首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
Irrigated olive is rapidly increasing in arid and semiarid areas, many of which may be negatively affected by soil salinity. We evaluated changes in trunk growth and leaf Cl, Na+ and K+ concentrations in young Arbequina olives (Olea europaea L.) grown in a saline-sodic field over a three-year period. The trunk diameter was measured at the beginning and the end of the 1999 (70 trees), 2000 (59 trees) and 2001 (42 trees) growing periods. Leaves, sampled in August of each year, were analyzed for Cl, Na+ and K+ concentrations. Soil salinity (apparent electrical conductivity, ECa) of each monitored tree was measured 14 times during the 1999–2001 experimental period with an electromagnetic sensor and converted to root zone electrical conductivity of the soil saturation extract (ECe) based on ECa–ECe calibration curves. Salinity tolerance was determined using the Maas and Hoffman threshold–slope response model. Based on salinity thresholds (ECethr), the tolerance of olive in terms of trunk growth was high in 1999 (ECethr = 6.7 dS m–1), but declined with age and time of exposure to salts by 30% in 2000 (ECethr = 4.7 dS m–1) and by 55% in 2001 (ECethr = 3.0 dS m–1). Based on the high absolute slopes obtained in all years (values between 16% and 23% dS–1 m), olive was classified as very sensitive to ECe values above the threshold. Trunk growth thresholds based on leaf ion concentrations varied, depending on years, between 2.6 and 4.0 mg g–1 (Clthr) and between 1.0 and 1.2 mg g–1 (Nathr), indicating that Arbequina olive was less sensitive to leaf Cl and much more sensitive to leaf Na+ than values reported as toxic in greenhouse studies. Leaf K+ slightly decreased with increasing salinity, whereas the K+/Na+ ratio sharply decreased with increasing salinity. We concluded that the initial salinity tolerance of olive was high, but declined sharply with time of exposure to salts and became quite sensitive due primarily to increasing toxic concentrations of Na+ in the leaves.  相似文献   

2.
G. Naidoo  S. G. Mundree 《Oecologia》1993,93(3):360-366
The effects of waterlogging and salinity on morphological and physiological responses in the marsh grass Sporobolus virginicus (L.) Kunth were investigated in a 4×2 factorial experiment. Plants were subjected to four salinity levels (0, 100, 200 and 400 mol m–3 NaCl) and two soil inundation conditions (drained and flooded) for 42 days. Flooding at 0 mol m–3 NaCl caused initiation of adventitious surface roots, increased internal acration and plant height, induced alcohol dehydrogenase activity (ADH), and decreased belowground biomass and the number of culms per plant. Salinity increase from 0 to 400 mol m–3 NaCl under drained conditions increased leaf and root proline concentrations and decreased photosynthesis, aboveground biomass, number of culms per plant and number of internodes per culm. Concurrent waterlogging and salinity induced ADH activity and adventitious surface roots but decreased plant height and aboveground biomass. Internal air space increased with waterlogging from 0 to 100 mol m–3 NaCl but further increases in salinity to 400 mol m–3 reduced air space. Combined waterlogging and salinity stresses, however, had no effect on photosynthesis or on the concentrations of proline in leaves or roots. These results are discussed in relation to the widespread colonization by S. virginicus of a wide range of coastal environments varying in soil salinity and in the frequency and intensity of waterlogging.  相似文献   

3.
Ethylene synthesis is accelerated in response to various environmental stresses like salinity. Ten rhizobacterial strains isolated from wheat rhizosphere taken from different salt affected areas were screened for growth promotion of wheat under axenic conditions at 1, 5, 10 and 15 dS m−1. Three strains, i.e., Pseudomonas putida (N21), Pseudomonas aeruginosa (N39) and Serratia proteamaculans (M35) showing promising performance under axenic conditions were selected for a pot trial at 1.63 (original), 5, 10 and 15 dS m−1. Results showed that inoculation was effective even in the presence of higher salinity levels. P. putida was the most efficient strain compared to the other strains and significantly increased the plant height, root length, grain yield, 100-grain weight and straw yield up to 52, 60, 76, 19 and 67%, respectively, over uninoculated control at 15 dS m−1. Similarly, chlorophyll content and K+/Na+ of leaves also increased by P. putida over control. It is highly likely that under salinity stress, 1-aminocyclopropane-1-carboxylic acid-deaminase activity of these microbial strains might have caused reduction in the synthesis of stress (salt)-induced inhibitory levels of ethylene. The results suggested that these strains could be employed for salinity tolerance in wheat; however, P. putida may have better prospects in stress alleviation/reduction.  相似文献   

