首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Predators have a key role shaping competitor dynamics in food webs. Perhaps the most obvious way this occurs is when predators reduce competitor densities. However, consumption could also generate phenotypic selection on prey that determines the strength of competition, thus coupling consumptive and trait‐based effects of predators. In a mesocosm experiment simulating fish predation on damselflies, we found that selection against high damselfly activity rates – a phenotype mediating predation and competition – weakened the strength of density dependence in damselfly growth rates. A field experiment corroborated this finding and showed that increasing damselfly densities in lakes with high fish densities had limited effects on damselfly growth rates but generated a precipitous growth rate decline where fish densities were lower – a pattern expected because of spatial variation in selection imposed by predation. These results suggest that accounting for both consumption and selection is necessary to determine how predators regulate prey competitive interactions.  相似文献   

2.
Scale dependent effects of predatory fish on stream benthos   总被引:1,自引:0,他引:1  
Göran Englund 《Oikos》2005,111(1):19-30
In open predation experiments the effects of predators on prey densities can be influenced by predator consumption and by prey movements in to and out of experimental arenas. A published model predicts that the predator effects observed in such experiments are scale dependent over the scale range where there is a transition from movement control (of prey densities) to consumption control. The scale dependence follows from the assumption that per capita rate of emigration out of an experimental arena decreases with increasing arena size.
To test this model the effects of a small benthic fish ( Cottus gobio ) on densities of stream invertebrates was investigated in instream channels of different length (0.5, 2 and 8 m). The effect of fish predation was scale dependent for four prey taxa. For three of these taxa predator effects increased with experimental scale, which is in agreement with model predictions. However, this proved to be a case of "making the right prediction for the wrong reason" as the basic assumption of scale dependent emigration rate was not upheld. By analyzing the behaviour of the model, parameterized with emigration and consumption rates observed in the experimental channels, it was found that observed scale effects occurred because prey emigration in response to the predator treatment was modified by the experimental scale. Further analysis of the parameterized model suggested that the densities of most prey taxa were controlled by prey movements and not by consumption by the sculpins.  相似文献   

3.
The impact of increasing vertebrate predator numbers on bird populations is widely debated among the general public, game managers and conservationists across Europe. However, there are few systematic reviews of whether predation limits the population sizes of European bird species. Views on the impacts of predation are particularly polarised in the UK, probably because the UK has a globally exceptional culture of intensive, high‐yield gamebird management where predator removal is the norm. In addition, most apex predators have been exterminated or much depleted in numbers, contributing to a widely held perception that the UK has high numbers of mesopredators. This has resulted in many high‐quality studies of mesopredator impacts over several decades. Here we present results from a systematic review of predator trends and abundance, and assess whether predation limits the population sizes of 90 bird species in the UK. Our results confirm that the generalist predators Red Fox (Vulpes vulpes) and Crows (Corvus corone and C. cornix) occur at high densities in the UK compared with other European countries. In addition, some avian and mammalian predators have increased numerically in the UK during recent decades. Despite these high and increasing densities of predators, we found little evidence that predation limits populations of pigeons, woodpeckers and passerines, whereas evidence suggests that ground‐nesting seabirds, waders and gamebirds can be limited by predation. Using life‐history characteristics of prey species, we found that mainly long‐lived species with high adult survival and late onset of breeding were limited by predation. Single‐brooded species were also more likely to be limited by predation than multi‐brooded species. Predators that depredate prey species during all life stages (i.e. from nest to adult stages) limited prey numbers more than predators that depredated only specific life stages (e.g. solely during the nest phase). The Red Fox and non‐native mammals (e.g. the American Mink Neovison vison) were frequently identified as numerically limiting their prey species. Our review has identified predator–prey interactions that are particularly likely to result in population declines of prey species. In the short term, traditional predator‐management techniques (e.g. lethal control or fencing to reduce predation by a small number of predator species) could be used to protect these vulnerable species. However, as these techniques are costly and time‐consuming, we advocate that future research should identify land‐use practices and landscape configurations that would reduce predator numbers and predation rates.  相似文献   

