首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
J. Kim  G. Rhee 《Applied microbiology》1997,63(5):1771-1776
The growth dynamics of polychlorinated biphenyl (PCB)-dechlorinating microorganisms were determined for the first time, along with those of sulfate reducers and methanogens, by using the most-probable-number technique. The time course of Aroclor 1248 dechlorination mirrored the growth of dechlorinators; dechlorination ensued when the dechlorinating population increased by 2 orders of magnitude from 2.5 x 10(sup5) to 4.6 x 10(sup7) cells g of sediment(sup-1), at a specific growth rate of 6.7 day(sup-1) between 2 and 6 weeks. During this period, PCB-dechlorinating microorganisms dechlorinated Aroclor 1248 at a rate of 3.9 x 10(sup-8) mol of Cl g of sediment(sup-1) day(sup-1), reducing the average number of Cl molecules per biphenyl from 3.9 to 2.8. The growth yield was 4.2 x 10(sup13) cells mol of Cl dechlorinated(sup-1). Once dechlorination reached a plateau, after 6 weeks, the number of dechlorinators began to decrease. On the other hand, dechlorinators inoculated into PCB-free sediments decreased over time from their initial level, suggesting that PCBs are required for their selective enrichment. The numbers of sulfate reducers and methanogens increased in both PCB-free and contaminated sediments, showing little difference between them. The maximum population size of sulfate reducers was about an order of magnitude higher than that of dechlorinators, whereas that of methanogens was slightly less. Unlike those of dechlorinators, however, numbers of both sulfate reducers and methanogens remained high even when dechlorination ceased. The results of this study imply that PCB concentrations may have to exceed a certain threshold to maintain the growth of PCB dechlorinators.  相似文献   

2.
We investigated the effects of halogenated aromatic compounds (HACs) including naturally occurring ones (L-thyroxine, 3-chloro-L-tyrosine, 5-chloroindole, 2-chlorophenol, 4-chlorophenol and chlorobenzene) on polychlorinated biphenyl (PCB) dechlorination in sediment cultures. A PCB-dechlorinating enrichment culture of sediment microorganisms from the St. Lawrence River was used as an initial inoculum. When the culture was inoculated into Aroclor 1248 sediments amended with each of the six HACs, the extent of dechlorination was not enhanced by amendment with HACs. The dechlorination patterns in the HAC-amended sediments were nearly identical to that of the HAC-free sediments except the 3-chloro-L-tyrosine-amended ones where no dechlorination activity was observed. When these sediment cultures were transferred into fresh sediments with the same HACs, the dechlorination specificities remained the same as those of the initial inoculations. Thus, in the present study, the substrate range of the highly selected enrichment culture could not be broadened by the HACs. It appears that HACs affect PCB dechlorination mainly through population selection rather than enzyme induction of single population.  相似文献   

