontonasal mass is the target of retinoid action. This suggests that retinoids interfere with the reciprocal epithelial-mesenchymal interactions necessary for outgrowth and normal upper beak development.  相似文献   

19.
Expression of the basement membrane heparan sulfate proteoglycan (HSPG), perlecan (Pln), mRNA, and protein has been examined during murine development. Both Pln mRNA and protein are highly expressed in cartilaginous regions of developing mouse embryos, but not in areas of membranous bone formation. Initially detected at low levels in precartilaginous areas of d 12.5 embryos, Pln protein accumulates in these regions through d 15.5 at which time high levels are detected in the cartilage primordia. Laminin and collagen type IV, other basal lamina proteins commonly found colocalized with Pln, are absent from the cartilage primordia. Accumulation of Pln mRNA, detected by in situ hybridization, was increased in d 14.5 embryos. Cartilage primordia expression decreased to levels similar to that of the surrounding tissue at d 15.5. Pln accumulation in developing cartilage is preceded by that of collagen type II. To gain insight into Pln function in chondrogenesis, an assay was developed to assess the potential inductive activity of Pln using multipotential 10T1/2 murine embryonic fibroblast cells. Culture on Pln, but not on a variety of other matrices, stimulated extensive formation of dense nodules reminiscent of embryonic cartilaginous condensations. These nodules stained intensely with Alcian blue and collagen type II antibodies. mRNA encoding chondrocyte markers including collagen type II, aggrecan, and Pln was elevated in 10T1/2 cells cultured on Pln. Human chondrocytes that otherwise rapidly dedifferentiate during in vitro culture also formed nodules and expressed high levels of chondrocytic marker proteins when cultured on Pln. Collectively, these studies demonstrate that Pln is not only a marker of chondrogenesis, but also strongly potentiates chondrogenic differentiation in vitro.  相似文献   

20.
The objective of this study was to determine whether a fragment(s) of type II collagen can induce cartilage degradation. Fragments generated by cyanogen bromide (CB) cleavage of purified bovine type II collagen were separated by HPLC. These fragments together with selected overlapping synthetic peptides were first analysed for their capacity to induce cleavage of type II collagen by collagenases in chondrocyte and explant cultures of healthy adult bovine articular cartilage. Collagen cleavage was measured by immunoassay and degradation of proteoglycan (mainly aggrecan) was determined by analysis of cleavage products of core protein by Western blotting. Gene expression of matrix metalloproteinases MMP-13 and MMP-1 was measured using Real-time PCR. Induction of denaturation of type II collagen in situ in cartilage matrix with exposure of the CB domain was identified with a polyclonal and monoclonal antibodies that only react with this domain in denatured but not native type II collagen. As well as the mixture of CB fragments and peptide CB12, a single synthetic peptide CB12-II (residues 195-218), but not synthetic peptide CB12-IV (residues 231-254), potently and consistently induced in explant cultures at 10 microM and 25 microM, in a time, cell and dose dependent manner, collagenase-induced cleavage of type II collagen accompanied by upregulation of MMP-13 expression but not MMP-1. In isolated chondrocyte cultures CB12-II induced very limited upregulation of MMP-13 as well as MMP-1 expression. Although this was accompanied by concomitant induction of cleavage of type II collagen by collagenases, this was not associated by aggrecan cleavage. Peptide CB12-IV, which had no effect on collagen cleavage, clearly induced aggrecanase specific cleavage of the core protein of this proteoglycan. Thus these events involving matrix molecule cleavage can importantly occur independently of each other, contrary to popular belief. Denaturation of type II collagen with exposure of the CB12-II domain was also shown to be much increased in osteoarthritic human cartilage compared to non-arthritic cartilage. These observations reveal that peptides of type II collagen, to which there is increased exposure in osteoarthritic cartilage, can when present in sufficient concentration induce cleavage of type II collagen (CB12-II) and aggrecan (CB12-IV) accompanied by increased expression of collagenases. Such increased concentrations of denatured collagen are present in adult and osteoarthritic cartilages and the exposure of chondrocytes to the sequences they encode, either in soluble or more likely insoluble form, may therefore play a role in the excessive resorption of matrix molecules that is seen in arthritis and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号