首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 583 毫秒
1.
《Global Change Biology》2018,24(6):2416-2433
Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver‐pressure‐state‐impact‐response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time‐series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.  相似文献   

2.
We have little empirical evidence of how large‐scale overlaps between large numbers of marine species may have altered in response to human impacts. Here, we synthesized all available distribution data (>1 million records) since 1992 for 61 species of the East Australian marine ecosystem, a global hot spot of ocean warming and continuing fisheries exploitation. Using a novel approach, we constructed networks of the annual changes in geographical overlaps between species. Using indices of changes in species overlap, we quantified changes in the ecosystem stability, species robustness, species sensitivity and structural keystone species. We then compared the species overlap indices with environmental and fisheries data to identify potential factors leading to the changes in distributional overlaps between species. We found that the structure of the ecosystem has changed with a decrease in asymmetrical geographical overlaps between species. This suggests that the ecosystem has become less stable and potentially more susceptible to environmental perturbations. Most species have shown a decrease in overlaps with other species. The greatest decrease in species overlap robustness and sensitivity to the loss of other species has occurred in the pelagic community. Some demersal species have become more robust and less sensitive. Pelagic structural keystone species, predominately the tunas and billfish, have been replaced by demersal fish species. The changes in species overlap were strongly correlated with regional oceanographic changes, in particular increasing ocean warming and the southward transport of warmer and saltier water with the East Australian Current, but less correlated with fisheries catch. Our study illustrates how large‐scale multispecies distribution changes can help identify structural changes in marine ecosystems associated with climate change.  相似文献   

3.
Prediction of the impact of global climate change on marine HABs is fraught with difficulties. However, we can learn important lessons from the fossil record of dinoflagellate cysts; long‐term monitoring programs, such as the Continuous Plankton Recorder surveys; and short‐term phytoplankton community responses to El Niño Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) episodes. Increasing temperature, enhanced surface stratification, alteration of ocean currents, intensification or weakening of local nutrient upwelling, stimulation of photosynthesis by elevated CO2, reduced calcification through ocean acidification (“the other CO2 problem”), and heavy precipitation and storm events causing changes in land runoff and micronutrient availability may all produce contradictory species‐ or even strain‐specific responses. Complex factor interactions exist, and simulated ecophysiological laboratory experiments rarely allow for sufficient acclimation and rarely take into account physiological plasticity and genetic strain diversity. We can expect: (i) range expansion of warm‐water species at the expense of cold‐water species, which are driven poleward; (ii) species‐specific changes in the abundance and seasonal window of growth of HAB taxa; (iii) earlier timing of peak production of some phytoplankton; and (iv) secondary effects for marine food webs, notably when individual zooplankton and fish grazers are differentially impacted (“match‐mismatch”) by climate change. Some species of harmful algae (e.g., toxic dinoflagellates benefitting from land runoff and/or water column stratification, tropical benthic dinoflagellates responding to increased water temperatures and coral reef disturbance) may become more successful, while others may diminish in areas currently impacted. Our limited understanding of marine ecosystem responses to multifactorial physicochemical climate drivers as well as our poor knowledge of the potential of marine microalgae to adapt genetically and phenotypically to the unprecedented pace of current climate change are emphasized. The greatest problems for human society will be caused by being unprepared for significant range expansions or the increase of algal biotoxin problems in currently poorly monitored areas, thus calling for increased vigilance in seafood‐biotoxin and HAB monitoring programs. Changes in phytoplankton communities provide a sensitive early warning for climate‐driven perturbations to marine ecosystems.  相似文献   

4.
Understanding the influence of anthropogenic forcing on the marine biosphere is a high priority. Climate change‐driven trends need to be accurately assessed and detected in a timely manner. As part of the effort towards detection of long‐term trends, a network of ocean observatories and time series stations provide high quality data for a number of key parameters, such as pH, oxygen concentration or primary production (PP). Here, we use an ensemble of global coupled climate models to assess the temporal and spatial scales over which observations of eight biogeochemically relevant variables must be made to robustly detect a long‐term trend. We find that, as a global average, continuous time series are required for between 14 (pH) and 32 (PP) years to distinguish a climate change trend from natural variability. Regional differences are extensive, with low latitudes and the Arctic generally needing shorter time series (<~30 years) to detect trends than other areas. In addition, we quantify the ‘footprint’ of existing and planned time series stations, that is the area over which a station is representative of a broader region. Footprints are generally largest for pH and sea surface temperature, but nevertheless the existing network of observatories only represents 9–15% of the global ocean surface. Our results present a quantitative framework for assessing the adequacy of current and future ocean observing networks for detection and monitoring of climate change‐driven responses in the marine ecosystem.  相似文献   

