首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Large-scale cultivation of pearl millet [Pennisetum glaucum (L.) R. Br. F1 hybrids in India has led to increased incidence of downy-mildew (Sclerospora graminicola). There is concern that the A1 male-sterile cytoplasm used in all the hybrids released so far is responsible for this increase. The influence of A1 malesterile cytoplasm on downy-mildew incidence in pearl millet was studied by comparing the disease reaction of 40 pairs of F1 hybrids, each pair carrying respectively a1 male-sterile and normal B cytoplasm. Mean downy-mildew incidence was similar in the hybrids carrying either A1 male-sterile or B cytoplasm. The general combining ability of lines with and without A1 cytoplasm was found to be similar for downy-mildew incidence. These results indicated that in pearl millet A1 cytoplasm is not associated with increased downymildew incidence. The possible danger of using only one source of cytoplasm has been briefly discussed.  相似文献   

2.
Plants regenerated from seed-derived callus of a PNMS 6B line of pearl millet (Pennisetum glaucum (L.) R. Br.) were evaluated for their resistance induced by somaclonal variation for downy mildew disease caused by Sclerospora graminicola (Sacc.) Schroter. Among the 201 lines regenerated, only 3 lines consistently proved highly resistant (free from disease incidence) for up to 5 generations; whereas, 17 lines were resistant (disease incidence ranging from 1 to 9%). Resistance was confirmed by testing the plants under both laboratory and field conditions. The plants were evaluated for their agronomic traits. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Influence of increased K supply on growth and nutrient content in pearl millet (Pennisetum glaucum) under severe water stress was assessed in a pot experiment under glasshouse conditions. Nineteen-day-old plants of two lines, ICMV94133 and WCA-78 were subjected for 30 d to 235, 352.5, and 470 mg(K) kg–1(soil) and two water regimes (100 and 30% field capacity). Increasing soil K supply did not alleviate the adverse effect of water deficit on the growth of two lines of pearl millet. Accumulation of N and K in the shoots of both lines was higher under water deficit than that under well-watered conditions, but such effect was not observed for P or Ca.  相似文献   

4.
The use of different sources of cytoplasmic male sterility (CMS) in hybrid seed production of pearl millet [Pennisetum glaucum (L.) R. Br.] is advocated to avoid possible disease epidemics occurring due to cytoplasmic uniformity. The effects of commercially unexploited, but potentially exploitable, sources of CMS, like A2, A3 and A4, on downy mildew [Sclerospora graminicola (Sacc.) Schroet] incidence were studied by using the disease incidence of isonuclear hybrids with male-sterile and fertile cytoplasm. The mean downy mildew incidence of hybrids carrying different male-sterile cytoplasm was similar to that of hybrids retaining the fertile cytoplasm. The cytoplasm accounted for only 0.6% of the total variation and its effect was non-significant; pollinators could explain most of the variation in determining the disease incidence of hybrids. This suggested that these male-sterile cytoplasms are not linked to downy mildew susceptibility and thus can be exploited commercially to broaden the cytoplasmic base of the male-sterile lines and, ultimately, of hybrids.  相似文献   

5.
Among the various available sources of male-sterile cytoplasm in pearl millet [Pennisetum glaucum (L.) R.Br.], the A1 source has been exploited the most for the breeding of commercial F1 hybrids. The effect of this source on the combining ability (CA) for smut severity was studied since it is the CA that determines the performance of hybrids. The effect was estimated by comparing the CA estimates of 5 pairs of lines and 35 pairs of crosses with and without A1 cytoplasm. The cytoplasm showed either a significantly desirable or at least no adverse effect on the CA of 4 out of the 5 line pairs and 56 out of 70 pairs of comparison of crosses in two environments. The differential effect of cytoplasm in some pairs might be due to its interaction with nuclear genes. These results further substantiated that the A1 cytoplasm is not linked with increased smut severity in pearl millet hybrids.  相似文献   

6.
We present data on the evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). A defective Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and its entire 4531 bp sequence has been determined. When the pearl millet Ac-like sequence is aligned with the maize Ac sequence, it is found that there is approximately 70% DNA similarity in the central region spanning most of maize Ac exon II and all of exon III. In addition, there are two smaller regions of similarity at the Ac terminii. Besides these three major structural similarities, Pennisetum Ac has two large regions, one 5 and one 3, that show little similarity to Zea Ac. Furthermore, most of the sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between the central region of maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. Conserved DNA and amino acid sequence motifs are also examined. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet and have thus existed in the grasses for at least 25 million years.  相似文献   

