首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Acetylcholinesterase reactivators are crucial antidotes for the treatment of organophosphate intoxication. Eighteen monoquaternary reactivators of acetylcholinesterase with modified side chain were developed in an effort to extend the properties of pralidoxime. The known reactivators (pralidoxime, HI-6, obidoxime, trimedoxime, methoxime) and the prepared compounds were tested in vitro on a model of tabun- and paraoxon-inhibited AChE. Monoquaternary reactivators were not able to exceed the best known compounds for tabun poisoning, but some of them did show reactivation better or comparable with pralidoxime for paraoxon poisoning. However, extensive differences were found by a SAR study for various side chains on the non-oxime part of the reactivator molecule.  相似文献   

2.
These experiments were performed on a rat model. The rats were divided into eight groups and consequently exposed to either a saline solution (control), atropine or a combination of atropine and tabun. The reactivation efficacy of the oximes was estimated on the rats exposed to tabun, atropine and a reactivator of AChE. The oximes HI-6, obidoxime, trimedoxime, K203 and KR-22836 were used as representative compounds of commonly available and new AChE reactivators. Besides the positive effect of the administered reactivators on blood AChE activity, the sizable modulation of low molecular weight antioxidant (LMWA) levels was also determined. The LMWA levels in the the animals treated with the oxime reactivators were decreased in comparison with the animals treated by atropine alone. It was found that the levels of LMWA returned to the level found in the control animals when either trimedoxime, K203 or KR-22836 were administered. The principle of oxime reactivator function and a novel insight into AChE activity regulation and oxidative stress is discussed.  相似文献   

3.
The potency of newly developed bispyridinium compounds (K206, K269) in reactivating tabun-inhibited acetylcholinesterase and eliminating tabun-induced lethal toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies which determined percentage of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime in blood but lower than the reactivating potency of trimedoxime and obidoxime in the diaphragm and brain. Nevertheless, the differences in reactivating efficacy of obidoxime, trimedoxime and K206 was not significant while the potency of K269 to reactivate tabun-inhibited acetylcholinesterase was significantly lower. Both newly developed oximes were also found to be relatively efficacious in elimination of the lethal toxic effects in tabun-poisoned mice. Their therapeutic efficacy corresponds to the therapeutic potency of obidoxime. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and to counteract lethal effects of tabun. Both newly developed oximes (K206, K269) are significantly more efficacious in reactivating tabun-inhibited AChE in rats and to eliminate lethal toxic effects of tabun in mice than the oxime HI-6 but their reactivating and therapeutic potency does not prevail over the effectiveness of currently available obidoxime and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.  相似文献   

4.
The potency of newly developed bispyridinium compounds (K206, K269) in reactivating tabun-inhibited acetylcholinesterase and eliminating tabun-induced lethal toxic effects was compared with commonly used oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies which determined percentage of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats showed that the reactivating efficacy of both newly developed oximes is comparable with obidoxime and trimedoxime in blood but lower than the reactivating potency of trimedoxime and obidoxime in the diaphragm and brain. Nevertheless, the differences in reactivating efficacy of obidoxime, trimedoxime and K206 was not significant while the potency of K269 to reactivate tabun-inhibited acetylcholinesterase was significantly lower. Both newly developed oximes were also found to be relatively efficacious in elimination of the lethal toxic effects in tabun-poisoned mice. Their therapeutic efficacy corresponds to the therapeutic potency of obidoxime. The oxime HI-6, relatively efficacious against soman, did not seem to be an adequately effective oxime in reactivation of tabun-inhibited AChE and to counteract lethal effects of tabun. Both newly developed oximes (K206, K269) are significantly more efficacious in reactivating tabun-inhibited AChE in rats and to eliminate lethal toxic effects of tabun in mice than the oxime HI-6 but their reactivating and therapeutic potency does not prevail over the effectiveness of currently available obidoxime and trimedoxime and, therefore, they are not suitable for their replacement of commonly used oximes for the treatment of acute tabun poisoning.  相似文献   