4.
Hydrologic regime is an important control of primary production in wetland ecosystems. I investigated the coupling of flooding, soil salinity and plant production in northern prairie marshes that experience shallow spring flooding. Field experiments compared whitetop (Scolochloa festucacea) marsh that was: (1) nonflooded, (2) flooded during spring with 25 cm water and (3) nonflooded but irrigated with 1 cm water · day–1. Pot culture experiments examined whitetop growth response to salinity treatments. The electrical conductivity of soil interstitial water (ECe) at 15 cm depth was 4 to 8 dS· m–1 lower in flooded marsh compared with nonflooded marsh during 2 years. Whitetop aboveground biomass in flooded marsh (937 g · m–2, year 1; 969 g · m–2, year 2) exceeded that of nonflooded marsh (117 g · m–2 year 1; 475 g · m–2, year 2). Irrigated plots had lower ECe and higher aboveground biomass than nonflooded marsh. In pot culture, ECe of 4.3 dS · m–1 (3 g · L–1 NaCl) reduced total whitetop biomass by 29 to 44% and ECe of 21.6 dS · m–1 (15 g · L–1 NaCl) reduced biomass by more than 75%. Large reductions of ECe and increases of whitetop growth with irrigation indicated that plants responded to changes in soil salinity and not other potential environmental changes caused by inundation. The results suggest that spring flooding controls whitetop production by decreasing soil salinity during spring and by buffering surface soils against large increases of soil salinity after mid-summer water level declines. This mechanism can explain higher marsh plant production under more reducing flooded soil conditions and may be an important link between intermittent flooding and primary production in other wetland ecosystems.  相似文献   

5.
Melaleuca halmaturorum is a salt and waterlogging tolerant tree and thus often occurs in saline areas fringing permanent wetlands and in ephemeral swamps. The dominance of this tree in natural groundwater discharge areas may result in M. halmaturorum transpiration making a major contribution to groundwater discharge. To quantify this the seasonal changes in tree water sources in response to fluctuating soil salinity and waterlogging were examined. This study was conducted in a natural system where seasonally fluctuating saline groundwater (64 dS m–1; 0.3–1.2 m deep) allowed the patterns of M. halmaturorum root water uptake to be followed over a 15 month period. Tree water sources were examined using the naturally occurring stable isotopes of water, while new root growth was examined using a field root observation window and from soil cores. The presence of isotopic fractionation of 2H under conditions of soil salinity and waterlogging was tested in a glasshouse experiment. Measurements of soil and leaf water potential were also made to examine the possible water sources and limits to water uptake. No isotopic fractionation was found by tree roots under conditions of salinity and waterlogging. M. halmaturorum trees were active in taking up groundwater at most times and combined this with a shallower soil water source replenished by rainfall in winter. Water uptake was concentrated in the deeper parts of the soil profile when the groundwater was at its deepest and salt had accumulated in the surface soils, at the end of summer. When groundwater rose, at the end of winter, roots responded by extracting water from near the soil surface (0–0.1 m), at the new watertable. This pattern of water uptake in response to groundwater fluctuations and salt accumulation in the surface soil was also reflected in new root tip appearance at the root observation window. Fluctuations in leaf water potential fallowed fluctuations in surface soil (0.1 m depth) water potential at all times. In winter leaf water potential reflected the absolute values of the surface soil water potential but in summer it was between surface soil and groundwater water potentials. We conclude that M. halmaturorum used groundwater in summer and a combination of rainfall and groundwater from the surface soils in winter. The ability to take up water from saline substrates through the maintenance of low leaf water potential, combined with this ability to rapidly alter root water uptake in response to changes in soil water availability contributed to the survival of M. halmaturorum in this saline swamp.  相似文献   