4.
Prey modify their behaviour to avoid predation, but dilemmas arise when predators vary in hunting style. Behaviours that successfully evade one predator sometimes facilitate exposure to another predator, forcing the prey to choose the lesser of two evils. In such cases, we need to quantify behavioural strategies in a mix of predators. We model optimal behaviour of Atlantic cod Gadus morhua larvae in a water column, and find the minimal vulnerability from three common predator groups with different hunting modes; 1) ambush predators that sit‐and‐wait for approaching fish larvae; 2) cruising invertebrates that eat larvae in their path; and 3) fish which are visually hunting predators. We use a state‐dependent model to find optimal behaviours (vertical position and swimming speed over a diel light cycle) under any given exposure to the three distinct modes of predation. We then vary abundance of each predator and quantify direct and indirect effects of predation. The nature and strength of direct and indirect effects varied with predator type and abundance. Larvae escaped about half the mortality from fish by swimming deeper to avoid light, but their activity level and cumulative predation from ambush predators increased. When ambush invertebrates dominated, it was optimal to be less active but in more lit habitats, and predation from fish increased. Against cruising predators, there was no remedy. In all cases, the shift in behaviour allowed growth to remain almost the same, while total predation were cut by one third. In early life stages with high and size‐dependent mortality rates, growth rate can be a poor measure of the importance of behavioural strategies.  相似文献   

5.
Predation on pest organisms is an essential ecosystem function supporting yields in modern agriculture. However, assessing predation rates is intricate, and they can rarely be linked directly to predator densities or functions. We tested whether sentinel prey aphid cards are useful tools to assess predation rates in the field. Therefore, we looked at aphid cards of different sizes on the ground level as well as within the vegetation. Additionally, by trapping ground-dwelling predators, we examined whether obtained predation rates could be linked to predator densities and traits. Predation rates recorded with aphid cards were independent of aphid card size. However, predation rates on the ground level were three times higher than within the vegetation. We found both predatory carabid activity densities as well as community weighted mean body size to be good predictors for predation rates. Predation rates obtained from aphid cards are stable over card type and related to predator assemblages. Aphid cards, therefore, are a useful, efficient method for rapidly assessing the ecosystem function predation. Their use might especially be recommended for assessments on the ground level and when time and resource limitations rule out more elaborate sentinel prey methods using exclosures with living prey animals.  相似文献   

6.
Predators commonly share prey with human exploiters, intuitively suggesting that there is an inherent human–predator conflict through competition for prey. Here we studied the effects of fishing and predation mortality on biomass distributions and yields of shared prey using a size‐structured model of competing populations, describing the life histories of Baltic Sea sprat and herring. Whereas both species responded in a similar fashion to increased fishing mortality, with decreasing juvenile and adult biomasses, we found that responses to predation mortality differed between species. Sprat only display weak compensatory responses with increasing predation mortality, while over a substantial range of mortalities there was a strong increase in adult (and total) herring biomass, i.e. overcompensation. The observed biomass overcompensation results from relaxed intraspecific competition as predation mortality increased, allowing for faster individual growth rates that in turn lead to a change in population composition (juvenile:adult biomass ratio). Our results suggest that the potential for biomass overcompensation is higher for species exhibiting substantial growth after maturation. Differences in size‐selectivity of predators and fishing mortality resulted in a positive effect of predation mortality on fisheries yields, which can be explained by an overcompensatory response in adult herring biomass. Thus, somewhat counter intuitive, our results suggest that fishermen, depending on prey life history, may actually benefit from allowing for a higher abundance of predators, despite competing for shared prey.  相似文献   

7.
There is remarkable diversity in brain anatomy among vertebrates and evidence is accumulating that predatory interactions are crucially important for this diversity. To test this hypothesis, we collected female guppies (Poecilia reticulata) from 16 wild populations and related their brain anatomy to several aspects of predation pressure in this ecosystem, such as the biomass of the four major predators of guppies (one prawn and three fish species), and predator diversity (number of predatory fish species in each site). We found that populations from localities with higher prawn biomass had relatively larger telencephalon size as well as larger brains. Optic tectum size was positively associated with one of the fish predator’s biomass and with overall predator diversity. However, both olfactory bulb and hypothalamus size were negatively associated with the biomass of another of the fish predators. Hence, while fish predator occurrence is associated with variation in brain anatomy, prawn occurrence is associated with variation in brain size. Our results suggest that cognitive challenges posed by local differences in predator communities may lead to changes in prey brain anatomy in the wild.  相似文献   