5.
Photometric microplate assay was performed for testing of paraoxon-inhibited acetylcholinesterase (AChE) using three reactivators for reactivation purposes: obidoxime, pralidoxime, and HI-6. 3-D graphs (percent of reactivation vs. concentration of reactivator and vs. time of reactivator effecting) were constructed for each reactivator to compare their efficacy. The best results were obtained using obidoxime where reactivation was near to 80%. Suitability of photometric microplates for following of reactivation procedures is discussed.  相似文献   

6.
Photometric microplate assay was performed for testing of paraoxon-inhibited acetylcholinesterase (AChE) using three reactivators for reactivation purposes: obidoxime, pralidoxime, and HI-6. 3-D graphs (percent of reactivation vs. concentration of reactivator and vs. time of reactivator effecting) were constructed for each reactivator to compare their efficacy. The best results were obtained using obidoxime where reactivation was near to 80%. Suitability of photometric microplates for following of reactivation procedures is discussed.  相似文献   

7.
Nerve agents such as sarin, cyclosarin and tabun are organophosphorus substances able to inhibit the enzyme acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None of the known AChE reactivators is able to reactivate AChE inhibited by all nerve agents used. In this work, reactivation potency of nine newly developed AChE reactivators with an incorporated xylene ring in their structure was measured in vitro. Cyclosarin was chosen as an appropriate member of the nerve agent family. Reactivation potency of the tested AChE reactivators was compared with the gold standard of AChE reactivators--pralidoxime. Two oximes (K107 and K108) surpassed the reactivation potency of pralidoxime. Moreover, from the obtained results it could be deduced that AChE reactivators with a functional oxime group in position-2 are the most potent AChE reactivators in the case of cyclosarin intoxications.  相似文献   

8.
Nerve agents such as sarin, cyclosarin and tabun are organophosphorus substances able to inhibit the enzyme acetylcholinesterase (AChE; EC 3.1.1.7). AChE reactivators and anticholinergics are generally used as antidotes in the case of intoxication with these agents. None of the known AChE reactivators is able to reactivate AChE inhibited by all nerve agents used. In this work, reactivation potency of nine newly developed AChE reactivators with an incorporated xylene ring in their structure was measured in vitro. Cyclosarin was chosen as an appropriate member of the nerve agent family. Reactivation potency of the tested AChE reactivators was compared with the gold standard of AChE reactivators – pralidoxime. Two oximes (K107 and K108) surpassed the reactivation potency of pralidoxime. Moreover, from the obtained results it could be deduced that AChE reactivators with a functional oxime group in position-2 are the most potent AChE reactivators in the case of cyclosarin intoxications.  相似文献   

9.
Six AChE monooxime-monocarbamoyl reactivators with an (E)-but-2-ene linker were synthesized using modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and insecticide paraoxon was tested in vitro. The reactivation efficacies of pralidoxime, HI-6, obidoxime, K048, K075 and the newly prepared reactivators were compared. According to the results obtained, one reactivator seems to be promising against tabun-inhibited AChE and two reactivators against paraoxon-inhibited AChE. The best results were obtained for bisquaternary substances with at least one oxime group in position four.  相似文献   

10.
Six AChE monooxime-monocarbamoyl reactivators with an (E)-but-2-ene linker were synthesized using modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and insecticide paraoxon was tested in vitro. The reactivation efficacies of pralidoxime, HI-6, obidoxime, K048, K075 and the newly prepared reactivators were compared. According to the results obtained, one reactivator seems to be promising against tabun-inhibited AChE and two reactivators against paraoxon-inhibited AChE. The best results were obtained for bisquaternary substances with at least one oxime group in position four.  相似文献   