6.
A hydroponic experiment was conducted to assess the possible involvement of polyamines (PAs), abscisic acid (ABA) and anti-oxidative enzymes such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in adaptation of six populations of Panicum antidotale Retz. to selection pressure (soil salinity) of a wide range of habitats. Plants of six populations were collected from six different habitats with ECe ranging from 3.39 to 19.23 dS m−1 and pH from 7.65 to 5.86. Young tillers from 6-month-old plants were transplanted in plastic containers each containing 10 l of half strength Hoagland's nutrient solution alone or with 150 mol m−3 NaCl. After 42 days growth, contents of polyamines (Put, Spd and Spm) and ABA, and the activities of anti-oxidative enzymes (SOD, POD and CAT) of all populations generally increased under salt stress. The populations collected from highly saline habitats showed a greater accumulation of polyamines and ABA and the activities of anti-oxidative enzymes as compared to those from mild or non-saline habitats. Moreover, Spm/Spd and Put/(Spd + Spm) ratios generally increased under salt stress. However, the populations from highly saline environments had significantly higher Spm/Spd and Put/(Spd + Spm) ratios as compared to those from mild or non-saline environments. Similarly, the populations adapted to high salinity accumulated less Na+ and Cl in culm and leaves, and showed less decrease in leaf K+ and Ca2+ under salinity stress. Higher activities of anti-oxidative enzymes and accumulation of polyamines and ABA, and increased Spm/Spd and Put/(Spm + Spd) ratios were found to be highly correlated with the degree of adaptability of Panicum to saline environment.  相似文献   

7.
Eusse  Ana Maria  Aide  T. Mitchell 《Plant Ecology》1999,145(2):307-315
Historically, Pterocarpus officinalisJacq. (Leguminoseae) dominated freshwater wetlands in the coastal plains of Puerto Rico, but deforestation has reduced its distribution to small patches adjacent to mangrove forests in areas of higher salinity. The objective of this study was to determine how a gradient in soil salinity affected litter, flower, and fruit production in a Pterocarpus officinalis.Three 100 m2 plots were established in each of three sites along a salinity gradient: pasture/Pterocarpus edge (low salinity, mean salinity at 60 cm–9.7 g Kg–1), Pterocarpus forest (intermediate salinity, 11.5 g Kg–1) and a Pterocarpus/mangrove ecotone (high salinity, 15.0 g Kg–1). Across this gradient, P. officinalis accounted for 100% of the relative basal area in the low and intermediate sites and 43% in the high salinity site which was domimated by Laguncularia racemosa. The basal area of P. officinalis decreased along the gradient from 73.5 m2 ha–1 in the low salinity site to 42.0 m2 ha–1 in the high salinity site. Litterfall was sampled on average every 23 days in 45 0.25 m2 traps (5 traps per plot) for two years. Annual litterfall for the forest was 11.9 Mg ha–1 yr–1. Peaks in litterfall were associated with high precipitation in May 1995 and tropical storms in September 1995. Leaf fall of P. officinalis was significantly higher in the low salinity site (4.8 Mg ha–1 yr–1) than the high salinity site (1.8 Mg ha–1 yr–1), but total stand litterfall was greatest in the area of high salinity due to the greater contribution of L. racemosa. Pterocarpus flower and fruit production was approximately 10 times greater in low and intermediate salinity sites in comparison with the high salinity site. An increase in global temperature, will lead to higher sea level and higher soil salinity in costal wetlands. To conserve this wetland forest type it is critical to expand the distribution into areas of lower salinity where this species occurred historically.  相似文献   