8.
1. In natural communities, populations are linked by feeding interactions that make up complex food webs. The stability of these complex networks is critically dependent on the distribution of energy fluxes across these feeding links. 2. In laboratory experiments with predatory beetles and spiders, we studied the allometric scaling (body-mass dependence) of metabolism and per capita consumption at the level of predator individuals and per link energy fluxes at the level of feeding links. 3. Despite clear power-law scaling of the metabolic and per capita consumption rates with predator body mass, the per link predation rates on individual prey followed hump-shaped relationships with the predator-prey body mass ratios. These results contrast with the current metabolic paradigm, and find better support in foraging theory. 4. This suggests that per link energy fluxes from prey populations to predator individuals peak at intermediate body mass ratios, and total energy fluxes from prey to predator populations decrease monotonically with predator and prey mass. Surprisingly, contrary to predictions of metabolic models, this suggests that for any prey species, the per link and total energy fluxes to its largest predators are smaller than those to predators of intermediate body size. 5. An integration of metabolic and foraging theory may enable a quantitative and predictive understanding of energy flux distributions in natural food webs.  相似文献   

9.
Structurally complex habitats provide cover and may hinder the movement of animals. In predator–prey relationships, habitat structure can decrease predation risk when it provides refuges for prey or hinders foraging activity of predators. However, it may also provide shelter, supporting structures and perches for sit-and-wait predators and hence increase their predation rates. We tested the effect of habitat structure on prey mortality in aquatic invertebrates in short-term laboratory predation trials that differed in the presence or absence of artificial vegetation. The effect of habitat structure on prey mortality was context dependent as it changed with predator and prey microhabitat use. Specifically, we observed an ‘anti-refuge’ effect of added vegetation: phytophilous predators that perched on the plants imposed higher predation pressure on planktonic prey, while mortality of benthic prey decreased. Predation by benthic and planktonic predators on either type of prey remained unaffected by the presence of vegetation. Our results show that the effects of habitat structure on predator–prey interactions are more complex than simply providing prey refuges or cover for predators. Such context-specific effects of habitat complexity may alter the coupling of different parts of the ecosystem, such as pelagic and benthic habitats, and ultimately affect food web stability through cascading effects on individual life histories and trophic link strengths.  相似文献   

10.
Variation in the vulnerability of herbivore prey to predation is linked to body size, yet whether this relationship is size‐nested or size‐partitioned remains debated. If size‐partitioned, predators would be focused on prey within their preferred prey size range. If size‐nested, smaller prey species should become increasingly more vulnerable because increasingly more predators are capable of catching them. Yet, whether either of these strategies manifests in top–down prey population limitation would depend both on the number of potential predator species as well as the total mortality imposed. Here we use a rare ecosystem scale ‘natural experiment’ comparing prey population dynamics between a period of intense predator persecution and hence low predator densities and a period of active predator protection and population recovery. We use three decades of data on herbivore abundance and distribution to test the role of predation as a mechanism of population limitation among prey species that vary widely in body size. Notably, we test this within one of the few remaining systems where a near‐full suite of megaherbivores occur in high density and are thus able to include a thirtyfold range in herbivore body size gradient. We test whether top–down limitation on prey species of particular body size leads to compositional shifts in the mammalian herbivore community. Our results support both size‐nested and size‐partitioning predation but suggest that the relative top–down limiting impact on prey populations may be more severe for intermediate sized species, despite having fewer predators than small species. In addition we show that the gradual recovery of predator populations shifted the herbivore community assemblage towards large‐bodied species and has led to a community that is strongly dominated by large herbivore biomass.  相似文献   