11.
The potency of newly developed bispyridinium compounds (K250, K251) in reactivating tabun-inhibited acetylcholinesterase and reducing tabun-induced lethal toxic effects was compared with currently available oximes (obidoxime, trimedoxime, the oxime HI-6) using in vivo methods. Studies determined percentage of reactivation of tabun-inhibited blood and tissue AChE in poisoned rats and showed that the reactivating efficacy of both newly developed oximes is comparable with the oxime HI-6 but it is significantly lower than the reactivating effects of obidoxime and trimedoxime, especially in diaphragm and brain. Both newly developed oximes were also found to be able to slightly reduce lethal toxic effects in tabun-poisoned mice. Their therapeutic efficacy is higher than the potency of the oxime HI-6 but it is lower than the therapeutic effects of trimedoxime and obidoxime. Thus, the reactivating and therapeutic potency of both newly developed oximes (K250, K251) does not prevail over the effectiveness of currently available oximes and, therefore, they are not suitable for their replacement for the treatment of acute tabun poisoning.  相似文献   

12.
Treatment of poisoning by highly toxic organophosphorus compounds (OP) with atropine and an acetylcholinesterase (AChE) reactivator (oxime) is of limited effectiveness in case of different nerve agents and pesticides. One challenge is the reactivation of OP-inhibited brain AChE which shows inadequate success with charged pyridinium oximes. Recent studies with high doses of the tertiary oxime isonitrosoacetone (MINA) indicated a beneficial effect on central and peripheral AChE and on survival in nerve agent poisoned guinea pigs. Now, an in vitro study was performed to determine the reactivation kinetics of MINA with tabun-, sarin-, cyclosarin-, VX- and paraoxon-inhibited human AChE. MINA showed an exceptionally low affinity to inhibited AChE but, with the exception of tabun-inhibited AChE, a moderate to high reactivity. In comparison to the pyridinium oximes obidoxime, 2-PAM and HI-6 the affinity and reactivity of MINA was in most cases lower and in relation to the most effective reactivators, the second order reactivation constant of MINA was 500 to 3400-fold lower. Hence, high in vivo MINA concentrations would be necessary to achieve at least partial reactivation. This assumption corresponds to in vivo data showing a dose-dependent effect on reactivation and survival in animals. In view, of the toxic potential of MINA in animals human studies would be necessary to determine the tolerability and pharmacokinetics of MINA in order to enable a proper assessment of the value of this oxime as an antidote in OP poisoning.  相似文献   

13.
Oxime reactivators are the drugs of choice for the post-treatment of OP (organophosphorus) intoxication and used widely for mechanistic and kinetic studies of OP-inhibited cholinesterases. The purpose of the present study was to evaluate new oxime compounds to reactivate acetylcholinesterase (AChE) inhibited by the OP paraoxon. Several new bisquaternary pyridinium oximes with heterocyclic linkers along with some known bisquaternary pyridinium oximes bearing aliphatic linkers were synthesized and evaluated for their in vitro reactivation potency against paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE). Results herein indicate that most of the compounds are better reactivators of EeAChE than of rHuAChE. The reactivation potency of two different classes of compounds with varying linker chains was compared and observed that the structure of the connecting chain is an important factor for the activity of the reactivators. At a higher concentration (10?3 M), compounds bearing aliphatic linker showed better reactivation than compounds with heterocyclic linkers. Interestingly, oximes with a heterocyclic linker inhibited AChE at higher concentration (10?3 M), whereas their ability to reactivate was increased at lower concentrations (10?4 M and 10?5 M). Compounds bearing either a thiophene linker 26, 46 or a furan linker 31 showed 59%, 49% and 52% reactivation of EeAChE, respectively, at 10?5 M. These compounds showed 14%, 6% and 15% reactivation of rHuAChE at 10?4 M. Amongst newly synthesized analogs with heterocyclic linkers (2635 and 4546), compound 31, bearing furan linker chain, was found to be the most effective reactivator with a kr 0.042 min?1, which is better than obidoxime (3) for paraoxon-inhibited EeAChE. Compound 31 showed a kr 0.0041 min?1 that is near equal to pralidoxime (1) for paraoxon-inhibited rHuAChE.  相似文献   