7.
Sex as a factor affecting recovered recombination in plant gametes was investigated in pearl millet, Pennisetum glaucum, by using reciprocal three-way crosses [(AxB)xCvCx(A x B)]. The two populations were mapped at 42 loci pre-selected to cover the majority of the genome. No differences in recombination distances were observed at the whole-genome level and only a few individual linkage intervals were found to differ, all in favour of increased recombination through the male. Distorted segregations found in the three-way crosses provide evidence of post-gametic selection for particular gene(s) or chromosome regions. The significance of these results for the design of pearl millet breeding programmes and inheritance experiments, as well as for other experimental strategies, is discussed.  相似文献   

8.
The effects of homoeology and sex on recombination frequency were studied in crosses between cultivated pearl millet, Pennisetum glaucum, and two wild subspecies, P. violaceum and P. mollissimum. For the two wild x cultivated crosses, reciprocal three-way crosses were made between the F1 hybrid and an inbred line (Tift 23DB1). The three-way cross populations were mapped to produce a female map of each wide cross (where the F1 was the female) and a male map (where the F1 was the male). Total genetic map lengths of the two inter-subspecies crosses were broadly similar and around 85 % of a comparable intervarietal map. In the P. glaucumxP. mollissimum crosses, the map was further shortened by a large (40 cM) inversion in linkage group 1. Comparison of the recovered recombinants from male and female meiocytes showed an overall trend for the genetic maps to be longer in the male (10%) in both inter-subspecific crosses; however, analysis of individual linkage intervals showed no significant differences. Gametophytic selection was prevalent, and sometimes extreme, for example 121 in favour of wild alleles in the P. glaucumxP. mollissimum male recombinant population. One of the loci which determines panicle type in cultivated pearl millet and wild relatives, H, was mapped 9 cM from Xpsm812 on linkage group 7 in the P. violaceum cross.  相似文献   

9.
Summary Germ plasm from the A-genome of Pennisetum purpureum Schum. (AABB) of the secondary gene pool was transferred to cultivated pearl millet (AA) [P. glaucum (L.) R. Br.] by pollinating cytoplasmicnuclear male-sterile (cms) pearl millet with fertile allohexaploid pearl millet x P. purpureum hybrids (AAAABB). Certain allohexaploids used as pollinators on cms pearl millet resulted in 14-chromosome diploid pearl millet progenies. Three types of diploid pearl millet plants were produced in addition to the expected 28-chromosome AAAB-genome plants: (1) cms plants with only the A-genome, (2) cms plants with the A- and A-genomes, and (3) fertile plants with the A- and A-genomes. The latter group has allowed the utilization of genes for fertility restoration, stiff stalk, maturity, height, and morphological characteristics from the A-genome of P. purpureum in the pearl millet breeding program. Production of monoploid gametes by the allohexaploids appeared to be genetically controlled.  相似文献   

10.
Correlation and path-coefficient analyses have been successful tools in developing selection criteria. Since increased seed yield is an important goal in our pearl millet x elephantgrass [Pennisetum glaucum (L.) R.Br. x P. purpureum Schum.] hexaploid breeding program, we used correlation and path-coefficient analyses on seed data. This study was conducted to develop appropriate selection criteria by determining the direct and indirect effects of seed-yield components on seed yield plant-1. Number of tillers plant-1, panicles tiller-1, seeds panicle-1, 100-seed weight, and seed yield plant-1, were estimated for individual plants in seven families. Phenotypic (rp) and genetic correlations (rg) were calculated, and path analyses (phenotypic and genetic) were carried out according to predetermined causal relationships. Phenotypic and genetic correlations differed in several cases due to large environmental variance and covariance. Phenotypically, all components were positively and significantly associated with seed yield plant-1. Genotypically, only seeds panicle-1 and 100-seed weight were significantly correlated. These two components were also positively correlated (r p=0.55, r g=0.63), so simultaneous improvement for both components would be feasible. Panicles tiller-1 and seeds panicle-1 were negatively correlated (r g=-0.97). In the path analyses, all direct effects of the components on seed yield plant-1 were positive. Phenotypic indirect effects were not as important as genetic indirect effects. The components seeds panicle-1 and 100-seed weight influenced seed yield plant-1 the greatest, both directly and indirectly.Florida Agricultural Experimental Station Journal Series No. R-03339  相似文献   