11.
In many size‐dependent predator–prey systems, hatching phenology strongly affects predator–prey interaction outcomes. Early‐hatched predators can easily consume prey when they first interact because they encounter smaller prey. However, this process by itself may be insufficient to explain all predator–prey interaction outcomes over the whole interaction period because the predator–prey size balance changes dynamically throughout their ontogeny. We hypothesized that hatching phenology influences predator–prey interactions via a feedback mechanism between the predator–prey size balance and prey consumption by predators. We experimentally tested this hypothesis in an amphibian predator–prey model system. Frog tadpoles Rana pirica were exposed to a predatory salamander larva Hynobius retardatus that had hatched 5, 12, 19 or 26 days after the frog tadpoles hatched. We investigated how the salamander hatch timing affected the dynamics of prey mortality, size changes of both predator and prey, and their subsequent life history (larval period and size at metamorphosis). The predator–prey size balance favoured earlier hatched salamanders, which just after hatching could successfully consume more frog tadpoles than later hatched salamanders. The early‐hatched salamanders grew rapidly and their accelerated growth enabled them to maintain the predator‐superior size balance; thus, they continued to exert strong predation pressure on the frog tadpoles in the subsequent period. Furthermore, frog tadpoles exposed to the early‐hatched salamanders were larger at metamorphosis and had a longer larval period than other frog tadpoles. These results suggest that feedback between the predator‐superior size balance and prey consumption is a critical mechanism that strongly affects the impacts of early hatching of predators in the short‐term population dynamics and life history of the prey. Because consumption of large nutrient‐rich prey items supports the growth of predators, a similar feedback mechanism may be common and have strong impacts on phenological shifts in size‐dependent trophic relationships.  相似文献   

12.
In order to estimate predation risk in nature, two basic components of predation need to be quantified: prey vulnerability, and density risk. Prey vulnerability can be estimated from clearance rates obtained from enclosure experiments with and without predators. Density risk is a function of predator density, and the spatial and temporal overlap of the predator and prey populations. In the current study we examine the importance of the vertical component of overlap in making accurate estimates of predation risk from the invertebrate predator Mesocyclops edax on rotifer versus crustacean prey. The results indicate that assumptions of uniform predator and prey densities cause a significant underestimation of predation risk for many crustacean prey due to the coincident vertical migration of these prey with the predator. The assumption of uniformity is more reasonable for estimating predation risk for most rotifer prey.  相似文献   

13.
SUMMARY. 1. Predation upon macroinvertebrates by the loach Oreonectes platycephalus Günther (Cobitidae) was studied using predator inclusion/exclusion cages in a series of pools along a Hong Kong stream. Treatments employed were predator exclusion, medium (approximately natural) predator densities (1 fish cage−1) and high predator densities (2 fish cage−1). Macroinvertebrate abundance in cages was monitored after 2 and 4-weeks exposure to predators.
2. The presence of fish was associated with significant declines in the total numbers of macroinvertebrates colonizing cages. However, taxa were influenced differently, with mayflies decreasing by a factor of two while the more mobile shrimps (Atyidae) were unaffected. Chironomid abundance (largely Chironominae) was unaffected by predator density and increased in week 4. Detritus acted as a confounding variable at this time because chironomid abundance was significantly correlated with the weight of accumulated detritus in cages.
3. While invertebrates were more abundant in cages lacking fish, there were no fewer invertebrates in cages with 2 fish than with 1 fish. This may indicate the presence of secure refuges among substrates in the cages, preventing the additional fish from depleting prey further, or a lack of precision of methods due to natural variations in prey densities and spatial patchiness.
4. No significant effects of predators on relative prey abundance or species richness were detected.
5. The impact of predation on prey abundance weakened on week 4, perhaps due to extra refuges among the accumulated detritus. However, drying of the stream increased fish densities in pools so that cages may have become zones of relative safety that were colonized readily by macroinvertebrates. This result highlights the need for year-round investigations to quantify predation effects in Hong Kong's seasonal tropical climate.  相似文献   