3.
Defined microbial communities were developed by combining selective enrichment with molecular monitoring of total community genes coding for 16S rRNAs (16S rDNAs) to identify potential polychlorinated biphenyl (PCB)-dechlorinating anaerobes that ortho dechlorinate 2,3,5,6-tetrachlorobiphenyl. In enrichment cultures that contained a defined estuarine medium, three fatty acids, and sterile sediment, a Clostridium sp. was predominant in the absence of added PCB, but undescribed species in the δ subgroup of the class Proteobacteria, the low-G+C gram-positive subgroup, the Thermotogales subgroup, and a single species with sequence similarity to the deeply branching species Dehalococcoides ethenogenes were more predominant during active dechlorination of the PCB. Species with high sequence similarities to Methanomicrobiales and Methanosarcinales archaeal subgroups were predominant in both dechlorinating and nondechlorinating enrichment cultures. Deletion of sediment from PCB-dechlorinating enrichment cultures reduced the rate of dechlorination and the diversity of the community. Substitution of sodium acetate for the mixture of three fatty acids increased the rate of dechlorination, further reduced the community diversity, and caused a shift in the predominant species that included restriction fragment length polymorphism patterns not previously detected. Although PCB-dechlorinating cultures were methanogenic, inhibition of methanogenesis and elimination of the archaeal community by addition of bromoethanesulfonic acid only slightly inhibited dechlorination, indicating that the archaea were not required for ortho dechlorination of the congener. Deletion of Clostridium spp. from the community profile by addition of vancomycin only slightly reduced dechlorination. However, addition of sodium molybdate, an inhibitor of sulfate reduction, inhibited dechlorination and deleted selected species from the community profiles of the class Bacteria. With the exception of one 16S rDNA sequence that had the highest sequence similarity to the obligate perchloroethylene-dechlorinating Dehalococcoides, the 16S rDNA sequences associated with PCB ortho dechlorination had high sequence similarities to the δ, low-G+C gram-positive, and Thermotogales subgroups, which all include sulfur-, sulfate-, and/or iron(III)-respiring bacterial species.The extensive industrial use of polychlorinated biphenyls (PCBs) during the 20th century has resulted in the release of an estimated several million pounds of PCBs into the environment (2). Due to the hydrophobicity and chemical stability of these compounds, PCBs ultimately accumulate in subsurface anaerobic sediments, where reductive dechlorination by anaerobic microorganisms is proposed to be an essential step in PCB degradation and detoxification (6). Although anaerobic reductive dechlorination has been documented in the environment and in the laboratory, attempts to identify and isolate anaerobic PCB-dechlorinating microbes by classical enrichment and isolation techniques have been unsuccessful (for a review, see reference 2). Isolation of anaerobic PCB-dechlorinating microbes has been hindered in part by the inability to maintain and sequentially transfer dechlorinating consortia in defined medium. May et al. (24) were the first to demonstrate that single colonies could be obtained by plating highly enriched PCB-dechlorinating enrichment cultures on agar-solidified media. Although two of the colonies exhibited para dechlorination activity when transferred back to liquid enrichment medium, the colonies contained a mixed community of microorganisms and dechlorination required the addition of sediment to the medium. More recently, highly enriched PCB-ortho-dechlorinating enrichment cultures were developed from Baltimore Harbor sediments in minimal media that contained sediments and a single congener (3) or Aroclor 1260 (37). These were the first confirmed reports of sustained ortho dechlorination of PCBs throughout sequential transfers in medium with estuarine sediments. Finally, Cutter et al. demonstrated that a consortium of PCB-ortho-dechlorinating anaerobes from Baltimore Harbor could be sequentially transferred and maintained in minimal medium without the addition of sterile sediment (9). With the ability to maintain PCB dechlorination in a completely defined medium, highly enriched PCB-dechlorinating consortia could be developed by sequential transfers in medium that contained the minimal growth requirements for dechlorinating species.The current study identifies putative PCB-dechlorinating anaerobes in ortho-dechlorinating enrichment cultures by a comprehensive approach that combines traditional selective enrichment techniques with molecular monitoring (SEMM). Microbial consortia enriched for PCB ortho dechlorination in minimal medium were analyzed by comparative sequence analysis of genes coding for 16S rRNA (16S rDNA) amplified from total community DNAs. Protocols were developed for chromosomal DNA extraction from sediment, 16S rDNA amplification by PCR, cloning of partial 16S rDNA PCR fragments, screening by restriction fragment length polymorphism (RFLP) analysis, and DNA sequencing for comparative sequence analysis. By utilizing these techniques, shifts in the microbial community were monitored as the cultures were further enriched for PCB-dechlorinating anaerobes by elimination of undefined medium components (i.e., sediment), changes in carbon source, and addition of selective physiological inhibitors. The results presented herein demonstrate the applicability of the SEMM approach for the selection and monitoring of highly defined PCB-dechlorinating microbial consortia.  相似文献   