11.
This study was designed to identify and compare the Fusarium species of the Gibberella fujikuroi complex on pearl millet (Pennisetum glaucum (L.) R. Br) and corn (Zea mays L.) crops grown in southern Georgia, and to determine their influence on potential fumonisin production. Pearl millet and corn samples were collected in Georgia in 1996, 1997 and 1998. Three percent of the pearl millet seeds had fungi similar to the Fusarium species of the G. fujikuroi species complex. One hundred and nineteen representative isolates visually similar to the G. fujikuroi species complex from pearl millet were paired with mating population A (Fusarium verticillioides (Sacc.) Nirenberg), mating population D (F. proliferatum (Matsushima) Nirenberg) and mating population F (F. thapsinum (Klittich, Leslie, Nelson and Marasas) tester strains. Successful crosses were obtained with 50.4%, 10.1% and 0.0% of these isolates with the A, D and F tester strains, while 39.5 of the isolates did not form perithecia with any tester strains. Two of the typical infertile isolates were characterized by DNA sequence comparisons and were identified as Fusarium pseudonygamai (Nirenberg and ODonnell), which is the first known isolation of this species in the United States. Based on the pattern of cross-compatibility, conidiogenesis, colony characteristics and media pigmentation, a majority of the infertile isolates belong to this species. Fumonisins FB1 and FB2 were not detected in any of the 81 pearl millet samples analyzed. The species of the G. fujikuroi species complex were dominant in corn and were isolated from 84%, 74% and 65% of the seed in 1996, 1997 and 1998, respectively. Representative species of the G. fujikuroi species complex were isolated from 1996 to 1998 Georgia corn survey (162, 104 and 111 isolates, respectively) and tested for mating compatibility. The incidence of isolates belonging to mating population A (F. verticillioides) ranged from 70.2% to 89.5%. Corn survey samples were assayed for fumonisins, and 63% to 91% of the 1996, 1997 and 1998 samples were contaminated. The total amount of fumonisins in the corn samples ranged from 0.6 to 33.3 g/g.  相似文献   

12.
Summary Pearl millet, Pennisetum americanum L. Leeke-napiergrass, Pennisetum purpureum Schum. amphiploids (2n=42) were crossed with pearl millet X Pennisetum squamulatum Fresen. interspecific hybrids (2n=41) to study the potential of germplasm transfer from wild Pennisetum species to pearl millet. These two interspecific hybrids were highly cross-compatible and more than two thousand trispecific progenies were produced from 17 double crosses. All doublecross hybrids were perennial and showed a wide range of morphological variations intermediate to both parents in vegetative and inflorescence characteristics. Some crosses resulted in sublethal progenies. Chromosomes paired mainly as bivalents (¯x15.88) or remained as univalents. At metaphase I, trivalents, quadrivalents, an occasional hexavalent and a high frequency of bivalents indicated some homeology among the genomes of the three species. Delayed separation of bivalents, unequal segregation of multivalents, lagging chromosomes, and chromatin bridges were observed at anaphase I. Although approximately 93% of the double-cross hybrids were male-sterile, pollen stainability in male-fertile plants ranged up to 94%. Seed set ranged from 0 to 37 seed per inflorescence in 71 plants under open-pollinated conditions. Apomictic embryo sac development was observed in double-cross progenies when crosses involved a pearl millet x P. squamulatum apomictic hybrid as pollen parent. These new double-cross hybrids may serve as bridging hybrids to transfer genes controlling apomixis and other plant characteristics from the wild Pennisetum species to pearl millet.  相似文献   

