首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
The salinity responses of cyanobacteria, anoxygenic phototrophs, sulfate reducers, and methanogens from the laminated endoevaporitic community in the solar salterns of Eilat, Israel, were studied in situ with oxygen microelectrodes and in the laboratory in slurries. The optimum salinity for the sulfate reduction rate in sediment slurries was between 100 and 120 per thousand, and sulfate reduction was strongly inhibited at an in situ salinity of 215 per thousand. Nevertheless, sulfate reduction was an important respiratory process in the crust, and reoxidation of formed sulfide accounted for a major part of the oxygen budget. Methanogens were well adapted to the in situ salinity but contributed little to the anaerobic mineralization in the crust. In slurries with a salinity of 180 per thousand or less, methanogens were inhibited by increased activity of sulfate-reducing bacteria. Unicellular and filamentous cyanobacteria metabolized at near-optimum rates at the in situ salinity, whereas the optimum salinity for anoxygenic phototrophs was between 100 and 120 per thousand.  相似文献   

2.
Gypsum crusts containing multicolored, stratified microbial communities develop in the evaporation ponds of a commercial saltern in Eilat, Israel at salt concentrations between 190 and 240 g l−1. The upper 0.5–2 cm of the crust is densely populated by orange-brown unicellular cyanobacteria. Below, a layer of green-colored filamentous cyanobacteria is found. Underneath, a bright purple layer of anoxygenic phototrophs is present, below which a reduced black layer is found. We have investigated the biological properties of this crust using a wide variety of techniques, and we here review the results of these interdisciplinary studies. The tests performed included microscopic examination of the biota, phylogenetic analyses based on 16S rRNA gene clone libraries and denaturing gradient gel electrophoresis, fatty acid analysis, light intensity and light quality measurements, microelectrode studies of oxygen profiles and oxygen evolution, determination of sulfate reduction using radioisotope methods, and measurement of methane evolution. The stable vertical stratification in the system enabled separate analyses of the different layers with a high spatial resolution. It was therefore possible to combine the different approaches and obtain information on the activities of the different types of oxygenic and anoxygenic phototrophs, dissimilatory sulfate reducers and methanogens in the different layers, as well as phylogenetic information on the nature of the microorganisms responsible for these processes. The gypsum crust thus becomes a paradigm for the study of a wide variety of microbial processes and their interrelationships in the presence of high salt concentrations. Guest Editors: J. John & B. Timms Salt Lake Research: Biodiversity and Conservation—Selected papers from the 9th Conference of the International Society for Salt Lake Research  相似文献   

3.
4.
Habitat-modifying organisms that impact other organisms and local functioning are important in determining ecosystem resilience. However, it is often unclear how the outcome of interactions performed by key species varies depending on the spatial and temporal disturbance context which makes the prediction of disturbance-driven regime shifts difficult. We investigated the strength and generality of effects of the filter feeding cockle Cerastoderma edule on its ambient intertidal benthic physical and biological environment. By comparing the magnitude of the effect of experimental cockle removal between a non-cohesive and a sheltered cohesive sediment in two different periods of the year, we show that the outcome of cockle interference effects relates to differences in physical disturbance, and to temporal changes in suspended sediment load and ontogenetic changes in organism traits. Interference effects were only present in the cohesive sediments, though the effects varied seasonally. Cockle presence decreased only the density of surface-dwelling species suggesting that interference effects were particularly mediated by bioturbation of the surface sediments. Furthermore, density reductions in the presence of cockles were most pronounced during the season when larvae and juveniles were present, suggesting that these life history stages are most vulnerable to interference competition. We further illustrate that cockles may enhance benthic microalgal biomass, most likely through the reduction of surface-dwelling grazing species, especially in periods with high sediment load and supposedly also high bioturbation rates. Our results emphasize that the physical disturbance of the sediment may obliterate biotic interactions, and that temporal changes in environmental stressors, such as suspended sediments, may affect the outcome of key species interference effects at the local scale. Consequently, natural processes and anthropogenic activities that change bed shear stress and sediment dynamics in coastal soft-sediment systems will affect cockle-mediated influences on ecosystem properties and therefore the resilience of these systems to environmental change.  相似文献   