4.
16S rDNA clone library analysis was used to examine the biodiversity and community structure within anoxic sediments of several marine-type salinity meromictic lakes and a coastal marine basin located in the Vestfolds Hills area of Eastern Antarctica. From 69 to 130 (555 total) 16S rDNA clones were analysed from each sediment sample, and restriction fragment length polymorphism (RFLP) and sequence analysis grouped the clones into 202 distinct phylotypes (a clone group with sequence similarity of > 0.98). A number of phylotypes and phylotype groups predominated in all libraries, with a group of 10 phylotypes (31% of clones) forming a novel deep branch within the low G + C Gram-positive division. Other abundant phylotypes detected in several different clone libraries grouped with Prochlorococcus cyanobacteria, diatom chloroplasts, delta proteobacteria ( Desulfosarcina group, Syntrophus and Geobacter / Pelobacter / Desulphuromonas group), order Chlamydiales (Parachlamydiaceae) and Spirochaetales (wall-less Antarctic spirochaetes). Most archaeal clones detected (3.1% of clones) belonged to a highly diverged group of Euryarchaeota clustering with clones previously detected in rice soil, aquifer sediments and hydrothermal vent material. Little similarity existed between the phylotypes detected in this study and other clone libraries based on marine sediment, suggesting that an enormous prokaryotic diversity occurs within marine and marine-derived sediments.  相似文献   

5.
The marine environment represents a rich source of bio- and geogenically produced organohalogens, including the common pollutant perchloroethene (PCE). However, diversity and function of marine chloroethene-dechlorinating microorganisms are largely unknown. Here, we have studied the activity and composition of a tidal flat sediment bacterial and archaeal community from the North Sea exposed to low concentrations of PCE. After 2 weeks of incubation, PCE was rapidly dechlorinated via trichloroethene to dichloroethene (DCE). Unexpectedly, these microcosms produced 3.5-fold more trans-DCE than cis-DCE. The actively dechlorinating microbial populations were traced by stable isotope probing of rRNA with (13)C-labelled acetate for 4 days. Terminal restriction fragment length polymorphism fingerprinting and clone libraries of isotopically enriched, 'heavy'(13)C-labelled bacterial 16S rRNA revealed the populations potentially involved in reductive dechlorination. Major clone groups belonged to the Proteobacteria (50.0%; 22.4% delta-, 12.1% gamma-, 6.9% alpha-, 6.9% beta- and 1.7% epsilon-subgroup) and Chloroflexi (29.3%). Populations represented by the two dominant terminal restriction fragments were affiliated with the Dehalococcoidetes (subphylum II of the Chloroflexi), and were exclusively detected in the heavy fraction of the PCE-dechlorinating incubation. The phylogenetically novel, larger population, designated Tidal Flat Chloroflexi Cluster, was closely related to the recently discovered PCE-dechlorinating Lahn Cluster bacteria from anoxic river sediment but more distantly related to canonical Dehalococcoides spp. (92-94% sequence identity). The second population was closely related to 'Dehalobium chlorocoercia DF-1'. Both populations appear to be responsible for reductive dechlorination of highly chlorinated ethenes to predominantly trans-DCE in tidal flat sediment incubations.  相似文献   

6.
A toluene-degrading methanogenic consortium enriched from creosote-contaminated aquifer material was maintained on toluene as the sole carbon and energy source for 10 years. The species in the consortium were characterized by using a molecular approach. Total genomic DNA was isolated, and 16S rRNA genes were amplified by using PCR performed with kingdom-specific primers that were specific for 16S rRNA genes from either members of the kingdom Bacteria or members of the kingdom Archaea. A total of 90 eubacterial clones and 75 archaeal clones were grouped by performing a restriction fragment length polymorphism (RFLP) analysis. Six eubacterial sequences and two archaeal sequences were found in the greatest abundance (in six or more clones) based on the RFLP analysis. The relative abundance of each putative species was estimated by using fluorescent in situ hybridization (FISH), and the presence of putative species was determined qualitatively by performing slot blot hybridization with consortium DNA. Both archaeal species and two of the six eubacterial species were detected in the DNA and FISH hybridization experiments. A phylogenetic analysis of these four dominant organisms suggested that the two archaeal species are related to the genera Methanosaeta and Methanospirillum. One of the eubacterial species is related to the genus Desulfotomaculum, while the other is not related to any previously described genus. By elimination, we propose that the last organism probably initiates the attack on toluene.  相似文献   