14.
Six novel AChE reactivators with a (Z)-but-2-ene linker were synthesized using the known synthetic pathways. Their ability to reactivate AChE, which had been previously inhibited by nerve agent tabun or pesticide paraoxon, was tested in vitro and compared to pralidoxime, HI-6, obidoxime, and K075. The novel synthesized compounds were found to be ineffective against GA-inhibited AChE but the ability of (Z)-1,4-bis(4-hydroxyiminomethylpyridinium)-but-2-ene dibromide to reactivate paraoxon-inhibited AChE was comparable with that of oxime K075. Notably, the oxime group in position four substantially increased the ability of the novel compounds to reactivate paraoxon-inhibited AChE.  相似文献   

15.
First-line medical treatment against nerve agents consists of co-administration of anticholinergic agents and oxime reactivators, which reactivate inhibited AChE. Pralidoxime, a commonly used oxime reactivator, is effective against some nerve agents but not against others; thus, new oxime reactivators are needed. Novel tacrine-pyridinium hybrid reactivators in which 4-pyridinealdoxime derivatives are connected to tacrine moieties by linear carbon chains of different lengths (C2–C7) were prepared (Scheme 1, 5a–f). Their binding affinities to electric eel AChE were tested because oximes can inhibit free AChE, and the highest AChE activity (95%, 92%, and 90%) was observed at 1?μM concentrations of the oximes (5a, 5b, and 5c, respectively). Based on their inhibitory affinities towards free AChE, 1?μM concentrations of the oxime derivatives (5) were used to examine reactivation of paraoxon-inhibited AChE. Reactivation ability increased as the carbon linker chains lengthened (n?=?2–5), and 5c and 5d showed remarkable reactivation ability (41%) compared to that of 2-PAM (16%) and HI-6 (4%) against paraoxon-inhibited electric eel AChE at 1?μM concentrations. Molecular docking simulation showed that the most stable binding free energy was observed in 5c at 73.79?kcal?mol?1, and the binding mode of 5c is acceptable for the oxygen atom of oximate to attack the phosphorus atom of paraoxon and reactivate paraoxon-inhibited eel AChE model structure.  相似文献   

16.
In this work, the ability of four newly synthesized oximes--K005 (1,3-bis(2-hydroxyiminomethylpyridinium) propane dibromide), K027 (1-(4-hydroxyiminomethylpyridinium)-3-(4-carbamoylpyridinium) propane dibromide), K033 (1,4-bis(2-hydroxyiminomethylpyridinium) butane dibromide) and K048 (1-(4-hydroxyiminomethylpyridinium)-4-(4-carbamoylpyridinium) butane dibromide) to reactivate acetylcholinesterase (AChE, EC 3.1.1.7) inhibited by nerve agents is summarized. Reactivation potency of these compounds was tested using standard in vitro reactivation test. Tabun, sarin, cyclosarin and VX agent were used as appropriate testing nerve agents. Rat brain AChE was used as a source of the enzyme. Efficacies of new reactivators to reactivate tabun-, sarin-, cyclosarin- and VX-inhibited AChE were compared with the currently used AChE reactivators (pralidoxime, obidoxime and HI-6). Oxime K048 seems to be promising reactivator of tabun-inhibited AChE. Its reactivation potency is significantly higher than that of HI-6 and pralidoxime and comparable with the potency of obidoxime. The best reactivator of sarin-inhibited AChE seems to be oxime HI-6. None of the new AChE reactivators reached comparable reactivation potency. The same results were obtained for cyclosarin-inhibited AChE. However, oxime K033 is also potent reactivator of AChE inhibited by this nerve agent. In the case of VX inhibition, obidoxime and new oximes K027 and K048 seem to be the best AChE reactivators. None from the currently tested AChE reactivators is able to reactivate AChE inhibited by all nerve agents used and, therefore, the search for new potential broad spectrum AChE reactivators is needed.  相似文献   

