首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brown EL  Lyles DS 《Journal of virology》2005,79(11):7077-7086
Many plasma membrane components are organized into detergent-resistant membrane microdomains referred to as lipid rafts. However, there is much less information about the organization of membrane components into microdomains outside of lipid rafts. Furthermore, there are few approaches to determine whether different membrane components are colocalized in microdomains as small as lipid rafts. We have previously described a new method of determining the extent of organization of proteins into membrane microdomains by analyzing the distribution of pairwise distances between immunogold particles in immunoelectron micrographs. We used this method to analyze the microdomains involved in the incorporation of the T-cell antigen CD4 into the envelope of vesicular stomatitis virus (VSV). In cells infected with a recombinant virus that expresses CD4 from the viral genome, both CD4 and the VSV envelope glycoprotein (G protein) were found in detergent-soluble (nonraft) membrane fractions. However, analysis of the distribution of CD4 and G protein in plasma membranes by immunoelectron microscopy showed that both were organized into membrane microdomains of similar sizes, approximately 100 to 150 nm. In regions of plasma membrane outside of virus budding sites, CD4 and G protein were present in separate membrane microdomains, as shown by double-label immunoelectron microscopy data. However, virus budding occurred from membrane microdomains that contained both G protein and CD4, and extended to approximately 300 nm, indicating that VSV pseudotype formation with CD4 occurs by clustering of G protein- and CD4-containing microdomains.  相似文献   

2.
The submicroscopic spatial organization of cell surface receptors and plasma membrane signaling molecules is readily characterized by electron microscopy (EM) via immunogold labeling of plasma membrane sheets. Although various signaling molecules have been seen to segregate within plasma membrane microdomains, the biochemical identity of these microdomains and the factors affecting their formation are largely unknown. Lipid rafts are envisioned as submicron membrane subdomains of liquid ordered structure with differing lipid and protein constituents that define their specific varieties. To facilitate EM investigation of inner leaflet lipid rafts and the localization of membrane proteins therein, a unique genetically encoded reporter with the dually acylated raft-targeting motif of the Lck kinase was developed. This reporter, designated Lck-BAP-GFP, incorporates green fluorescent protein (GFP) and biotin acceptor peptide (BAP) modules, with the latter allowing its single-step labeling with streptavidin-gold. Lck-BAP-GFP was metabolically biotinylated in mammalian cells, distributed into low-density detergent-resistant membrane fractions, and was readily detected with avidin-based reagents. In EM images of plasma membrane sheets, the streptavidin-gold-labeled reporter was clustered in 20-50 nm microdomains, presumably representative of inner leaflet lipid rafts. The utility of the reporter was demonstrated in an investigation of the potential lipid raft localization of the epidermal growth factor receptor.  相似文献   

3.
The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.  相似文献   

4.
The plasma membrane consists of a mosaic of functional microdomains facilitating a variety of physiological processes associated with the cell surface. In most cells, the majority of the cell surface is morphologically featureless, leading to difficulties in characterizing its organization and microdomain composition. The reliance on indirect and perturbing techniques has led to vigorous debate concerning the nature and even existence of some microdomains. Recently, increasing technical sophistication has been applied to study cell surface compartmentalization providing evidence for small, short-lived clusters that may be much less than 50 nm in diameter. Lipid rafts and caveolae are cholesterol-dependent, highly ordered microdomains that have received most attention in recent years, yet their precise roles in regulating functions such as cell signalling remain to be determined. Endocytosis of lipid rafts/caveolae follows a clathrin-independent route to both early endosomes and non-classical caveosomes. The observation that a variety of cellular pathogens localize to and internalize with these microdomains provides an additional incentive to characterize the organization, dynamics and functions of these domains.  相似文献   