7.
Molecular characterization of a toluene-degrading methanogenic consortium   总被引:4,自引:0,他引:4  
A toluene-degrading methanogenic consortium enriched from creosote-contaminated aquifer material was maintained on toluene as the sole carbon and energy source for 10 years. The species in the consortium were characterized by using a molecular approach. Total genomic DNA was isolated, and 16S rRNA genes were amplified by using PCR performed with kingdom-specific primers that were specific for 16S rRNA genes from either members of the kingdom Bacteria or members of the kingdom Archaea. A total of 90 eubacterial clones and 75 archaeal clones were grouped by performing a restriction fragment length polymorphism (RFLP) analysis. Six eubacterial sequences and two archaeal sequences were found in the greatest abundance (in six or more clones) based on the RFLP analysis. The relative abundance of each putative species was estimated by using fluorescent in situ hybridization (FISH), and the presence of putative species was determined qualitatively by performing slot blot hybridization with consortium DNA. Both archaeal species and two of the six eubacterial species were detected in the DNA and FISH hybridization experiments. A phylogenetic analysis of these four dominant organisms suggested that the two archaeal species are related to the genera Methanosaeta and Methanospirillum. One of the eubacterial species is related to the genus Desulfotomaculum, while the other is not related to any previously described genus. By elimination, we propose that the last organism probably initiates the attack on toluene.  相似文献   

8.
Polychlorinated Biphenyl (PCB)-dechlorinating cultures with complimentary activities, previously derived from estuarine Baltimore Harbor (B), marine Palos Verdes (P), and riverine Hudson River (H) sediments, were mixed and then inoculated into sterile sediments from the same sources. In the treatments containing sterile B sediment, the different inocula had limited impact on the bacterial community development and on dechlorination patterns, all of which were similar. In treatments containing sterile P or H sediment, however, different inocula resulted in significantly different PCB dechlorination patterns and bacterial communities. The B sediment appeared to support not only the most extensive and rapid dechlorination of the three sediments, but also supported a more diverse bacterial community. This was thought to be a result of nutritional richness, as it was high in organic carbon and micronutrients such as zinc and cobalt. Although mixing three PCB-dechlorinating cultures was able to produce a culture capable of enhanced PCB-dechlorinating activity as compared to single cultures, some activities were lost upon culture transfer. This indicates that care must be taken to establish robust PCB-dechlorinating cultures capable of extensive dechlorination prior to pursuing bioaugmentation. In addition, our results indicate that the concentration and availability of macro-and micronutrients could have a significant impact on the microbial community structure, and thus a thorough characterization of the sediment at contaminated sites is essential for implementing bioaugmentation for PCB bioremediation.  相似文献   

9.
Polychlorinated biphenyls (PCBs) are carcinogenic, persistent, and bioaccumulative contaminants that pose risks to human and environmental health. In this study, we evaluated the PCB biodegradation of sediments from Indiana Harbor and Ship Canal (IHSC), a PCB-contaminated site (average PCB concentration = 12,570 ng/g dw). PCB congener profiles and bacterial community structure in a core sediment sample (4.57 m long) were characterized. Analysis of vertical PCB congener profile patterns in sediment and pore water strongly suggests that in situ dechlorination occurred in sediments. However, 16S rRNA genes from putative PCB-dechlorinating Chloroflexi were relatively more abundant in upper 2 m sediments, as were genes indicative of aerobic biodegradation potential (i.e. biphenyl dioxygenase (bphA)). Characterization of the bacterial community by terminal restriction fragment length polymorphism and comparison of these with sediment and pore water PCB congener profiles with the Mantel test revealed a statistical correlation (p < 0.001). Sequences classified as Acinetobacter and Acidovorax were highly abundant in deep sediments. Overall, our results suggest that PCB dechlorination has already occurred, and that IHSC sediments have the potential for further aerobic and anaerobic PCB biodegradation.  相似文献   

