首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The COVID‐2019 pandemic is the most severe acute public health threat of the twenty‐first century. To properly address this crisis with both robust testing and novel treatments, we require a deep understanding of the life cycle of the causative agent, the SARS‐CoV‐2 coronavirus. Here, we examine the architecture and self‐assembly properties of the SARS‐CoV‐2 nucleocapsid protein, which packages viral RNA into new virions. We determined a 1.4 Å resolution crystal structure of this protein's N2b domain, revealing a compact, intertwined dimer similar to that of related coronaviruses including SARS‐CoV. While the N2b domain forms a dimer in solution, addition of the C‐terminal spacer B/N3 domain mediates formation of a homotetramer. Using hydrogen‐deuterium exchange mass spectrometry, we find evidence that at least part of this putatively disordered domain is structured, potentially forming an α‐helix that self‐associates and cooperates with the N2b domain to mediate tetramer formation. Finally, we map the locations of amino acid substitutions in the N protein from over 38,000 SARS‐CoV‐2 genome sequences. We find that these substitutions are strongly clustered in the protein's N2a linker domain, and that substitutions within the N1b and N2b domains cluster away from their functional RNA binding and dimerization interfaces. Overall, this work reveals the architecture and self‐assembly properties of a key protein in the SARS‐CoV‐2 life cycle, with implications for both drug design and antibody‐based testing.  相似文献   

2.
Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS‐coronavirus (SARS‐CoV). SARS‐CoV entry is facilitated by the spike protein (S), which consists of an N‐terminal domain (S1) responsible for cellular attachment and a C‐terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS‐CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site‐directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH‐independent retroviral fusion proteins, SARS‐CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS‐CoV S2 analysis showed that specific hydrophobic positions at the C‐terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C‐terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C‐terminal hydrophobic residues led us to identify a 42‐residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections.  相似文献   

3.
The Envelope (E) protein of SARS-CoV-2 is the most enigmatic protein among the four structural ones. Most of its current knowledge is based on the direct comparison to the SARS E protein, initially mistakenly undervalued and subsequently proved to be a key factor in the ER-Golgi localization and in tight junction disruption.We compared the genomic sequences of E protein of SARS-CoV-2, SARS-CoV and the closely related genomes of bats and pangolins obtained from the GISAID and GenBank databases. When compared to the known SARS E protein, we observed a significant difference in amino acid sequence in the C-terminal end of SARS-CoV-2 E protein.Subsequently, in silico modelling analyses of E proteins conformation and docking provide evidences of a strengthened binding of SARS-CoV-2 E protein with the tight junction-associated PALS1 protein. Based on our computational evidences and on data related to SARS-CoV, we believe that SARS-CoV-2 E protein interferes more stably with PALS1 leading to an enhanced epithelial barrier disruption, amplifying the inflammatory processes, and promoting tissue remodelling. These findings raise a warning on the underestimated role of the E protein in the pathogenic mechanism and open the route to detailed experimental investigations.  相似文献   

4.
Recent retrospective studies of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) disease (COVID‐19) revealed that the patients with common comorbidities of cancers and chronic diseases face significantly poorer clinical outcomes than those without. Since the expression profile of ACE2, a crucial cell entry receptor for SARS‐CoV‐2, could indicate the susceptibility to SARS‐CoV‐2 infection, here we systematically dissected ACE2 expression using large‐scale multi‐omics data from 30 organs/tissues, 33 cancer types and some common chronic diseases involving >28 000 samples. It was found that sex and age could be correlated with the susceptibility of SARS‐CoV‐2 infection for certain tissues. Strikingly, ACE2 was up‐regulated in cervical squamous cell carcinoma and endocervical adenocarcinoma, colon adenocarcinoma, oesophageal carcinoma, kidney renal papillary cell carcinoma, lung adenocarcinoma and uterine corpus endometrial carcinoma compared to controls. Furthermore, the patients with common chronic diseases regarding angiocardiopathy, type 2 diabetes, liver, pneumonia and hypertension were also with higher ACE2 expression compared to related controls, which were validated using independent data sets. Collectively, our study may reveal a novel important mechanism that the patients with certain cancers and chronic diseases may express higher ACE2 expression compared to the individuals without diseases, which could lead to their higher susceptibility to multi‐organ injury of SARS‐CoV‐2 infection.  相似文献   

5.
Severe Acute Respiratory Syndrome coronavirus 2 (SARS‐CoV‐2) is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS‐CoVs and Middle East Respiratory Syndrome coronavirus (MERS‐CoVs), the detailed information about SARS‐CoV‐2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies, and antivirals. We applied high‐throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS‐CoV‐2 proteins and structures. Here we report two high‐resolution crystal structures of endoribonuclease Nsp15/NendoU. We compare these structures with previously reported homologs from SARS and MERS coronaviruses.  相似文献   