17.
One of the therapeutic approaches to organophosphate poisoning is to reactivate AChE with site-directed nucleophiles such as oximes. However, pyridinium oximes 2-PAM, HI-6, TMB-4 and obidoxime, found as the most effective reactivators, have limiting reactivating potency in tabun poisoning. We tested oximes varying in the type of ring (pyridinium and/or imidazolium), the length and type of the linker between rings, and in the position of the oxime group on the ring to find more effective oximes to reactivate tabun-inhibited human erythrocyte AChE. Three of our tested pyridinium oximes K027, K048, K074, along with TMB-4, were the most promising for AChE reactivation. Promising oximes were further tested in vivo on tabun poisoned mice not only as antidotes in combination with atropine but also as pretreatment drug. Herein, we showed that a promising treatment in tabun poisoning by selected oximes and atropine could be improved if oximes are also used in pretreatment. Since the reactivating efficacy of the oximes in vitro corresponded to their therapeutic efficacy in vivo, it seems that pharmacological effect of these oximes is indeed primarily related to the reactivation of tabun-phosphorylated AChE.  相似文献   

18.
Antidotes currently used for organophosphorus pesticide and nerve agent intoxications consist of anticholinergics (atropine mainly) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivators called oximes. Owing to the wide-spread of these toxic compounds worldwide, development of antidotes in the case of first aid is needed. To select the most promising AChE reactivators is a very time consuming process, which is necessary before approval of these compounds to be used as human antidotes. Because of ethical reasons, many developing experiments have been conducted on laboratory animals. However, these results often could not be transferred directly to human. Here, we have tested five newly developed AChE reactivators--K027, K033, K048, K074 and K075, which showed promising reactivation activity on rodents, as reactivators of inhibited human brain cholinesterases. For this purpose, cyclosarin was used as member of the nerve agent family. Oxime HI-6 and pralidoxime were used as AChE reactivator standards. Two AChE reactivators, K027 and K033, achieved comparable reactivation potency as HI-6. Moreover, oxime K033 reached its maximal reactivation potency at the lowest concentration which could be attained in humans.  相似文献   

19.
Antidotes currently used for organophosphorus pesticide and nerve agent intoxications consist of anticholinergics (atropine mainly) and acetylcholinesterase (AChE, EC 3.1.1.7) reactivators called oximes. Owing to the wide-spread of these toxic compounds worldwide, development of antidotes in the case of first aid is needed. To select the most promising AChE reactivators is a very time consuming process, which is necessary before approval of these compounds to be used as human antidotes. Because of ethical reasons, many developing experiments have been conducted on laboratory animals. However, these results often could not be transferred directly to human. Here, we have tested five newly developed AChE reactivators – K027, K033, K048, K074 and K075, which showed promising reactivation activity on rodents, as reactivators of inhibited human brain cholinesterases. For this purpose, cyclosarin was used as member of the nerve agent family. Oxime HI-6 and pralidoxime were used as AChE reactivator standards. Two AChE reactivators, K027 and K033, achieved comparable reactivation potency as HI-6. Moreover, oxime K033 reached its maximal reactivation potency at the lowest concentration which could be attained in humans.  相似文献   

20.
The search of proficient oximes as reactivators of irreversibly inhibited-AChE by organophosphate poisoning necessitates an appropriate assessment of their physicochemical properties and reactivation kinetics. Therefore, herein acid dissociation constant; pKa, lipophilicity; log P, polar surface area, hydrogen bond donor and acceptor counts of structurally different oximes (two tertiary oximes and thirteen pyridinium aldoxime derivatives) have been evaluated. The experimentally obtained data for pKa has been comparatively analyzed by using non-linear regression. Further the tested oximes were screened through in vitro reactivation kinetics against paraoxon-inhibited AChE. The pKa values of all the examined oximes were within the range of 7.50–9.53. pKa values of uncharged and mono-pyridinium oximes were in good correlation with their reactivation potency. The high negative log P values of pyridinium oxime reactivators indicate their high hydrophilic character; hence oximes with improved lipophilicity should be designed for the development of novel and more potent antidotes. Propane and butane linked oximes were superior reactivators than xylene linked bis-oxime reactivators. It is concluded from the present study that pKa value is not only ruled by the position of oximino functionality in the pyridinium ring, but also by the position of linker. Although, pyridinium oximes are proved to be better reactivators but their lipophilicity has to be improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号