10.
In this study, we report on first 16S rRNA gene sequences from highly saline brine sediments taken at a depth of 1,515 m in the Kebrit Deep, northern Red Sea. Microbial DNA extracted directly from the sediments was subjected to PCR amplification with primers specific for bacterial and archaeal 16S rRNA gene sequences. The PCR products were cloned, and a total of 11 (6 bacterial and 5 archaeal) clone types were determined by restriction endonuclease digestion. Phylogenetic analysis revealed that most of the cloned sequences were unique, showing no close association with sequences of cultivated organisms or sequences derived from environmental samples. The bacterial clone sequences form a novel phylogenetic lineage (KB1 group) that branches between the Aquificales and the Thermotogales. The archaeal clone sequences group within the Euryarchaeota. Some of the sequences cluster with the group II and group III uncultivated archaea sequence clones, while two clone groups form separate branches. Our results suggest that hitherto unknown archaea and bacteria may thrive in highly saline brines of the Red Sea under extreme environmental conditions. Received: 5 February 1999 / Accepted: 14 July 1999  相似文献   

11.
We have developed sediment-free anaerobic enrichment cultures that dechlorinate a broad spectrum of highly chlorinated polychlorinated biphenyls (PCBs). The cultures were developed from Aroclor 1260-contaminated sediment from the Housatonic River in Lenox, MA. Sediment slurries were primed with 2,6-dibromobiphenyl to stimulate Process N dechlorination (primarily meta dechlorination), and sediment was gradually removed by successive transfers (10%) to minimal medium. The cultures grow on pyruvate, butyrate, or acetate plus H(2). Gas chromatography-electron capture detector analysis demonstrated that the cultures extensively dechlorinate 50 to 500 mug/ml of Aroclor 1260 at 22 to 24 degrees C by Dechlorination Process N. Triplicate cultures of the eighth transfer without sediment dechlorinated 76% of the hexa- through nonachlorobiphenyls in Aroclor 1260 (250 mug/ml) to tri- through pentachlorobiphenyls in 110 days. At least 64 PCB congeners, all of which are chlorinated on both rings and 47 of which have six or more chlorines, were substrates for this dechlorination. To characterize the bacterial diversity in the enrichments, we used eubacterial primers to amplify and clone 16S rRNA genes from DNA extracted from cultures grown on acetate plus H(2). Restriction fragment length polymorphism analysis of 107 clones demonstrated the presence of Thauera-like Betaproteobacteria, Geobacter-like Deltaproteobacteria, Pseudomonas species, various Clostridiales, Bacteroidetes, Dehalococcoides of the Chloroflexi group, and unclassified Eubacteria. Our development of highly enriched, robust, stable, sediment-free cultures that extensively dechlorinate a highly chlorinated commercial PCB mixture is a major and unprecedented breakthrough in the field. It will enable intensive study of the organisms and genes responsible for a major PCB dechlorination process that occurs in the environment and could also lead to effective remediation applications.  相似文献   