5.
Four experiments covering different seasons were performed to test the impact of increased benthic and planktonic resource availability on the structure of biofilm-dwelling ciliate communities which were cultivated in river bypass systems. The growth of benthic bacteria was stimulated by the addition of dissolved organic carbon. The enrichment of the planktonic resource was achieved by supplementation with suspended bacteria. It was shown that both resource enrichments can differentially influence abundance and taxonomic structure of ciliate communities. Furthermore, both resources can influence different stages during biofilm colonization. Increased benthic bacterial growth mainly resulted in both an accumulation of primarily grazing-resistant bacterial filaments and in an increase in the number of vagile heterotrophic flagellates. This can stimulate nanophagous ciliates (feeding on flagellates) in addition to the direct stimulation of bacteriovorous ciliates. The effects of the planktonic bacteria enrichments were twofold: They could have been utilized either directly by suspension-feeding ciliates or indirectly through an enhanced growth of suspension-feeding attached heterotrophic flagellates, which were then in turn grazed upon by ciliates. The magnitude of responses of the total ciliate abundance to the two resource enrichments further depended on the background conditions, thereby showing temporarily variable limitations of these resources. Furthermore, the particular taxonomic groups stimulated by one resource type sometimes differed between the experiments, an observation which demonstrates that the response depends on different environmental factors and is not easily predictable based simply on resource type. Taken together, our results emphasize the need of a differentiated view on the effects of resources on complex biofilm-dwelling consumer communities with respect to both the origin of carbon source as well as the particular environmental conditions.  相似文献   

6.
Entomological Review - The study presents the results of long-term (2006-2014) research on the non-biting midges (Diptera, Chironomidae) in macrozoobenthic communities of five saline rivers (the...  相似文献   

7.
High-latitude reefs support unique ecological communities occurring at the biogeographic boundaries between tropical and temperate marine ecosystems. Due to their lower ambient temperatures, they are regarded as potential refugia for tropical species shifting poleward due to rising sea temperatures. However, acute warming events can cause rapid shifts in the composition of high-latitude reef communities, including range contractions of temperate macroalgae and bleaching-induced mortality in corals. While bleaching has been reported on numerous high-latitude reefs, post-bleaching trajectories of benthic communities are poorly described. Consequently, the longer-term effects of thermal anomalies on high-latitude reefs are difficult to predict. Here, we use an autonomous underwater vehicle to conduct repeated surveys of three 625 m2 plots on a coral-dominated high-latitude reef in the Houtman Abrolhos Islands, Western Australia, over a four-year period spanning a large-magnitude thermal anomaly. Quantification of benthic communities revealed high coral cover (>70%, comprising three main morphospecies) prior to the bleaching event. Plating Montipora was most susceptible to bleaching, but in the plot where it was most abundant, coral cover did not change significantly because of post-bleaching increases in branching Acropora. In the other two plots, coral cover decreased while macroalgal cover increased markedly. Overall, coral cover declined from 73% to 59% over the course of the study, while macroalgal cover increased from 11% to 24%. The significant differences in impacts and post-bleaching trajectories among plots underline the importance of understanding the underlying causes of such variation to improve predictions of how climate change will affect reefs, especially at high-latitudes.  相似文献   

8.
A moderately halophilic methanogenic bacterium was enriched with trimethylamine and isolated from the sediment of a solar salt pond (total dissolved solids of pond water, 250 g/liter; pH 7.5). The isolate (strain SF1, DSM 3243) was an irregular coccus which stained gram negative, with a diameter of 1 μm and a thin monolayered cell wall. The organism grew singly, in pairs, and in irregular clumps. Colonies were tannish yellow, circular, with entire edges, and about 1 mm in diameter within 1 week. Only methylamines or methanol was used for growth and methanogenesis. Most rapid growth (doubling time, 10.2 h) occurred at a temperature of 37°C and a pH of 7.4. The optimum NaCl concentration was 2.1 M. Yeast extract or rumen fluid was required. The isolate was lysed by sodium dodecyl sulfate (0.1 g/liter) and was sensitive to chloramphenicol. The G+C content of the DNA was 41 (±1) mol%.  相似文献   

9.
10.
Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.  相似文献   

11.
To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure.  相似文献   

12.
《Ostrich》2013,84(3-4):142-147
Ecological barriers are the riskiest phases of the annual migrations for migratory birds. Comparatively little field data exists pertaining to the ability of migratory birds to prepare for the challenges of crossing ecological barriers, or their ability to recuperate afterward. Migrating Reed Warblers (Acrocephalus scirpaceus) were captured in Eilat, Israel, during their spring and autumn migrations. Data on spring and autumn body masses, their inter-annual variation, and the pattern of body mass increase were analysed. The birds show a significant inter-annual variation in their body mass and body condition index in both seasons, which is consistent with the data from other sites and for other passerine species. During stopovers, mass gain occurred in both seasons. Birds in poor initial condition, and those that stop over for a longer period of time, gained more body mass faster. In spring, but not in autumn, the progress of the season was also an important factor; late-arriving birds gained more fuel faster. The average rate of fuel gain was 0,157g·day?1 ± 0.018 SE.  相似文献   