14.
Theoretical work on intraguild predation suggests that if a top predator and an intermediate predator share prey, the system will be stable only if the intermediate predator is better at exploiting the prey, and the top predator gains significantly from consuming the intermediate predator. In mammalian carnivore systems, however, there are examples of top predator species that attack intermediate predator species, but rarely or never consume the intermediate predator. We suggest that top predators attacking intermediate predators without consuming them may not only reduce competition with the intermediate predators, but may also increase the vigilance of the intermediate predators or alter the vigilance of their shared prey, and that this behavioral response may help to maintain the stability of the system. We examine two models of intraguild predation, one that incorporates prey vigilance, and a second that incorporates intermediate predator vigilance. We find that stable coexistence can occur when the top predator has a very low consumption rate on the intermediate predator, as long as the attack rate on the intermediate predator is relatively large. However, the system is stable when the top predator never consumes the intermediate predator only if the two predators share more than one prey species. If the predators do share two prey species, and those prey are vigilant, increasing top predator attack rates on the intermediate predator reduces competition with the intermediate predator and reduces vigilance by the prey, thereby leading to higher top predator densities. These results suggest that predator and prey behavior may play an important dynamical role in systems with intraguild predation.  相似文献   

15.
Stocking is a commonly employed conservation strategy for endangered species such as the pallid sturgeon, Scaphirhynchus albus . However, decisions about when, where and at what size pallid sturgeon should be stocked are hindered because vulnerability of pallid sturgeon to fish predation is not known. The objective of this study was to evaluate the vulnerability of age-0 pallid sturgeon to predation by two Missouri River predators under different flow regimes, and in combination with alternative prey. To document vulnerability, age-0 pallid sturgeon (<100 mm) were offered to channel catfish Ictalurus punctatus and smallmouth bass Micropterus dolomieu in laboratory experiments. Selection of pallid sturgeon by both predators was measured by offering pallid sturgeon and an alternative prey, fathead minnows Pimephales promelas, in varying prey densities. Smallmouth bass consumed more age-0 pallid sturgeon (0.95 h−1) than did channel catfish (0.13 h−1), and predation rates did not differ between water velocities supporting sustained (0 m s−1) or prolonged swimming speeds (0.15 m s−1). Neither predator positively selected pallid sturgeon when alternative prey was available. Both predator species consumed more fathead minnows than pallid sturgeon across all prey density combinations. Results indicate that the vulnerability of age-0 pallid sturgeon to predation by channel catfish and smallmouth bass is low, especially in the presence of an alternative fish prey.  相似文献   

16.
Predation is a key process driving coral reef fish population dynamics, with higher per capita prey mortality rates on reefs with more predators. Reef predators often forage together, and at high densities, they may either cooperate or antagonize one another, thereby causing prey mortality rates to be substantially higher or lower than one would expect if predators did not interact. However, we have a limited mechanistic understanding of how prey mortality rates change with predator densities. We re-analyzed a previously published observational dataset to investigate how the foraging response of the coney grouper (Cephalopholis fulva) feeding on the bluehead wrasse (Thalassoma bifasciatum) changed with shifts in predator and prey densities. Using a model-selection approach, we found that per-predator feeding rates were most consistent with a functional response that declines as predator density increases, suggesting either antagonistic interactions among predators or a shared antipredator behavioral response by the prey. Our findings suggest that variation in predator density (natural or anthropogenic) may have substantial consequences for coral reef fish population dynamics.  相似文献   

17.
Large predators may affect the hunting efficiency of smaller ones directly by decreasing their numbers, or indirectly by altering their behaviour. Either way this may have positive effects on the density of shared prey. Using large outdoor enclosures, we experimentally studied whether the presence of the Tengmalm's owl Aegolius funereus affects the hunting efficiency of the smallest member of the vole-eating predator guild, the least weasel Mustela nivalis, as measured by population responses of coexisting prey species, the field vole Microtus agrestis and the sibling vole M. levis . We compared the density and survival probability of vole populations exposed to no predation, weasel predation or combined predation by a weasel and an owl. The combined predation of both owl and weasel did not result in obvious changes in the density of sibling and field vole populations compared to the control populations without predators, while predation by least weasel alone decreased the densities of sibling voles and induced a similar trend in field vole densities. Survival of field voles was not affected by predator treatment while sibling vole survival was lower in predator treated populations than in control populations. Our results suggest that weasels are intimidated by avian predators, but without changing the effects of predators on competitive situations between the two vole species. Non-lethal effects of intraguild predation therefore will not necessarily change competitive interactions between shared prey species.  相似文献   