12.
A microcosm system to physically model the fate of Aroclor 1242 in Hudson River sediment was developed. In the dark at 22 to 25 degrees C with no amendments (nutrients, organisms, or mixing) and with overlying water being the only source of oxygen, the microcosms developed visibly distinct aerobic and anaerobic compartments in 2 to 4 weeks. Extensive polychlorinated biphenyl (PCB) biodegradation was observed in 140 days. Autoclaved controls were unchanged throughout the experiments. In the surface sediments of these microcosms, the PCBs were biologically altered by both aerobic biodegrading and reductive dechlorinating microorganisms, decreasing the total concentration from 64.8 to 18.0 micromol/kg of sediment in 1140 days. This is the first laboratory demonstration of meta dechlorination plus aerobic biodegradation in stationary sediments. In contrast, the primary mechanism of microbiological attack on PCBs in aerobic subsurface sediments was reductive dechlorination. The concentration of PCBs remained constant at 64.8 micromol/kg of sediment, but the average number of chlorines per biphenyl decreased from 3.11 to 1.84 in 140 days. The selectivities of microorganisms in these sediments were characterized by meta and para dechlorination. Our results provide persuasive evidence that naturally occurring microorganisms in the Hudson River have the potential to attack the PCBs from Aroclor 1242 releases both aerobically and anaerobically at rapid rates. These unamended microcosms represent a unique method for determining the fate of released PCBs in river sediments.  相似文献   

13.
The rate, extent, and pattern of dechlorination of four Aroclors by inocula prepared from two polychlorinated biphenyl (PCB)-contaminated sediments were compared. The four mixtures used, Aroclors 1242, 1248, 1254, and 1260, average approximately three, four, five, and six chlorines, respectively, per biphenyl molecule. All four Aroclors were dechlorinated with the loss of meta plus para chlorines ranging from 15 to 85%. Microorganisms from an Aroclor 1242-contaminated site in the upper Hudson River dechlorinated Aroclor 1242 to a greater extent than did microorganisms from Aroclor 1260-contaminated sediments from Silver Lake, Mass. The Silver Lake inoculum dechlorinated Aroclor 1260 more rapidly than the Hudson River inoculum did and showed a preferential removal of meta chlorines. For each inoculum the rate and extent of dechlorination tended to decrease as the degree of chlorination of the Aroclor increased, especially for Aroclor 1260. The maximal observed dechlorination rates were 0.3, 0.3, and 0.2 μg-atoms of Cl removed per g of sediment per week for Aroclors 1242, 1248, and 1254, respectively. The maximal observed dechlorination rates for Hudson River and Silver Lake organisms for Aroclor 1260 were 0.04 and 0.21 μg-atoms of Cl removed per g of sediment per week, respectively. The dechlorination patterns obtained suggested that the Hudson River microorganisms were more capable than the Silver Lake organisms of removing the last para chlorine. These results suggest that there are different PCB-dechlorinating microorganisms at different sites, with characteristic specificities for PCB dechlorination.  相似文献   

14.
When microorganisms eluted from upper Hudson River sediment were cultured without any substrate except polychlorobiphenyl (PCB)-free Hudson River sediment, methane formation was the terminal step of the anaerobic food chain. In sediments containing Aroclor 1242, addition of eubacterium-inhibiting antibiotics, which should have directly inhibited fermentative bacteria and thereby should have indirectly inhibited methanogens, resulted in no dechlorination activity or methane production. However, when substrates for methanogenic bacteria were provided along with the antibiotics (to free the methanogens from dependence on eubacteria), concomitant methane production and dechlorination of PCBs were observed. The dechlorination of Aroclor 1242 was from the para positions, a pattern distinctly different from, and more limited than, the pattern observed with untreated or pasteurized inocula. Both methane production and dechlorination in cultures amended with antibiotics plus methanogenic substrates were inhibited by 2-bromoethanesulfonic acid. These results suggest that the methanogenic bacteria are among the physiological groups capable of anaerobic dechlorination of PCBs, but that the dechlorination observed with methanogenic bacteria is less extensive than the dechlorination observed with more complex anaerobic consortia.  相似文献   