5.
The International Union for Conservation of Nature Red List of Endangered Species employs a robust, standardized approach to assess extinction threat focussed on taxa approaching an end‐point in population decline. Used alone, we argue this enforces a reactive approach to conservation. Species not assessed as threatened but which occur predominantly in areas with high levels of anthropogenic impact may require proactive conservation management to prevent loss. We matched distribution and bathymetric range data from the global Red List assessment of 632 species of marine cone snails with human impacts and projected ocean thermal stress and aragonite saturation (a proxy for ocean acidification). Our results show 67 species categorized as ‘Least Concern’ have 70% or more of their occupancy in places subject to high and very high levels of human impact with 18 highly restricted species (range <100 km2) living exclusively in such places. Using a range‐rarity scoring method we identified where clusters of endemic species are subject to all three stressors: high human impact, declining aragonite saturation levels and elevated thermal stress. Our approach reinforces Red List threatened status, highlights candidate species for reassessment, contributes important evidential data to minimize data deficiency and identifies regions and species for proactive conservation.  相似文献   

6.
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses. Here, we provide a comprehensive review of the future of seagrasses in an era of ocean warming. We have gathered information from published studies to identify potential commonalities in the effects of warming and the responses of seagrasses across four distinct levels: molecular, biochemical/physiological, morphological/population, and ecosystem/planetary. To date, we know that although warming strongly affects seagrasses at all four levels, seagrass responses diverge amongst species, populations, and over depths. Furthermore, warming alters seagrass distribution causing massive die-offs in some seagrass populations, whilst also causing tropicalization and migration of temperate species. In this review, we evaluate the combined effects of ocean warming with other environmental stressors and emphasize the need for multiple-stressor studies to provide a deeper understanding of seagrass resilience. We conclude by discussing the most significant knowledge gaps and future directions for seagrass research.  相似文献   

7.
Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well‐connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean‐warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph‐theoretical approach based on centrality (eigenvector and distance‐weighted fragmentation) of habitat patches can help design better‐connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation‐only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.  相似文献   

8.
Biological communities are shaped by complex interactions between organisms and their environment as well as interactions with other species. Humans are rapidly changing the marine environment through increasing greenhouse gas emissions, resulting in ocean warming and acidification. The first response by animals to environmental change is predominantly through modification of their behaviour, which in turn affects species interactions and ecological processes. Yet, many climate change studies ignore animal behaviour. Furthermore, our current knowledge of how global change alters animal behaviour is mostly restricted to single species, life phases and stressors, leading to an incomplete view of how coinciding climate stressors can affect the ecological interactions that structure biological communities. Here, we first review studies on the effects of warming and acidification on the behaviour of marine animals. We demonstrate how pervasive the effects of global change are on a wide range of critical behaviours that determine the persistence of species and their success in ecological communities. We then evaluate several approaches to studying the ecological effects of warming and acidification, and identify knowledge gaps that need to be filled, to better understand how global change will affect marine populations and communities through altered animal behaviours. Our review provides a synthesis of the far‐reaching consequences that behavioural changes could have for marine ecosystems in a rapidly changing environment. Without considering the pervasive effects of climate change on animal behaviour we will limit our ability to forecast the impacts of ocean change and provide insights that can aid management strategies.  相似文献   

9.
As a consequence of global climate‐driven changes, marine ecosystems are experiencing polewards redistributions of species – or range shifts – across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south‐eastern Australia, a global hotspot for ocean warming. We identify range‐shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole‐of‐ecosystem management strategies and regular monitoring of range‐shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range‐shifting species can predict ecological consequences of multiple co‐occurring range shifts, guide ecosystem‐based adaptation to climate change and help prioritise future research and monitoring.  相似文献   

10.
Aim The oceans harbour a great diversity of organisms whose distribution and ecological preferences are often poorly understood. Species distribution modelling (SDM) could improve our knowledge and inform marine ecosystem management and conservation. Although marine environmental data are available from various sources, there are currently no user‐friendly, high‐resolution global datasets designed for SDM applications. This study aims to fill this gap by assembling a comprehensive, uniform, high‐resolution and readily usable package of global environmental rasters. Location Global, marine. Methods We compiled global coverage data, e.g. satellite‐based and in situ measured data, representing various aspects of the marine environment relevant for species distributions. Rasters were assembled at a resolution of 5 arcmin (c. 9.2 km) and a uniform landmask was applied. The utility of the dataset was evaluated by maximum entropy SDM of the invasive seaweed Codium fragile ssp. fragile. Results We present Bio‐ORACLE (ocean rasters for analysis of climate and environment), a global dataset consisting of 23 geophysical, biotic and climate rasters. This user‐friendly data package for marine species distribution modelling is available for download at http://www.bio‐oracle.ugent.be . The high predictive power of the distribution model of C. fragile ssp. fragile clearly illustrates the potential of the data package for SDM of shallow‐water marine organisms. Main conclusions The availability of this global environmental data package has the potential to stimulate marine SDM. The high predictive success of the presence‐only model of a notorious invasive seaweed shows that the information contained in Bio‐ORACLE can be informative about marine distributions and permits building highly accurate species distribution models.  相似文献   