13.
The Urania basin is a hypersaline sulfidic brine lake at the bottom of the eastern Mediterranean Sea. Since this basin is located at a depth of ~3,500 m below the sea surface, it receives only a small amount of phytoplankton organic carbon. In the present study, the bacterial assemblages at the interface between the hypersaline brine and the overlaying seawater were investigated. The sulfide concentration increased from 0 to 10 mM within a vertical interval of 5 m across the interface. Within this chemocline, the total bacterial cell counts and the exoenzyme activities were elevated. Employing 11 cultivation methods, we isolated a total of 70 bacterial strains. The 16S ribosomal DNA sequences of 32 of the strains were identical to environmental sequences detected in the chemocline by culture-independent molecular methods. These strains were identified as flavobacteria, Alteromonas macleodii, and Halomonas aquamarina. All 70 strains could grow chemoorganoheterotrophically under oxic conditions. Sixty-six strains grew on peptone, casein hydrolysate, and yeast extract, whereas only 15 strains did not utilize polymeric carbohydrates. Twenty-one of the isolates could grow both chemoorganotrophically and chemolithotrophically. While the most probable numbers in most cases ranged between 0.006 and 4.3% of the total cell counts, an unsually high value of 54% was determined above the chemocline with media containing amino acids as the carbon and energy source. Our results indicate that culturable bacteria thriving at the oxic-anoxic interface of the Urania basin differ considerably from the chemolithoautotrophic bacteria typical of other chemocline habitats.  相似文献   

14.
Changes in the macroinvertebrate community were investigated over 10 months at four sites along a 19 km salinity gradient (0.21–2.60 g l−1) in a sixth-order stream, the Meurthe River, northeastern France. Abiotic characteristics other than salinity were similar between the sites. Macroinvertebrate taxonomic richness decreased by 30% downstream of the 1.4 g l−1 sites while diversity, evenness or total abundance of taxa did not change along the gradient. In terms of functioning, a slight change in relative abundances of invertebrate feeding groups followed the salinity gradient. Eight invertebrate assemblages occurred within specific salinity distributions were identified. The exotics Gammarus tigrinus, Dreissena polymorpha, Corbicula fluminalis and Corophium curvispinum, were more abundant at the highest salinity site. These results suggest that rising salinity concentrations drastically affect the species composition, including favouring exotic species.  相似文献   

15.
The reproductive behavior of Acanthurus nigrofuscus, a common surgeonfish of the Red Sea, is described for two overlapping populations inhabiting the coral reefs off Eilat, Israel (Gulf of Aqaba). The spectacular daily spawning activities, often involving aggregations of thousands of individuals, as well as the often long distance migrations to and from the spawning grounds by groups in highly organized formations are characterized in detail. Evidence is provided that the precise timing of these various phenomena is controlled by ambient light levels during the late afternoon. Less detailed information is also provided on comparable activities of two other surgeonfishes from the same reefs: Ctenochaetus striatus and Zebrasoma xanthurum. Finally, comparisons are made of reproduction and its associated environmental controls among populations of the same and related species of surgeonfishes at widely distributed locations in the Indo-Pacific.  相似文献   

16.
The goal of the work was to reveal the differences in the structure of microbial communities of Transbaikalia alkaline lakes stemming from the differences in their salinity and hydrochemical parameters. The lakes studied were Verkhnee Beloe (Buryat Republic, Russia), as well as Khilganta, Gorbunka, and Borzinskoe (Transbaikal krai, Russia) with salinity from 12.3 to 430 g/L, which differed in the mineral composition of the sediments and hydrochemical parameters. Lake sediments were found to contain 47 prokaryotic phyla (42 bacterial and 5 archaeal ones). The phyla Proteobacteria, Euryarchaeota, Bacteroides, Chloroflexi, Actinobacteria, and Firmicutes were predominant, comprising over 95% of the classified sequences. Comparative abundance of archaea increased with salinity from below 1% in Lake Verkhnee Beloe to 35% in Lake Borzinskoe. The most numerous bacterial OTUs belonged to gammaproteobacteria of the genus Halomonas (up to 15% of the number of classified sequences). The most numerous archaeal OTUs were identified at the genus level as members of the genera Halorubrum and Halohasta belonging to the family Halorubraceae, which comprises extremely halophilic Euryarchaeota.  相似文献   

17.
The phospholipid fatty acid (PLFA) profiles of soil microbial communities were determined in relation to the patterns of tree cover in a mature Norway spruce plantation. Replicate samples of the surface organic layers were taken close to the trunk, at 1 m and at 2 m (under the edge of the canopy) beneath five trees. Samples were analyzed for standard PLFAs to assess the initial composition of the microbial communities. Replicate samples were then incubated under constant or fluctuating moisture conditions for 30 d to test the hypothesis that the patterns of microbial community structure (or its physiological state) might be determined by biophysical conditions under the tree canopies. The PLFA profiles near the trunks and at 2 m were similar, but samples taken 1 m from the bases of the trees contained lower concentrations of polyunsaturated (fungal) and monounsaturated PLFAs, and higher concentrations of saturated PLFAs. These differences in PLFA profiles were maintained during laboratory incubation under a regime of drying and wetting cycles, but there was some evidence of convergence in community structure under constant moisture conditions resulting from significant increases and decreases in specific bacterial PLFA concentrations. There were no effects of either moisture treatment on fungal PLFA concentrations. It is concluded that variation in the soil biophysical environment beneath the tree canopies resulted in the differentiation of spatially defined bacterial communities that were tolerant of moisture stress. The anomaly that differences in community structure were largest at an intermediate position of 1 m between the trunk and below the canopy edge was not explained but may relate to tree root distribution.  相似文献   