15.
Q. Wu  D. L. Bedard    J. Wiegel 《Applied microbiology》1996,62(11):4174-4179
We studied the impact of incubation temperatures on the dechlorination of 2,3,4,6-tetrachlorobiphenyl (2346-CB) in two sediments from different climates: polychlorinated biphenyl (PCB)-free sediment from Sandy Creek Nature Center Pond (SCNC) in Athens, Ga., and PCB-contaminated sediment from Woods Pond (WP) in Lenox, Mass. Sediment slurries were incubated anaerobically with 350 (mu)M 2346-CB for 1 year at temperatures ranging from 4 to 66(deg)C. Most of the 2346-CB was dechlorinated between 12 and 34(deg)C in both sediments and, unexpectedly, between 50 and 60(deg)C in WP sediment. This is the first report of PCB dechlorination at thermobiotic temperatures. The data reveal profound differences in dechlorination rate, extent, and products as a function of sediment and temperature. The highest observed rate of dechlorination of 2346-CB to trichlorobiphenyls occurred at 30(deg)C in both sediments, but the rate was higher for WP than for SCNC sediment (46 versus 16 (mu)mol liter(sup-1) day(sup-1)). For SCNC sediment the rate of dechlorination dropped sharply below 30(deg)C, but for WP sediments it was near optimal from 20 to 34(deg)C and then dropped sharply below 20(deg)C. In WP sediment most of the meta chlorines were removed between 8 and 34(deg)C and between 50 and 60(deg)C. para dechlorination was restricted from 18 to 34(deg)C and was optimal at 20(deg)C. ortho dechlorination occurred between 8 and 30(deg)C, with optima around 15 and 27(deg)C, but the extent was highly variable. In SCNC sediment complete meta dechlorination occurred from 12 to 34(deg)C and para dechlorination occurred from 18 to 30(deg)C; both were optimal at 30(deg)C. No ortho dechlorination was observed. Dechlorination products were 246-CB, 236-CB, and 26-CB (both sediments) and 24-CB, 2-CB, and 4-CB (WP sediment). The data suggest that in SCNC sediment similar factors controlled meta and para PCB dechlorination over a broad temperature range (18 to 30(deg)C) but that in WP sediment there were multiple temperature-dependent changes in the factors controlling ortho, meta, and para dechlorination. We attribute the differences observed in the two sediments to differences in their PCB-dechlorinating communities.  相似文献   

16.
Q. Wu  D. L. Bedard    J. Wiegel 《Applied microbiology》1997,63(7):2836-2843
We studied the influence of temperature (4 to 66(deg)C) on the microbial dechlorination of 2,3,4,6-tetrachlorobiphenyl (2,3,4,6-CB) incubated for 1 year in anaerobic sediments from Woods Pond in Lenox, Mass., and Sandy Creek Nature Center Pond (SCNC) in Athens, Ga. Seven discrete dechlorination reactions were observed, four of which occurred in both sediments. These were 2,3,4,6-CB (symbl) 2,4,6-CB, 2,3,4,6-CB (symbl) 2,3,6-CB, 2,4,6-CB (symbl) 2,6-CB, and 2,3,6-CB (symbl) 2,6-CB. Three additional reactions occurred only in Woods Pond sediment. These were 2,4,6-CB (symbl) 2,4-CB, 2,4-CB (symbl) 2-CB, and 2,4-CB (symbl) 4-CB. The dechlorination reactions exhibited at least four different temperature dependencies in SCNC sediment and at least six in Woods Pond sediment. We attribute the discrete dechlorination reactions to different polychlorinated biphenyl (PCB)-dechlorinating microorganisms with distinct specificities. Temperature influenced the timing and the relative predominance of parallel pathways of dechlorination, i.e., meta versus para dechlorination of 2,3,4,6-CB and ortho versus para dechlorination of 2,4,6-CB and 2,4-CB. meta dechlorination of 2,3,4,6-CB to 2,4,6-CB dominated at all tested temperatures except at 18 and 34(deg)C, where para dechlorination to 2,3,6-CB dominated in some replicates. The dechlorination of 2,4,6-CB was restricted to (symbl)15 to 30(deg)C in both sediments. Temperature affected the lag time preceding the dechlorination of 2,4,6-CB in both sediments and affected the preferred route of its dechlorination in Woods Pond sediment. para dechlorination dominated at 20(deg)C, and ortho dechlorination dominated at 15(deg)C, but at 18 and 22 to 30(deg)C the relative dominance of ortho versus para dechlorination of 2,4,6-CB varied. These data indicate that field temperatures play a significant role in controlling the nature and the extent of the PCB dechlorination that occurs at a given site.  相似文献   