5.
Plasma membrane microdomains: organization, function and trafficking   总被引:1,自引:0,他引:1  
The plasma membrane consists of a mosaic of functional microdomains facilitating a variety of physiological processes associated with the cell surface. In most cells, the majority of the cell surface is morphologically featureless, leading to difficulties in characterizing its organization and microdomain composition. The reliance on indirect and perturbing techniques has led to vigorous debate concerning the nature and even existence of some microdomains. Recently, increasing technical sophistication has been applied to study cell surface compartmentalization providing evidence for small, short-lived clusters that may be much less than 50 nm in diameter. Lipid rafts and caveolae are cholesterol-dependent, highly ordered microdomains that have received most attention in recent years, yet their precise roles in regulating functions such as cell signalling remain to be determined. Endocytosis of lipid rafts/caveolae follows a clathrin-independent route to both early endosomes and non-classical caveosomes. The observation that a variety of cellular pathogens localize to and internalize with these microdomains provides an additional incentive to characterize the organization, dynamics and functions of these domains.  相似文献   

6.
Lipid rafts: elusive or illusive?   总被引:31,自引:0,他引:31  
Munro S 《Cell》2003,115(4):377-388
There has been considerable recent interest in the possibility that the plasma membrane contains lipid "rafts," microdomains enriched in cholesterol and sphingolipids. It has been suggested that such rafts could play an important role in many cellular processes including signal transduction, membrane trafficking, cytoskeletal organization, and pathogen entry. However, rafts have proven difficult to visualize in living cells. Most of the evidence for their existence and function relies on indirect methods such as detergent extraction, and a number of recent studies have revealed possible problems with these methods. Direct studies of the distribution of raft components in living cells have not yet reached a consensus on the size or even the presence of these microdomains, and hence it seems that a definitive proof of raft existence has yet to be obtained.  相似文献   

7.
Lipid rafts are plasma membrane microdomains enriched in sphingolipids and cholesterol. These domains have been suggested to serve as platforms for various cellular events, such as signaling and membrane trafficking. However, little is known about the distribution and dynamics of lipids in these microdomains. Here we report investigations carried out using recently developed probes for the lipid components of lipid rafts: lysenin, a sphingomyelin-binding protein obtained from the coelomic fluid of the earthworm Eisenia foetida; and the fluorescein ester of poly(ethyleneglycol) cholesteryl ether (fPEG-Chol), which partitions into cholesterol-rich membranes. Lysenin reveals that the organization of sphingomyelin differs between different cell types and even between different membrane domains within the same cell. When added to live cells, fPEG-Chol is distributed exclusively on the outer leaflet of the plasma membrane and is clustered dynamically upon activation of receptor signaling. The surface-bound fPEG-Chol is slowly internalized via a clathrin-independent pathway into endosomes with lipid raft markers.  相似文献   

8.
The model of membrane compartmentalization by self-organizing functional lipid microdomains, named lipid rafts, has been a fruitful concept resulting in great progress in understanding T cell signal transduction. However, due to recent results it has become clear that lipid rafts describe only one out of several membrane organizing principles crucial for T cell activation besides fences and pickets and protein-protein interactions that take part in the formation of the immunological synapse as a highly organized structure at the T cell contact site to the antigen-presenting cell. This review describes the concepts of lipid rafts and other membrane organizing principles to evolve a novel integrated model on the functional role of microdomains in immunological synapse formation and T cell activation. Further research has to elucidate the relative contribution and interrelation of different modes of membrane organization in productive T cell activation.  相似文献   

9.
The structural organization of the plasma membrane of eukaryotic cells is briefly revised taking into consideration the organization of proteins and lipids and the concept of microdomains, lipid rafts and detergent resistant membranes. The biochemical data available concerning the presence of microdomains in parasitic protozoa is reviewed and emphasis is given on the identification of special domains recognized by morphological approaches, especially with the use of the freeze-fracture technique.  相似文献   

10.
Localization of signaling complexes to specific microdomains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains, including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent microdomain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.  相似文献   

11.
Advances in cell biology and biophysics revealed that cellular membranes consist of multiple microdomains with specific sets of components such as lipid rafts and TEMs (tetraspanin‐enriched microdomains). An increasing number of enveloped viruses have been shown to utilize these microdomains during their assembly. Among them, association of HIV‐1 (HIV type 1) and other retroviruses with lipid rafts and TEMs within the PM (plasma membrane) is well documented. In this review, I describe our current knowledge on interrelationships between PM microdomain organization and the HIV‐1 particle assembly process. Microdomain association during virus particle assembly may also modulate subsequent virus spread. Potential roles played by microdomains will be discussed with regard to two post‐assembly events, i.e., inhibition of virus release by a raft‐associated protein BST‐2/tetherin and cell‐to‐cell HIV‐1 transmission at virological synapses.  相似文献   