11.
Ocean acidification poses a serious threat to marine calcifying organisms, yet experimental and field studies have found highly diverse responses among species and environments. Our understanding of the underlying drivers of differential responses to ocean acidification is currently limited by difficulties in directly observing and quantifying the mechanisms of bio‐calcification. Here, we present Raman spectroscopy techniques for characterizing the skeletal mineralogy and calcifying fluid chemistry of marine calcifying organisms such as corals, coralline algae, foraminifera, and fish (carbonate otoliths). First, our in vivo Raman technique is the ideal tool for investigating non‐classical mineralization pathways. This includes calcification by amorphous particle attachment, which has recently been controversially suggested as a mechanism by which corals resist the negative effects of ocean acidification. Second, high‐resolution ex vivo Raman mapping reveals complex banding structures in the mineralogy of marine calcifiers, and provides a tool to quantify calcification responses to environmental variability on various timescales from days to years. We describe the new insights into marine bio‐calcification that our techniques have already uncovered, and we consider the wide range of questions regarding calcifier responses to global change that can now be proposed and addressed with these new Raman spectroscopy tools.  相似文献   

12.
Increasing global energy demands have led to the ongoing intensification of hydrocarbon extraction from marine areas. Hydrocarbon extractive activities pose threats to native marine biodiversity, such as noise, light, and chemical pollution, physical changes to the sea floor, invasive species, and greenhouse gas emissions. Here, we assessed at a global scale the spatial overlap between offshore hydrocarbon activities and marine biodiversity (>25,000 species, nine major ecosystems, and marine protected areas), and quantify the changes over time. We discovered that two‐thirds of global offshore hydrocarbon activities occur in areas within the top 10% for species richness, range rarity, and proportional range rarity values globally. Thus, while hydrocarbon activities are undertaken in less than one percent of the ocean's area, they overlap with approximately 85% of all assessed species. Of conservation concern, 4% of species with the largest proportion of their range overlapping hydrocarbon activities are range restricted, potentially increasing their vulnerability to localized threats such as oil spills. While hydrocarbon activities have extended to greater depths since the mid‐1990s, we found that the largest overlap is with coastal ecosystems, particularly estuaries, saltmarshes and mangroves. Furthermore, in most countries where offshore hydrocarbon exploration licensing blocks have been delineated, they do not overlap with marine protected areas (MPAs). Although this is positive in principle, many countries have far more licensing block areas than protected areas, and in some instances, MPA coverage is minimal. These findings suggest the need for marine spatial prioritization to help limit future spatial overlap between marine conservation priorities and hydrocarbon activities. Such prioritization can be informed by the spatial and quantitative baseline information provided here. In increasingly shared seascapes, prioritizing management actions that set both conservation and development targets could help minimize further declines of biodiversity and environmental changes at a global scale.  相似文献   

13.
Ciliates are globally distributed eukaryotic organisms inhabiting virtually all environments on Earth. Although ciliates range from 10 µm to a few millimetres in cell size, they are repeatedly reported in the pico‐sized fraction (<2–3 µm) of molecular surveys. Here, we used existing data sets (BioMarKs and Tara Oceans) with different size fractions to demonstrate that the ciliate pico‐sized signal, probably derived from cell breakage during filtration, is informative and reliable to study marine ciliate biodiversity and biogeography. We then used sequences from the pico‐eukaryotic fraction of two circumnavigation expeditions, Malaspina‐2010 and Tara Oceans, to give insights into the taxonomic composition and horizontal and vertical distribution of ciliates in the global ocean. The results suggested a high homogeneity of ciliate communities along the ocean surface from temperate to tropical waters, with ciliate assemblages dominated by a few abundant and widely distributed taxa. Very few taxa were found in a single oceanic region, therefore suggesting a high level of ciliate cosmopolitanism in the global ocean. In vertical profiles, ciliates were detected up to 4,000 m depth, and a clear vertical community structuring was observed. Our results provided evidence supporting ciliates as deeply integrated organisms in the deep‐sea trophic web, where they may play a relevant role as symbionts of metazoans and grazers of prokaryotes and small eukaryotes in the water column and in aggregates.  相似文献   