18.
1.?Theory suggests that the relationship between predator diversity and prey suppression should depend on variation in predator traits such as body size, which strongly influences the type and strength of species interactions. Prey species often face a range of different sized predators, and the composition of body sizes of predators can vary between communities and within communities across seasons. 2.?Here, I test how variation in size structure of predator communities influences prey survival using seasonal changes in the size structure of a cannibalistic population as a model system. Laboratory and field experiments showed that although the per-capita consumption rates increased at higher predator-prey size ratios, mortality rates did not consistently increase with average size of cannibalistic predators. Instead, prey mortality peaked at the highest level of predator body size diversity. 3.?Furthermore, observed prey mortality was significantly higher than predictions from the null model that assumed no indirect interactions between predator size classes, indicating that different sized predators were not substitutable but had more than additive effects. Higher predator body size diversity therefore increased prey mortality, despite the increased potential for behavioural interference and predation among predators demonstrated in additional laboratory experiments. 4.?Thus, seasonal changes in the distribution of predator body sizes altered the strength of prey suppression not only through changes in mean predator size but also through changes in the size distribution of predators. In general, this indicates that variation (i.e. diversity) within a single trait, body size, can influence the strength of trophic interactions and emphasizes the importance of seasonal shifts in size structure of natural food webs for community dynamics.  相似文献   

19.
Theory predicts that animals will have lower activity levels when either the risk of predation is high or the availability of resources in the environment is high. If encounter rates with predators are proportional to activity level, then we might expect predation mortality to be affected by resource availability and predator density independent of the number of effective predators. In a factorial experiment, we tested whether predation mortality of larval wood frogs, Rana sylvatica, caused by a single larval dragonfly, Anax junius, was affected by the presence of additional caged predators and elevated resource levels. Observations were consistent with predictions. The survival rate of the tadpoles increased when additional caged predators were present and when additional resources were provided. There was no significant interaction term between predator density and food concentration. Lower predation rates at higher predator density is a form of interference competition. Reduced activity of prey at higher predator density is a potential general mechanism for this widespread phenomenon. Higher predation rates at low food levels provides an indirect mechanism for density-dependent predation. When resources are depressed by elevated consumer densities, then the higher activity levels associated with low resource levels can lead to a positive association between consumer density and consumer mortality due to predation. These linkages between variation in behaviour and density-dependent processes argue that variation in behaviour may contribute to the dynamics of the populations. Because the capture rate of predators depends on the resources available to prey, the results also argue that models of food-web dynamics will have to incorporate adaptive variation in behaviour to make accurate predictions.  相似文献   

20.
The phytoseiid mites Metaseiulus occidentalis (Nesbitt) and Typhlodromus pyri Schueten are used together and alone as biological control agents against tetranychid pest mites of apple. Their effectiveness as control agents may be impacted by intraguild predation. The effects of prey species and prey density on the rates of inter- and intraspecific predation and oviposition by these two predators were investigated through a series of experiments. Adult female predators were given prey as mixed populations of phytoseiid larvae and larvae of a more preferred species, the spider mite, Tetranychus urticae Koch, at different densities and ratios. Typhlodromus pyri, more of a generalist predator, showed higher rates of predation and cannibalism on phytoseiid immatures at most prey densities and ratios. Manly preference indices indicated that T. pyri switched to feed on phytoseiid larvae at higher prey levels and ratios of T. urticae than M. occidentalis. This greater ability to use phytoseiid larvae as prey may help stabilize T. pyri populations when more preferred prey is unavailable. This may, in part, explain the observed persistence of T. pyri populations when M. occidentalis populations were decreasing in orchard test plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号