12.
In the present study, we investigated the role of membrane cholesterol in the function of glutamate transporters. Depletion of membrane cholesterol by methyl-beta-cyclodextrin resulted in reduced Na(+)-dependent glutamate uptake in primary cortical cultures. Glial glutamate transporter EAAT2-mediated uptake was more sensitive to this effect. Cell surface biotinylation and immunostaining experiments revealed that the loss of cholesterol significantly altered the trafficking of EAAT2 to the plasma membrane as well as their membrane distribution. These effects were also observed in neuronal glutamate transporter EAAT3 but to a lesser extent. Furthermore, the treatment of mouse brain plasma membrane vesicles with methyl-beta-cyclodextrin resulted in a significant reduction in glutamate uptake, suggesting that cholesterol depletion has a direct effect on the function of the glutamate transporters. Plasma membrane cholesterol is localized within discreet microdomains known as lipid rafts. Analyses of purified lipid raft microdomains revealed that a large portion of total EAAT2 and a minor portion of total EAAT1, EAAT3, and EAAT4 were associated with lipid rafts. Artificial aggregation of lipid rafts in vivo resulted in the formation of larger EAAT2-immunoreactive clusters on the cell surface. The purified lipid raft-associated fractions were capable of Na(+)-dependent glutamate uptake. Our data suggest that the glutamate transporters, especially EAAT2, are associated with cholesterol-rich lipid raft microdomains of the plasma membrane and that the association with these cholesterol-rich microdomains is important for excitatory amino acid transporter localization and function.  相似文献   

13.
Lipid rafts play an important role in cell signalling, cell adhesion and other cellular functions. Compositional heterogeneity of lipid rafts provides one mechanism of how lipid rafts provide the spatial and temporal regulation of cell signalling and cell adhesion. The constitutive presence of some signalling receptors/molecules and accumulation of others in the lipid raft allows them to interact with each other and thereby facilitate relay of signals from the plasma membrane to the cell interior. Devising a method that can analyze these lipid microdomains for the presence of signalling receptors/molecules on an individual raft basis is required to address the issue of lipid raft heterogeneity. SDS-PAGE analysis, currently used for analyses of detergent-resistant lipid rafts, does not address this question. We have designed a cell-free assay that captures detergent-resistant lipid rafts with an antibody against a raft-resident molecule and detects the presence of another lipid raft molecule. Our results suggest that detergent-resistant lipid rafts, also known as detergent-resistant membranes, are heterogeneous populations on an immortalized mouse T-cell plasma membrane with respect to antigen receptor/signalling complex and other signalling/adhesion proteins. This cell-free assay provides a simple and quick way to examine the simultaneous presence of two proteins in the lipid rafts and has the potential to estimate trafficking of molecules in and out of the lipid microdomains during cell signalling on a single detergent-resistant lipid raft basis.  相似文献   

14.
脂筏是细胞膜内由特殊脂质与蛋白质构成的微域。小窝是脂筏的一种形式,小窝标记蛋白有小窝蛋白和小窝舟蛋白。脂筏或小窝与生物信号传导、细胞蛋白转运和胆固醇平衡有关。最近实验证实哺乳动物精子膜具有脂筏结构,脂筏与膜胆固醇外逸对于启动受精的信号传导具有重要作用。  相似文献   

15.
"Lipid rafts" enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface.  相似文献   

16.
High-affinity IgE receptor FcepsilonRI is key molecule in the IgE-mediated allergic reactions. Epigallocatechin-3-gallate (EGCG) has a suppressive effect of the expression of the FcepsilonRI. We show here that EGCG highly associates with plasma membrane microdomains, lipid rafts. The disruption of these lipid rafts caused a reduction of the amount of raft-associated EGCG and the FcepsilonRI -suppressive effect of EGCG. These results suggest that the interaction between EGCG and the lipid rafts is important for EGCG's ability to downregulate FcepsilonRI expression.  相似文献   