6.
The article is presenting a bioinformatics based method predicting susceptibility for SARS‐CoV‐2 infection in domestic and wildlife animals. Recently, there were reports of cats and ferrets, dogs, minks, golden hamster, rhesus monkeys, tigers, and lions testing for SARS‐CoV‐2 RNA which indicated for the possible interspecies viral transmission. Our method successfully predicted the susceptibility of these animals for contracting SARS‐CoV‐2 infection. This method can be used as a screening tool for guiding viral RNA testing for domestic and wildlife animals at risk of getting COVID‐19. We provide a list of the animals at risk of developing COVID‐19 based on the susceptibility score.  相似文献   

7.
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is an RNA virus that causes coronavirus infection (COVID‐19). COVID‐19 is a highly contagious disease transmitted through respiratory droplets, saliva and other contact routes. Within 10 months of its outbreak, SARS‐CoV‐2 has infected more than 23 million people around the world. Evidence suggests that older adults are the most vulnerable to infection and have an increased risk of mortality. Reduced immunity and underlying medical conditions make them risk‐prone and vulnerable to critical care. Older adults affected with the SARS‐CoV‐2 virus present with distinct clinical manifestations necessitating specific treatment needs and management protocols. While it is crucial to prevent the spread of novel coronavirus (2019‐nCoV), the role of oral healthcare workers in addressing the specific needs of ageing adult patients by adopting specific guidelines and appropriate infection control protocols is timely. This paper aims to develop specific guidelines and protocols for the dental management of geriatric patients during the COVID‐19 pandemic.  相似文献   

8.
A cluster of pneumonia (COVID‐19) cases have been found in Wuhan China in late December, 2019, and subsequently, a novel coronavirus with a positive stranded RNA was identified to be the aetiological virus (severe acute respiratory syndrome coronavirus 2, SARS‐CoV‐2), which has a phylogenetic similarity to severe acute respiratory syndrome coronavirus (SARS‐CoV). SARS‐CoV‐2 transmits mainly through droplets and close contact and the elder or people with chronic diseases are high‐risk population. People affected by SARS‐CoV‐2 can be asymptomatic, which brings about more difficulties to control the transmission. COVID‐19 has become pandemic rapidly after onset, and so far the infected people have been above 2 000 000 and more than 130 000 died worldwide according to COVID‐19 situation dashboard of World Health Organization ( https://covid19.who.int ). Here, we summarized the current known knowledge regarding epidemiological, pathogenesis, pathology, clinical features, comorbidities and treatment of COVID‐19/ SARS‐CoV‐2 as reference for the prevention and control COVID‐19.  相似文献   

9.
The E6 oncoproteins from high‐risk mucosal human papillomavirus (HPV) induce cervical cancer via two major activities, the binding and the degradation of the p53 protein and PDZ domain‐containing proteins. Human MAGI‐1 is a multi‐PDZ domain protein implicated into protein complex assembly at cell–cell contacts. High‐risk mucosal HPV E6 proteins interact with the PDZ1 domain of MAGI‐1 via a C‐terminal consensus binding motif. Here, we developed a medium throughput protocol to accurately measure by surface plasmon resonance affinity constants of protein domains binding to peptidic sequences produced as recombinant fusions to the glutathione‐S‐transferase (GST). This approach was applied to measure the binding of MAGI‐1 PDZ1 to the C‐termini of viral or cellular proteins. Both high‐risk mucosal HPV E6 C‐terminal peptides and cellular partners of MAGI‐1 PDZ1 bind to MAGI‐1 PDZ1 with comparable dissociation constants in the micromolar range. MAGI‐1 PDZ1 shows a preference for C‐termini with a valine at position 0 and a negative charge at position ?3, confirming previous studies performed with HPV18 E6. A detailed combined analysis via site‐directed mutagenesis of the HPV16 C‐terminal peptide and PDZ1 indicated that interactions mediated by charged residues upstream the PDZ‐binding motif strongly contribute to binding selectivity of this interaction. In addition, our work highlighted the K499 residue of MAGI‐1 as a novel determinant of binding specificity. Finally, we showed that MAGI‐1 PDZ1 also binds to the C‐termini of LPP and Tax proteins, which were already known to bind to PDZ proteins but not to MAGI‐1. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Detection of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a crucial tool for fighting the COVID‐19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS‐CoV‐2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data‐dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass‐spectrometry method development and diagnostic of the new SARS‐CoV‐2 is proposed and the best candidates are commented.  相似文献   