8.
Although many emergent wetland plants may readily tolerate rapid changes in flooding and drying under freshwater conditions, their tolerance to dynamic water regimes may be compromised by salinity. Melaleuca-dominated woodlands occur naturally in Australia, south-east Asia and New Caledonia. Coastal wetlands dominated by Swamp paperbark (Melaleuca ericifolia) (Myrtaceae), native to south-east Australia, are commonly degraded as a consequence of altered water regime and salinity. This study simulates the release of M. ericifolia seeds from the aerial canopy under a range of water regime and salinity scenarios to determine conditions limiting sexual recruitment. Plant growth and survival were examined following seed release under two static water regimes (moist and flooded sediment) and two dynamic water regimes (simulated drawdown—“flooded-moist” and simulated re-flooding—“moist-flooded”). All water regimes, excluding the continuously flooded regime, were examined at three salinities: 0.1 dS m−1 (fresh), 8 dS m−1 and 16 dS m−1, over a 50-day period commencing 44 days after the seeds were sown. The flooded treatment was examined at 0.1 dS m−1 only, to confirm that flooding prohibits establishment of M. ericifolia. Seed and seedlings were positively buoyant and establishment was limited to moist soil. Flotation of seedlings in the flooded-moist treatment, however, did not inhibit subsequent establishment upon moist soil, even at the highest salinity of 16 dS m−1. Growth, but not survival, was reduced by salinities of 8 dS m−1 and 16 dS m−1 in the moist treatment. Flotation of seedlings in saline water in the flooded-moist treatment did not reduce growth or survival compared with fresh water. Survival of seedlings in the moist-flooded treatment was lower in the freshwater and 16 dS m−1 treatment compared with the moist treatment, but not at 8 dS m−1. These findings suggest that water regime influences establishment of young M. ericifolia plants more strongly than does salinity, at least up to ∼1/3 seawater and in the short term (<2 months). Seedlings are likely to establish during a drawdown where the soil is exposed at salinities of ≤16 dS m−1. In contrast, premature re-flooding of seedlings, even with fresh water, will compromise survival.  相似文献   

9.
Exploration and cultivation of salt tolerant plants is a very effective strategy for utilization of salt affected soils. In this investigation, physiological traits that are conducive for salt tolerance of the ornamental plant Alternanthera bettzickiana, Amaranthaceae, were explored. A. bettzickiana was grown on soil substrate having six salinity levels (2.86, 10, 20, 30, 40 and 50 dS m−1). It was observed that this plant can grow even at a salinity level of 40 dS m−1. The survival rate of this plant was 75, 42 and 0% at salinity levels of 30, 40 and 50 dS m−1, respectively. A. bettzickiana plants produced 30.3% less biomass than controls at the salinity level of 20 dS m−1 and even less under still higher salt stress. Photosynthesis continued even at the salinity level of 40 dS m−1, though its rate was reduced to 59% in plants exposed to such salinity relative to plants not affected by salinity. Total soluble proteins values in leaf and stem showed a gradual increase when plants were exposed to increasing salt stress. Plants growing at the high salinity level showed highest decrease in leaf nitrate reductase activity. A. bettzickiana plants accumulated less Na+ in shoot as compared to root when grown under salt stress. It can be characterized as a salt-tolerant glycophyte that could be used for greening of salt affected soils.  相似文献   

10.
The diversity of the dissimilatory and respiratory nitrate-reducing communities was studied in two soils of the former lake Texcoco (Mexico). Genes encoding the membrane-bound nitrate reductase (narG) and the periplasmic nitrate reductase (napA) were used as functional markers. To investigate bacterial communities containing napA and narG in saline alkaline soils of the former lake Texcoco, libraries of the two sites were constructed (soil T3 with pH 11 and electrolytic conductivity in saturated extract (ECSE) 160 dS m−1 and soil T1 with pH 8.5 and ECSE 0.8 dS m−1). Phylogenetic analysis of napA sequences separated the clone families into two main groups: dependent or independent of NapB. Most of napA sequences from site T1 were grouped in the NapB-dependent clade, meanwhile most of the napA sequences from the extreme soil T3 were affiliated to the NapB-independent group. For both sites, partial narG sequences were associated with representatives of the Proteobacteria, Firmicutes and Actinobacteria phyla, but the proportions of the clones were different. Our results support the concept of a specific and complex nitrate-reducing community for each soil of the former lake Texcoco.  相似文献   