18.
The culturable haloarchaeal diversity in a crystallizer pond from a solar saltern has been analyzed and compared with the biodiversity directly retrieved by analysis of rRNA genes amplified from the environment. Two different sets of culture conditions have been assayed: solid medium with yeast extract as carbon source and liquid media with either yeast extract or a mixture of fishmeal, Spirulina sp., and Artemia salina. Seventeen colonies grown on plates with yeast extract incubated at 30°C were analyzed by 16S rDNA partial sequencing. Sixteen were closely related to haloarchaea of the genus Halorubrum; 13 of them to Halorubrum coriense, a haloarchaeon isolated from a solar saltern pond in Australia, which had not been previously isolated from the pond analyzed in this study; and one to Haloarcula marismortui. Liquid cultures were analyzed by ribosomal internal spacer analysis (RISA) and partial sequencing of the 16SrRNA genes. A total of 18 sequences were analyzed, 15 corresponding to RISA bands obtained from cultures, and 3 from the environmental sample used as inoculum. Thirteen sequences obtained from cultures were related to several Halorubrum species, and 2 to Haloarcula. One of the clones obtained directly from the environmental sample was distantly related to a Natronobacterium, whereas two were related to SPhT, the phylotype most frequently retrieved from this environment by culture independent techniques. Our results show an extremely low diversity for the haloarchaea retrieved by cultivation even when modifications to the standard technique are introduced.  相似文献   

19.
Microbial communities associated with Arctic fjord ice polluted with petroleum oils were investigated in this study. A winter field experiment was conducted in the Van Mijen Fjord (Svalbard) from February to June 2004, in which the ice was contaminated with a North Sea paraffinic oil. Holes were drilled in the ice and oil samples frozen into the ice at the start of the experiment. Samples, including cores of both oil-contaminated and clean ice, were collected from the field site 33, 74, and 112 days after oil application. The sampled cores were separated into three sections and processed for microbiological and chemical analyses. In the oil-contaminated cores, enumerations of total prokaryotic cells by fluorescence microscopy and colony-forming units (CFU) counts of heterotrophic prokaryotes both showed stimulation of microbial growth, while concentrations of oil-degrading prokaryotes remained at similar levels in contaminated and clean ice. Analysis of polymerase chain reaction (PCR)-amplified bacterial 16S rRNA gene fragments by denaturing gradient gel electrophoresis (DGGE) revealed that bacterial communities in oil-contaminated ice generated fewer bands than communities in clean ice, although banding patterns changed both in contaminated and clean ice during the experimental period. Microbial communities in unpolluted ice and in cores contaminated with the paraffinic oil were examined by cloning and sequence analysis. In the contaminated cores, the communities became predominated by Gammaproteobacteria related to the genera Colwellia, Marinomonas, and Glaciecola, while clean ice included more heterogeneous populations. Chemical analysis of the oil-contaminated ice cores with determinations of n-C17/Pristane and naphthalene/phenanthrene ratios indicated slow oil biodegradation in the ice, primarily in the deeper parts of the ice with low hydrocarbon concentrations.  相似文献   

20.
The crustacean genus Artemia naturally inhabits various saline and hypersaline environments and is the most frequently laboratory-hatched animal for live feed in mari- and aquaculture. Because of its high economic importance, Artemia-bacteria interactions were so far studied mostly in laboratory strains. In this study, we focused our attention on the Artemia-associated microbiota in its natural environment in the solar salterns of Eilat, Israel. We applied a culture-independent method (clone libraries) to investigate the bacterial community structure associated with Artemia in five evaporation ponds with salinities from slightly above seawater (5%) to the point of saturation (32%), in two different developmental stages: in nauplii and in the intestine of adult animals. Bacteria found in naupliar and adult stages were classified within the Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Cyanobacteria. The halophilic proteobacterial genera Halomonas spp. and Salinivibrio spp. dominated the Artemia microbiota in both stages in all ponds. We also analysed a clone library of entire adult animals, revealing a novel bacterial phylogenetic lineage. This is the first molecular study of bacteria associated with two developmental stages of Artemia along a salinity gradient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号