11.
The serious coronavirus disease‐2019 (COVID‐19) was first reported in December 2019 in Wuhan, China. COVID‐19 is an infectious disease caused by severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2). Angiotensin converting enzyme 2(ACE2) is the cellular receptor for SARS‐CoV‐2. Considering the critical roles of testicular cells for the transmission of genetic information between generations, we analyzed single‐cell RNA‐sequencing (scRNA‐seq) data of adult human testis. The mRNA expression of ACE2 was expressed in both germ cells and somatic cells. Moreover, the positive rate of ACE2 in testes of infertile men was higher than normal, which indicates that SARS‐CoV‐2 may cause reproductive disorders through pathway activated by ACE2 and the men with reproductive disorder may easily to be infected by SARS‐CoV‐2. The expression level of ACE2 was related to the age, and the mid‐aged with higher positive rate than young men testicular cells. Taken together, this research provides a biological background of the potential route for infection of SARS‐CoV‐2 and may enable rapid deciphering male‐related reproductive disorders induced by COVID‐19.  相似文献   

12.
13.
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS‐CoV) is important for vaccine development. STR2 (an 88 kDa truncated SARS‐CoV TW1 S protein carrying the S fragments S‐74‐253, S‐294‐739, and S‐1129‐1255) is capable of expressing a major form of glycoprotein as endo H‐sensitive (~115 kDa) in CHO cells. To establish stable expressing cell clones, we transfected CHO/dhFr‐cells with the amplifiable vectors ISID (IRES‐driven dhfr) and ISIZ (SV40‐driven dhfr) to select stepwise MTX, and observed enhanced ~115 kDa glycoform generation through gene amplification. Following stepwise MTX selection, we compared gene amplification levels between two vectors in engineered CHO cell chromosomes. These results confirm that the IRES‐driven dhfr promoter generates greater gene amplification, which in turn enhances STR2 expression. Our results indicate that the ~115 kDa glycoform of STR2 protein was capable of increasing after gene amplification. The STR2 glycoform did not change between suspension and serum‐free cultures, suggesting that the stable and amplified cell clones analyzed in this study have potential for producing homologous STR2 on a large scale. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

14.
Severe acute respiratory syndrome (SARS) coronavirus (SARS‐CoV) papain‐like protease (PLpro), a deubiquitinating enzyme, demonstrates inactivation of interferon (IFN) regulatory factor 3 and NF‐κB, reduction of IFN induction, and suppression of type I IFN signaling pathway. This study investigates cytokine expression and proteomic change induced by SARS‐CoV PLpro in human promonocyte cells. PLpro significantly increased TGF‐β1 mRNA expression (greater than fourfold) and protein production (greater than threefold). Proteomic analysis, Western blot, and quantitative real‐time PCR assays indicated PLpro upregulating TGF‐β1‐associated genes: HSP27, protein disulfide isomerase A3 precursor, glial fibrillary acidic protein, vimentin, retinal dehydrogenase 2, and glutathione transferase omega‐1. PLpro‐activated ubiquitin proteasome pathway via upregulation of ubiquitin‐conjugating enzyme E2–25k and proteasome subunit alpha type 5. Proteasome inhibitor MG‐132 significantly reduced expression of TGF‐β1 and vimentin. PLpro upregulated HSP27, linking with activation of p38 MAPK and ERK1/2 signaling. Treatment with SB203580 and U0126 reduced PLpro‐induced expression of TGF‐β1, vimentin, and type I collagen. Results point to SARS‐CoV PLpro triggering TGF‐β1 production via ubiquitin proteasome, p38 MAPK, and ERK1/2‐mediated signaling.  相似文献   

15.
Since the outbreak of severe acute respiratory syndrome‐coronavirus 2 (SARS‐CoV‐2) in December 2019 in China, there has been an upsurge in the number of deaths and infected individuals throughout the world, thereby leading to the World Health Organization declaration of a pandemic. Since no specific therapy is currently available for the same, the present study was aimed to explore the SARS‐CoV‐2 genome for the identification of immunogenic regions using immunoinformatics approach. A series of computational tools were applied in a systematic way to identify the epitopes that could be utilized in vaccine development. The screened‐out epitopes were passed through several immune filters, such as promiscuousity, conservancy, antigenicity, nonallergenicity, population coverage, nonhomologous to human proteins, and affinity with human leukocyte antigen alleles, to screen out the best possible ones. Further, a construct comprising 11 CD4, 12 CD8, 3 B cell, and 3 interferon‐γ epitopes, along with an adjuvant β‐defensin, was designed in silico, resulting in the formation of a multiepitope vaccine. The in silico immune simulation and population coverage analysis of the vaccine sequence showed its capacity to elicit cellular, humoral, and innate immune cells and to cover up a worldwide population of more than 97%. Further, the interaction analysis of the vaccine construct with Toll‐like receptor 3 (immune receptor) was carried out by docking and dynamics simulations, revealing high affinity, constancy, and pliability between the two. The overall findings suggest that the vaccine may be highly effective, and is therefore required to be tested in the lab settings to evaluate its efficacy.  相似文献   