11.
Summary The dry matter production and the concentration of nutrients in rice (Oryza sativa L.) cultivars from soil adjusted to different levels of salinity were evaluated under a greenhouse conditions. Soil salinity levels were produced by applying 0.34 mol l–1 solution of NaCl which resulted in the following levels, control (0.29), 5, 10 and 15 dS m–1 conductivity of saturation extract. The effect of salinity on dry matter production varied from cultivar to cultivar.The concentrations of P and K in the tops of rice cultivars decreased with increasing soil salinity. But the concentrations of Na, Zn, Cu and Mn increased.Significant varietal differences were found in relation to salinity tolerance. Based on dry matter yield reduction, rice cultivars were classified as tolerant, moderately tolerant, moderately susceptible or susceptible.  相似文献   

12.
Verticillium wilt, caused by Verticillium dahliae Kleb., is presently the most destructive disease of olive, particularly in Andalucía (southern Spain). ‘Picual’ and ‘Arbequina’ are the dominant cultivars being planted in Spain. Both cultivars are highly susceptible to the defoliating pathotype of V. dahliae when artificially inoculated by root‐dipping or stem injection. Conversely, ‘Arbequina’ is considered more resistant than ‘Picual’ based on field observations and farmer's experience. In this study, the differential reaction between of cultivars was confirmed by surveys of naturally infested orchards with different inoculum densities of the pathogen. The average percentage of affected olive trees of ‘Picual’ was 60.2%, while only 13.1% of trees of ‘Arbequina’ showed disease symptoms. Overall, the pathogen caused extensive wilting of branches and defoliation on the trees of ‘Picual’, whereas ‘Arbequina’‐infected trees showed chlorotic symptoms and slight defoliation. The relationship between inoculum density and disease incidence fit a logarithmic function for both cultivars. The percentage of affected trees of ‘Arbequina’ per year increased linearly (y = 0.3559x, R2 = 0.5652, and P = 0.0195) with the inoculum density in the soil, whereas this relationship was not observed for the ‘Picual’. Planting density had no effect on disease incidence for any of the two cultivars.  相似文献   

13.
Flooding an extreme alkaline-saline soil decreased alkalinity and salinity, which will change the bacterial populations. Bacterial 16S rDNA libraries were generated of three soils with different electrolytic conductivity (EC), i.e. soil with EC 1.7 dS m−1 and pH 7.80 (LOW soil), with EC 56 dS m−1 and pH 10.11 (MEDIUM soil) and with EC 159 dS m−1 and pH 10.02 (HIGH soil), using universal bacterial oligonucleotide primers, and 463 clone 16S rDNA sequences were analyzed phylogenetically. Library proportions and clone identification of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Firmicutes and Cloroflexi showed that the bacterial communities were different. Species and genera of the Rhizobiales, Rhodobacterales and Xanthomonadales orders of the α- and γ-subdivision of Proteobacteria were found at the three sites. Species and genera of the Rhodospirillales, Sphingobacteriales, Clostridiales, Oscillatoriales and Caldilineales were found only in the HIGH soil, Sphingomonadales, Burkholderiales and Pseudomonadales in the MEDIUM soil, Myxococcales in the LOW soil, and Actinomycetales in the MEDIUM and LOW soils. It was found that the largest diversity at the order and species level was found in the MEDIUM soil as bacteria of both the HIGH and LOW soils were found in it.  相似文献   