13.
14.
A. F. MacRae  M. T. Clegg 《Genetica》1992,86(1-3):55-66
We present data on evolution of the Ac/Ds family of transposable elements in select grasses (Poaceae). An Ac-like element was cloned from a DNA library of the grass Pennisetum glaucum (pearl millet) and 2387 bp of it have been sequenced. When the pearl millet Ac-like sequence is aligned with the corresponding region of the maize Ac sequence, it is found that all sequences corresponding to intron II in maize Ac are absent in pearl millet Ac. Kimura's evolutionary distance between maize and pearl millet Ac sequences is estimated to be 0.429±0.020 nucleotide substitutions per site. This value is not significantly different from the average number of synonymous substitutions for coding regions of the Adh1 gene between maize and pearl millet, which is 0.395±0.051 nucleotide substitutions per site. If we can assume Ac and Adh1 divergence times are equivalent between maize and pearl millet, then the above calculations suggest Ac-like sequences have probably not been strongly constrained by natural selection. The level of DNA sequence divergence between maize and pearl millet Ac sequences, the estimated date when maize and pearl millet diverged (25–40 million years ago), coupled with their reproductive isolation/lack of current genetic exchange, all support the theory that Ac-like sequences have not been recently introduced into pearl millet from maize. Instead, Ac-like sequences were probably present in the progenitor of maize and pearl millet, and have thus existed in the grasses for at least 25 million years. Ac-like sequences may be widely distributed among the grasses. We also present the first 2 Dsl controlling element sequences from teosinte species: Zea luxurians and Zea perennis. A total of 10 Dsl elements had previously been sequenced from maize and a distant maize relative, Tripsacum. When a maximum likelihood network of genetic relationships is constructed for all 12 sequenced Dsl elements, the 2 teosinte Dsl elements are as distant from most maize Dsl elements and from each other, as the maize Dsl elements are from one another. Our new teosinte sequence data support the previous conclusion that Dsl elements have been accumulating mutations independently since maize and Tripsacum diverged. We present a scenario for the origin of Dsl elements.  相似文献   

15.
Pearl millet (Pennisetum glaucum L. Br.) is the most important crop in India and Africa. Downy mildew disease of pearl millet caused by the oomycetous fungus Sclerospora graminicola (Sacc.) Schroet., is the major biological constraint in the production of pearl millet. Plasma membrane H+-ATPase is induced in resistant pearl millet against downy mildew pathogen. Sodium orthovanadate, an inhibitor of H+-ATPase, was used in this study to understand its effect on other known defence responses in pearl millet including H+-ATPase. Results suggest that vanadate down-regulates all defence responses tested, such as H+-ATPase (53 ± 5.0%), peroxidase (36 ± 5.6%), phenylalanine ammonia lyase (43 ± 4.5%), β-1,3 glucanase (25 ± 4.2%), lytic activity (32 ± 3.0%), hypersensitive response (57 ± 4.3%) and pathogen colonisation. These data indicate that the plasma membrane H+-ATPase may be a key step in the signaling pathway leading to defence activation in pearl millet against downy mildew disease.  相似文献   

16.
Summary Genetic analysis was conducted on the qualitative and quantitative traits of sexual progeny derived from embryogenic cultures of two inbred lines of Pennisetum glaucum (L.) R. Br. (pearl millet). These lines included a genetically stable inbred of Tift 23 BE and a genetic marker line, derived from Tift 23BE, which bore qualitative genetic markers for a dominant purple plant trait (P) and two recessive traits, early flowering (e1) and yellow stripe (ys). Tissue culture regenerant populations (R0) and progeny populations (R1) produced from these plants by selfing showed no qualitative genetic variation when derived from the genetically stable inbred Tift 23BE. In contrast, stably inherited qualitative variation for a number of genetic markers was observed in R0, R1, and R2 progeny of the genetic marker line. In a population of 1,911 plants regenerated over a 12-month period, 0.02% of the population lost or showed reduced expression of the purple plant trait and 92% of plants were chlorophyll deficient. Plants showing reduction or loss of anthocyanin synthesis also flowered later. None of the purple plants showed any significant variation in flowering time. The incidence of chlorophyll deficiency increased with time in culture, 51 % of the progeny regenerated after 1 month were chlorophyll deficient, while 100% of the plants regnerated after 12 months were chlorophyll deficient. Qualitative variation was also observed in control populations of the genetic marker line where 1 plant in a total of 1,010 lacked purple pigmentation and a total of 6% showed chlorophyll variation in the first generation (S0). The presence of qualitative variation in controls suggests that the inherent variation present in the original explant was expressed and perpetuated in vitro. Quantitative variation was observed for a number of traits in the first sexual cycle (R1) of the marker line but did not occur in a subsequent generation, suggesting that this variation was epigenetic.  相似文献   