14.
The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta‐analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co‐mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem‐level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long‐term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate‐ready and ecosystem‐level policy options for conservation, suitable for changing oceans.  相似文献   

15.
Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species‐specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 ± 19 SD and 66 ± 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the ‘business‐as‐usual' greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large‐bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks of exploited marine species using publicly and readily available information.  相似文献   

16.
Shifts in species ranges are a global phenomenon, well known to occur in response to a changing climate. New species arriving in an area may become pest species, modify ecosystem structure, or represent challenges or opportunities for fisheries and recreation. Early detection of range shifts and prompt implementation of any appropriate management strategies is therefore crucial. This study investigates whether ‘first sightings’ of marine species outside their normal ranges could provide an early warning of impending climate‐driven range shifts. We examine the relationships between first sightings and marine regions defined by patterns of local climate velocities (calculated on a 50‐year timescale), while also considering the distribution of observational effort (i.e. number of sampling days recorded with biological observations in global databases). The marine trajectory regions include climate ‘source’ regions (areas lacking connections to warmer areas), ‘corridor’ regions (areas where moving isotherms converge), and ‘sink’ regions (areas where isotherms locally disappear). Additionally, we investigate the latitudinal band in which first sightings were recorded, and species’ thermal affiliations. We found that first sightings are more likely to occur in climate sink and ‘divergent’ regions (areas where many rapid and diverging climate trajectories pass through) indicating a role of temperature in driving changes in marine species distributions. The majority of our fish first sightings appear to be tropical and subtropical species moving towards high latitudes, as would be expected in climate warming. Our results indicate that first sightings are likely related to longer‐term climatic processes, and therefore have potential use to indicate likely climate‐driven range shifts. The development of an approach to detect impending range shifts at an early stage will allow resource managers and researchers to better manage opportunities resulting from range‐shifting species before they potentially colonize.  相似文献   

17.
Ocean warming ‘hotspots’ are regions characterized by above‐average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test‐beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal‐marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high‐resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2‐driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature‐defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future climate change impacting marine ecosystems in these areas.  相似文献   

18.
Population differentiation and diversification depend in large part on the ability and propensity of organisms to successfully disperse. However, our understanding of these processes in organisms with high dispersal ability is biased by the limited genetic resolution offered by traditional genotypic markers. Many neustonic animals disperse not only as pelagic larvae, but also as juveniles and adults while drifting or rafting at the surface of the open ocean. In theory, the heightened dispersal ability of these animals should limit opportunities for species diversification and population differentiation. To test these predictions, we used next‐generation sequencing of genomewide restriction‐site‐associated DNA tags (RADseq) and traditional mitochondrial DNA sequencing, to investigate the species‐level relationships and global population structure of Planes crabs collected from oceanic flotsam and sea turtles. Our results indicate that species diversity in this clade is low—likely three closely related species—with no evidence of cryptic or undescribed species. Moreover, our results indicate weak population differentiation among widely separated aggregations with genetic indices showing only subtle genetic discontinuities across all oceans of the world (RADseq FST = 0.08–0.16). The results of this study provide unprecedented resolution of the systematics and global biogeography of this group and contribute valuable information to our understanding of how theoretical dispersal potential relates to actual population differentiation and diversification among marine organisms. Moreover, these results demonstrate the limitations of single gene analyses and the value of genomic‐level resolution for estimating contemporary population structure in organisms with large, highly connected populations.  相似文献   

19.
Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high‐Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community‐scale and long‐term experiments in stress response.  相似文献   

20.
Historically, marine ecologists have lacked efficient tools that are capable of capturing detailed species distribution data over large areas. Emerging technologies such as high‐resolution imaging and associated machine‐learning image‐scoring software are providing new tools to map species over large areas in the ocean. Here, we combine a novel diver propulsion vehicle (DPV) imaging system with free‐to‐use machine‐learning software to semi‐automatically generate dense and widespread abundance records of a habitat‐forming algae over ~5,000 m2 of temperate reef. We employ replicable spatial techniques to test the effectiveness of traditional diver‐based sampling, and better understand the distribution and spatial arrangement of one key algal species. We found that the effectiveness of a traditional survey depended on the level of spatial structuring, and generally 10–20 transects (50 × 1 m) were required to obtain reliable results. This represents 2–20 times greater replication than have been collected in previous studies. Furthermore, we demonstrate the usefulness of fine‐resolution distribution modeling for understanding patterns in canopy algae cover at multiple spatial scales, and discuss applications to other marine habitats. Our analyses demonstrate that semi‐automated methods of data gathering and processing provide more accurate results than traditional methods for describing habitat structure at seascape scales, and therefore represent vastly improved techniques for understanding and managing marine seascapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号