14.
Knowledge of stress-responsive proteins is critical for further understanding the molecular mechanisms of stress tolerance. The objectives of this study were to establish a proteomic map for a perennial grass species, creeping bentgrass (A. stolonifera L.), and to identify differentially expressed, salt-responsive proteins in two cultivars differing in salinity tolerance. Plants of two cultivars (‘Penncross’ and ‘Penn-A4’) were irrigated daily with water (control) or NaCl solution to induce salinity stress in a growth chamber. Salinity stress was obtained by adding NaCl solution of 2, 4, 6, and 8 dS m−1 in the soil daily for 2-day intervals at each concentration, and then by watering soil with 10 dS m−1 solution daily for 28 days. For proteomic map, using two-dimensional electrophoresis (2-DE), approximately 420 and 300 protein spots were detected in leaves and roots, respectively. A total of 148 leaf protein spots and 40 root protein spots were excised from the 2-DE gels and subjected to mass spectrometry analysis. In total, 106 leaf protein spots and 24 root protein spots were successfully identified. Leaves had more salt-responsive proteins than roots in both cultivars. The superior salt tolerance in ‘Penn-A4’, indicated by shoot extension rate, relative water content, and cell membrane stability during the 28-day salinity stress could be mainly associated with its higher level of vacuolar H+-ATPase in roots and UDP-sulfoquinovose synthase, methionine synthase, and glucan exohydrolase in leaves, as well as increased accumulation of catalase and glutathione S-transferase in leaves. Our results suggest that salinity tolerance in creeping bentgrass could be in part controlled by an alteration of ion transport through vacuolar H+-ATPase in roots, maintenance of the functionality and integrity of thylakoid membranes, sustained polyamine biosynthesis, and by the activation of cell wall loosening proteins and antioxidant defense mechanisms.  相似文献   

15.
Wilcke  W.  Lilienfein  J. 《Plant and Soil》2004,258(1):31-41
Conversion of native savanna in Brazil, the Cerrado, to agri- and silvicultural land use causes changes in metal storages of the ecosystems. To evaluate the sustainability of land use these changes have to be known. Therefore, we examined the Al, Ca, Fe, K, Mg, Mn, Na, and Zn storages in above- and belowground biomass, the organic layer, and the top 2 m of the mineral soil (Anionic Acrustoxes) of three replicate plots in each of six native and land-use systems. The systems were native Cerrado, Pinus caribaea Morelet plantations, productive and degraded Brachiaria decumbens Stapf pastures, and conventional and no-tillage soybean cultivation. The total metal storage varied little among the studied systems except for Ca, K, and Mg. All land-use systems had larger Ca storages (cropping systems 202–205 g m–2, productive pasture: 112, degraded pasture: 84, Pinus: 81) than the Cerrado (62 g m–2). The K storage was smaller in the pastures (17–18 g m–2) than in Cerrado and Pinus stands (22–24) and largest in the cropping systems (26). The Mg storages were largest in the cropping systems (65–69) and productive pasture (59 g m–2); those in the Pinus stands (52), the degraded pasture (51), and the Cerrado (53) were similar. For most metals, the aboveground biomass contained up to 1% of the total storage including the top 2 m of the soil (<5% if the lower ecosystem boundary was set at 0.3 m soil depth). However, the aboveground biomass stored up to 12% of Ca, K, and Mg down to 2 m soil depth (41% if the lower ecosystem boundary was set at 0.3 m soil depth). In the Pinus stands, the storage of most metals was larger in the below- than in the aboveground biomass; for the other systems the reverse was true. Metal storages in soil were little affected by land use except that liming resulted in increased Ca and Mg storages in the topsoil. The comparison between known inputs of Ca, K, and Mg and mean annual change rates of their storages revealed that there were considerable base metal losses by leaching, grazing, and removal with the harvest. After 12–20 years, the land-use impact on metal storages is restricted to Ca, Mg, and K. Generally, all land-use systems tend to be richer in these nutrients except for the significant depletion in K of the pastures.  相似文献   

16.
The effects of temperature, salinity and irradiance on the growth of the red tide dinoflagellate Gyrodinium instriatum Freudenthal et Lee were examined in the laboratory. Exposed to 45 different combinations of temperature (10–30 °C) and salinity (0–40) under saturating irradiance, G. instriatum exhibited its maximum growth rate of 0.7 divisions/day at a combination of 25 °C and a salinity of 30. Optimum growth rates (>0.5 divisions/day) were observed at temperatures ranging from 20 to 30 °C and at salinities from 10 to 35. The organism could not grow at ≤10 °C. In addition, G. instriatum burst at a salinity of 0 at all temperatures, but grew at a salinity of 5 at temperatures between 20 and 25 °C. It is noteworthy that G. instriatum is a euryhaline organism that can live under extremely low salinity. Factorial analysis revealed that the contributions of temperature and salinity to its growth of the organism were almost equal. The irradiance at the light compensation point (I0) was 10.6 μmol/(m2 s) and the saturated irradiance for growth (Is) was 70 μmol/(m2 s), which was lower than Is for several other harmful dinoflagellates (90–110 μmol/(m2 s)).  相似文献   