17.
Yuan T  Hong S  Yao Y  Liao K 《Cell research》2007,17(9):772-782
Caveolae and non-caveolar lipid rafts are two types of membrane lipid microdomains that play important roles in insulin-stimulated glucose uptake in adipocytes. In order to ascertain their specific functions in this process, caveolae were ablated by caveolin-1 RNA interference. In Cav-1 RNAi adipocytes, neither insulin-stimulated glucose uptake nor Glut-4 (glucose transporter 4) translocation to membrane lipid microdomains was affected by the ablation of caveolae. With a modified sucrose density gradient, caveolae and non-caveolar lipid rafts could be separated. In the wild-type 3T3- L l adipocytes, Glut-4 was found to be translocated into both caveolae and non-caveolar lipid rafts. However, in Cav1 RNAi adipocytes, Glut-4 was localized predominantly in non-caveolar lipid rafts. After the removal of insulin, caveolaelocalized Glut-4 was internalized faster than non-caveolar lipid raft-associated Glut-4. The internalization of Glut-4 from plasma membrane was significantly decreased in Cav-1 RNAi adipocytes. These results suggest that insulin-stimulated Glut-4 translocation and glucose uptake are caveolae-independent events. Caveolae play a role in the internalization of Glut-4 from plasma membrane after the removal of insulin.  相似文献   

18.
In recent years, our understanding of the plasma membrane has changed considerably as our knowledge of lipid microdomains has expanded. Lipid microdomains include structures known as lipid rafts and caveolae, which are readily identified by their unique lipid constituents. Cholesterol, sphingolipids and phospholipids with saturated fatty acyl chain moieties are highly enriched in these lipid microdomains. Lipid rafts and caveolae have been shown to play an important role in the compartmentalization, modulation and integration of cell signaling. Therefore, these microdomains may have an influential role in human disease. Dietary n-3 polyunsaturated fatty acids (PUFA) ameliorate a number of human diseases including coronary heart disease, autoimmune and inflammatory disorders, diabetes, obesity and cancer, which has been generally linked to its membrane remodeling properties. Recent in vitro evidence suggests that perturbations in membrane composition alter the function of resident proteins and, consequently, cellular responses. This review examines the role of n-3 PUFA in modulating the lipid composition and functionality of lipid microdomains and its potential significance to human health.  相似文献   

19.
Cornely R  Rentero C  Enrich C  Grewal T  Gaus K 《IUBMB life》2011,63(11):1009-1017
Annexin A6 (AnxA6) belongs to the conserved annexin protein family--a group of Ca(2+) -dependent membrane binding proteins. It is the largest of all annexin proteins and upon activation, binds to negatively charged phospholipids in the plasma membrane and endosomes. In addition, AnxA6 associates with cholesterol-rich membrane microdomains termed lipid rafts. Membrane cholesterol triggers Ca(2+) -independent translocation of AnxA6 to membranes and AnxA6 levels determine the number of caveolae, a form of specialized rafts at the cell surface. AnxA6 also has an F-actin binding domain and interacts with cytoskeleton components. Taken together, this suggests that AnxA6 has a scaffold function to link membrane microdomains with the organization of the cytoskeleton. Such a link facilitates AnxA6 to participate in plasma membrane repair and it would also impact on receptor signalling at the cell surface, growth factor, and lipoprotein receptor trafficking, Ca(2+) -channel activity and T cell activation. Hence, the regulation of cell surface receptors by AnxA6 may be facilitated by its unique structure that allows recruitment of interaction partners and simultaneously bridging specialized membrane domains with cortical actin surrounding activated receptors.  相似文献   

20.
脂筏的结构与功能   总被引:10,自引:1,他引:9  
脂筏是膜脂双层内含有特殊脂质及蛋白质的微区.小窝是脂筏的一种类型,由胆固醇、鞘脂及蛋白质组成,以小窝蛋白为标记蛋白.脂筏的组分和结构特点有利于蛋白质之间相互作用和构象转化,可以参与信号转导和细胞蛋白质运转.一些感染性疾病、心血管疾病、肿瘤、肌营养不良症及朊病毒病等可能与脂筏功能紊乱有着密切的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号