17.
The principal landraces of the pearl millet,Pennisetum glaucum (L.)R. Br., from Niger have been analysed for their genetic structure at eight enzyme systems coded by 12 loci and 46 alleles. Three groups have been identified: (1) early-maturing pearl millets, cultivated between 8° and 13°E longitude, including the oases from Aïr mountains; (2) early-maturing millets situated more to the west (1° and 8°E longitude), and (3) late-maturing millets. Group 1 shows the highest isozyme diversity. The differences between the accessions represent 8.8% of the total diversity and the differences between the three groups 4.5%. The accessions from groups 1 and 3 are the least distant. When considering pearl millets from areas outside Niger, the chadian and sudanese millets are enzymatically close to the Niger group 1. The pearl millets from Niger group 2 are close to millets from east Mali, northern Burkina Faso and Senegal, and the Niger group 3 to the late-maturing millets group from West Africa. This study should help breeders to select the landraces for improvement and parents for crosses from cultivars of Niger and introduced germ plasm.  相似文献   

18.
Summary Sixteen translocation stocks developed in pearl millet, Pennisetum typhoides (Burm.) S.&H. (2 n = 14) were inter-crossed and the meiotic configurations of f1's analysed. A translocation tester set comprising five translocation stocks, each involving two non-homologous chromosomes has been developed.  相似文献   

19.
S. Madhavan  B. N. Smith 《Protoplasma》1984,122(3):157-161
Summary Phosphoenolpyruvate carboxylase (E. C. 4.1.1.31) was localized in the guard cells by an indirect, immunofluorescent technique using antisera raised against the enzyme from bothPennisetum glaucum R. Br. (pearl millet) andEscherichia coli. Of the 17 species of plants examined, only monocot species showed fluorescence with millet phosphoenolpyruvate carboxylase antiserum and onlyNephrolepis exaltata (L.) Schott,Zygocactus truncatus Haworth, andEcheveria gibbiflora D. C. displayed fluorescence withE. coli phosphoenolpyruvate carboxylase antiserum.  相似文献   

20.
 Pearl millet [Pennisetum glaucum (L.) R.Br.] is a warm-season grass used for food, feed, fodder and forage, primarily in countries of Africa and India but grown around the world. The two most-destructive diseases to pearl millet in the United States are rust (caused by Puccinia substriata var. indica) and pyricularia leaf spot (caused by Pyricularia grisea). Genes for disease resistance to both pathogens have been transferred into agronomically acceptable forage and grain cultivars. A study was undertaken to identify molecular markers for three rust loci and one pyricularia resistance locus. Three segregating populations were screened for RAPDs using random decamer primers and for RFLPs using a core set of probes detecting single-copy markers on the pearl millet map. The rust resistance gene Rr 1 from the pearl millet subspecies P. glaucum ssp. monodii was linked 8.5 cM from the RAPD OP-G8350. The linkage of two RFLP markers, Xpsm108 (15.5 cM) and Xpsm174 (17.7 cM), placed the Rr 1 gene on linkage-group 3 of the pearl millet map. Rust resistance genes from both Tift 89D2 and ICMP 83506 were placed on linkage-group 4 by determining genetic linkage to the RFLP marker Xpsm716 (4.9 and 0.0 cM, respectively). Resistance in ICMP 83506 was also linked to the RFLP marker Xpsm306 (10.0 cM), while resistance in Tift 89D2 was linked to RAPD markers OP-K19350 (8.8 cM) and OP-O8350 (19.6 cM). Fragments from OP-K19 and OP-O8 in the ICMP 83506 population, and Xpsm306 in the Tift 89D2 population, were monomorphic. Only one RAPD marker (OP-D11700, 5.6 cM) was linked to pyricularia leaf spot resistance. Attempts to detect polymorphisms with rice RFLP probes linked to rice blast resistance (Pyricularia oryzae; syn=P. grisea) were unsuccessful. Received: 19 May 1997 / Accepted: 21 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号