17.
Akhter  J.  Murray  R.  Mahmood  K.  Malik  K.A.  Ahmed  S. 《Plant and Soil》2004,258(1):207-216
A field experiment was conducted to evaluate the effectiveness of growing salt tolerant plants to improve the physical characteristics of a saline-sodic soil. Kallar grass [Leptochloa fusca (L.) Kunth], a species tolerant to salinity, sodicity and alkalinity, was irrigated for five years with poor quality ground water (EC = 0.14 S m–1, SARadj=19.3, RSC = 9.7 meq L–1). The soil physical properties of plant available water, saturated hydraulic conductivity, structural stability, bulk density and porosity were determined at the end of each year. The growth of kallar grass for three years significantly improved the physical properties of the soil and these were maintained with further growth of grass up to five years. Kallar grass significantly increased plant available water with time (r=0.97**). The available water was highly correlated (r=0.92**) with increases in soil organic matter content, porosity (r=0.99**) and other physical properties. Soil hydraulic conductivity increased substantially with time from 0.035 to 55.6 mm d–1 in the topsoil (0–20 cm) in five years and was significantly correlated with porosity, water retention, structural stability and organic matter content of soil. The soil structural stability index improved significantly from 32 to 151 with kallar grass and showed greater increases in the surface soil than at depth. The cropping of kallar grass resulted in a linear increase of soil organic matter content (r=0.92**) which improved porosity and other soil physical properties (r0.82*). This study confirmed that kallar grass is effective for rehabilitation and restoration of soil fertility in saline-sodic areas on a sustainable basis.  相似文献   

18.
Above-canopy sprinkler irrigation with saline water favours the absorption of salts by wetted leaves and this can cause a yield reduction additional to that which occurs in salt-affected soils. Outdoor pot experiments with both sprinkler and drip irrigation systems were conducted to determine foliar ion accumulation and performance of maize and barley plants exposed to four treatments: nonsaline control (C), salt applied only to the soil (S), salt applied only to the foliage (F) and salt applied to both the soil and to the foliage (F+S). The EC of the saline solution employed for maize in 1993 was 4.2 dS m–1 (30 mM NaCl and 2.8 mM CaCl2) and for barley in 1994, 9.6 dS m–1 (47 mM NaCl and 23.5 mM CaCl2). The soil surface of all pots was covered so that in the F treatment the soil was not salinized by the saline sprinkling and drip irrigation supplied nutrients in either fresh (treatments C and F) or saline water (treatments S and F+S).Saline sprinkling increased leaf sap Na+ concentrations much more than did soil salinity, especially in maize, even though the saline sprinkling was given only two or three times per week for 30 min, whereas the roots of plants grown in saline soil were continuously exposed to salinity. By contrast, leaf sap Cl concentrations were increased similarly by saline sprinkling and soil salinity in maize, and more by saline sprinkling than saline soil in barley. It is concluded that barley leaves, and to a greater extent maize leaves, lack the ability to selectively exclude Na+ when sprinkler irrigated with saline water. Moreover, maize leaves selectively absorbed Na+ over Cl whereas barley leaves showed no selectivity. When foliar and root absorption processes were operating together (F+S treatment) maize and barley leaves accumulated 11–14% less Na+ and Cl than the sum of individual absorption processes (treatment F plus treatment S) indicating a slight interaction between the absorption processes. Vegetative biomass at maturity and cumulative plant water use were significantly reduced by saline sprinkling. In maize, reductions in biomass and plant water use relative to the control were of similar magnitude for plants exposed only to saline sprinkling, or only to soil salinity; whereas in barley, saline sprinkling was more detrimental than was soil salinity. We suggest that crops that are salt tolerant because they possess root systems which efficiently restrict Na+ and Cl transport to the shoot, may not exhibit the same tolerance in sprinkler systems which wet the foliage with saline water. ei]T J Flowers  相似文献   