16.
The COVID‐19 pandemic has triggered numerous scientific activities aimed at understanding the SARS‐CoV‐2 virus and ultimately developing treatments. Structural biologists have already determined hundreds of experimental X‐ray, cryo‐EM, and NMR structures of proteins and nucleic acids related to this coronavirus, and this number is still growing. To help biomedical researchers, who may not necessarily be experts in structural biology, navigate through the flood of structural models, we have created an online resource, covid19.bioreproducibility.org, that aggregates expert‐verified information about SARS‐CoV‐2‐related macromolecular models. In this article, we describe this web resource along with the suite of tools and methodologies used for assessing the structures presented therein.  相似文献   

17.
SARS‐CoV‐2 is a novel betacoronavirus that has caused the global health crisis known as COVID‐19. The implications of mitochondrial dysfunction with COVID‐19 are discussed as well as deregulated mitochondria and inter‐organelle functions as a posited comorbidity enhancing detrimental outcomes. Many environmental chemicals (ECs) and endocrine‐disrupting chemicals can do damage to mitochondria and cause mitochondrial dysfunction. During infection, SARS‐CoV‐2 via its binding target ACE2 and TMPRSS2 can disrupt mitochondrial function. Viral genomic RNA and structural proteins may also affect the normal function of the mitochondria‐endoplasmic reticulum‐Golgi apparatus. Drugs considered for treatment of COVID‐19 should consider effects on organelles including mitochondria functions. Mitochondrial self‐balance and clearance via mitophagy are important in SARS‐CoV‐2 infection, which indicate monitoring and protection of mitochondria against SARS‐CoV‐2 are important. Mitochondrial metabolomic analysis may provide new indicators of COVID‐19 prognosis. A better understanding of the role of mitochondria during SARS‐CoV‐2 infection may help to improve intervention therapies and better protect mitochondrial disease patients from pathogens as well as people living with poor nutrition and elevated levels of socioeconomic stress and ECs.  相似文献   

18.
With the outbreak of a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the public healthcare systems are facing great challenges. Coronavirus disease 2019 (COVID‐19) could develop into severe pneumonia, acute respiratory distress syndrome and multi‐organ failure. Remarkably, in addition to the respiratory symptoms, some COVID‐19 patients also suffer from cardiovascular injuries. Dipeptidyl peptidase‐4 (DPP‐4) is a ubiquitous glycoprotein which could act both as a cell membrane‐bound protein and a soluble enzymatic protein after cleavage and release into the circulation. Despite angiotensin‐converting enzyme 2 (ACE2), the recently recognized receptor of SARS‐CoV and SARS‐CoV‐2, which facilitated their entries into the host, DPP‐4 has been identified as the receptor of middle east respiratory syndrome coronavirus (MERS‐CoV). In the current review, we discussed the potential roles of DPP‐4 in COVID‐19 and the possible effects of DPP‐4 inhibitors on cardiovascular system in patients with COVID‐19.  相似文献   

19.
20.
The outbreak of SARS in 2003, MERS in 2012, and now COVID-19 in 2019 has demonstrated that Coronaviruses are capable of causing primary lethal infections in humans, and the pandemic is now a global concern. The COVID-19 belongs to the beta coronavirus family encoding 29 proteins, of which four are structural, the Spike, Membrane, Envelope, and Nucleocapsid proteins. Here we have analyzed and compared the Membrane (M) and Envelope (E) proteins of COVID-19 and MERS with SARS and Bat viruses. The sequence analysis of conserved regions of both E and M proteins revealed that many regions of COVID-19 are similar to Bat and SARS viruses while the MERS virus showed variations. The essential binding motifs found in SARS appeared in COVID-19. Besides, the M protein of COVID-19 showed a distinct serine phosphorylation site in the C-terminal domain, which looked like a catalytic triad seen in serine proteases. A Dileucine motif occurred many times in the sequence of the M protein of all the four viruses compared. Concerning the structural part, the COVID-19 E protein showed more similarity to Bat while MERS shared similarity with the SARS virus. The M protein of both COVID-19 and MERS displayed variations in the structure. The interaction between M and E proteins was also studied to know the additional binding regions. Our study highlights the critical motifs and structural regions to be considered for further research to design better inhibitors for the infection caused by these viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号