19.
Bañuelos  G. S.  Sharmarsakar  S.  Cone  D.  Stuhr  G. 《Plant and Soil》2003,249(1):229-236
Water reuse is a proposed strategy for utilizing or disposing of poor quality drainage water produced in the westside of central California. This 2-year field study evaluated the ability of two potential forage species to tolerate irrigation with water high in salinity, boron (B), and selenium (Se). The species used were: Sporobulus airoides var. salado (alkali sacaton) and Medicago sativa var. salado (alfalfa). After first year establishment with good quality water (<1 dS m–1), the two species were furrow-irrigated with drainage effluent that had an average composition of sulfate-dominated salinity ((electrical conductivity (EC) of 6.2 dS m–1)) B (5 mg l–1), and Se (0.245 mg l–1). Both crops were clipped monthly from June to October of each year. Total dry matter yields averaged between 11 and 12 mg ha–1 for both crops irrigated with effluent for two growing seasons. Plant concentrations of Se ranged from a low of 1.3 mg kg–1 in alkali sacaton to a high of 2.5 mg kg–1 in alfalfa, while B concentrations ranged from a low of 60 mg kg–1 in alkali sacaton to a high of 170 mg kg–1 in alfalfa. Chemical composition of the soil changed as follows from preplant to post-irrigation after two seasons with drainage effluent: EC from 2.78 to 6.5 dS m–1, extractable B from 1.9 to 5.6 mg l–1, and no change in extractable Se at 0.012 mg l–1 between 0 and 45 cm. Between 45 and 90 cm, EC values increased from 4.95 to 6.79 dS m–1, extractable B from 2.5 to 4.8 mg l–1, and no change in extractable Se at 0.016 mg l–1. Increased salinity and extractable B levels in the soil indicate that management of soil salinity and B will be necessary over time to sustain long term reuse with poor quality water.  相似文献   

20.
The red tide dinoflagellate Karenia brevis (Davis) G. Hansen and Moestrup is noted for causing mass mortalities of marine organisms in the Gulf of Mexico. Most research has focused on culture isolates from the eastern Gulf of Mexico. In this investigation, we examine the effects of light, temperature and salinity on the growth rate of K. brevis from the western Gulf of Mexico. Growth rates of K. brevis were determined under various combinations of irradiance (19, 31, 52, 67, and 123 μmol m−2 s−1), salinity (25, 30, 35, 40 and 45), and temperature (15, 20, 25, and 30 °C). Maximum growth rates varied from 0.17 to 0.36 div day−1 with exponential growth rates increasing with increasing irradiance. Little or no growth was supported at 19 μmol photons m−2 s−1 for any experiment. Maximum growth rates at 15 °C were much lower than at other temperatures. Maximum growth rates of the Texas clone (SP3) fell within the range of Florida clones reported in the literature (0.17–0.36 div day−1 versus 0.2–1.0 div day−1). The Texas clone SP3 had a very similar light saturation point compared to that of a Florida isolate (Wilson's clone) (67 μmol m−2 s−1 versus 65 μmol m−2 s−1), and light compensation (20–30 μmol m−2 s−11). The upper and lower salinity tolerance of the Texas clone was similar than that of some Florida clones (45 versus 46 and 25 versus 22.5, respectively). In our study, the Texas clone had the same temperature tolerance reported for Florida clones (15–30 °C). While individual clones can vary considerably in maximum growth rates, our results indicate only minor differences exist between the Texas and Florida strains of K. brevis in their temperature and salinity tolerance for growth. While the literature notes lower salinity occurrences of K. brevis in nearby Louisiana, our isolate from the southern Texas coast has the higher salinity requirements typical of K. brevis in the eastern Gulf of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号