17.
Phylogenetic Diversity of Archaea and Bacteria in a Deep Subsurface Paleosol   总被引:10,自引:0,他引:10  
Abstract A low-biomass paleosol 188 m below the ground surface at the Department of Energy's Hanford Site in south-central Washington State was recovered and maintained at the in situ temperature (17°C) as an intact core or homogenized sediment for 0, 1, 3, 10, and 21 weeks post-sampling. Bacterial and archaeal 16S rRNA genes were amplified by PCR and cloned. Of 746 bacterial and 190 archaeal clones that were categorized by restriction fragment length polymorphism (RFLP), 242 bacterial and 16 archaeal clones were partially sequenced and compared against the small subunit ribosomal RNA database (RDP) and GenBank. Six bacterial and 16 archaeal clones sequences, with little similarity to those in public databases, were sequenced in their entirety, and subjected to more detained phylogenetic analysis. The most frequently occurring clones types were related to Pseudomonas, Bacillus, Micrococcus, Clavibacter, Nocardioides, Burkholderia, Comamonas, and Erythromicrobium. Clone sequences whose RDP similarity value was ≥0.6 consistently grouped with their nearest RDP neighbor during phylogenetic analysis. Six truly novel eubacterial sequences were identified; they consistently cluster with or near the Chloroflexaceae and sequences recovered from the Sargasso Sea. Sixteen unique archaeal RFLP groups were identified from 190 randomly-sampled clones. The novel archaeal rDNA clones formed a coherent clade along the major Crenarchaea branch containing all previously described mesophilic crenarchae clones, but remained firmly associated with 16S rDNA clones previously obtained from a thermal Fe/S spring in Yellowstone National Park. The wealth of group-specific genetic information identified during this study will now allow us to address specific hypotheses related to in situ stimulation of these deep subsurface microorganisms and changes in microbial community composition resulting from subsurface contamination or remediation processes at the Hanford Site. Revised: 21 October 1997; Accepted: 20 November 1997  相似文献   

18.
Bacterial enrichment cultures developed with Baltimore Harbor (BH) sediments were found to reductively dechlorinate 2,3,5,6-tetrachlorobiphenyl (2,3,5,6-CB) when incubated in a minimal estuarine medium containing short-chain fatty acids under anaerobic conditions with and without the addition of sediment. Primary enrichment cultures formed both meta and ortho dechlorination products from 2,3,5,6-CB. The lag time preceding dechlorination decreased from 30 to less than 20 days as the cultures were sequentially transferred into estuarine medium containing dried, sterile BH sediment. In addition, only ortho dechlorination was observed following transfer of the cultures. Sequential transfer into medium without added sediment also resulted in the development of a strict ortho-dechlorinating culture following a lag of more than 100 days. Upon further transfer into the minimal medium without sediment, the lag time decreased to less than 50 days. At this stage all cultures, regardless of the presence of sediment, would produce 2,3,5-CB and 3,5-CB from 2,3,5,6-CB. The strict ortho-dechlorinating activity in the sediment-free cultures has remained stable for more than 1 year through several transfers. These results reveal that the classical microbial enrichment technique using a minimal medium with a single polychlorinated biphenyl (PCB) congener selected for ortho dechlorination of 2,3,5,6-CB. Furthermore, this is the first report of sustained anaerobic PCB dechlorination in the complete absence of soil or sediment.Anaerobic dechlorination of polychlorinated biphenyls (PCBs) has been demonstrated in situ and with laboratory microcosms containing sediment (reviewed in reference 1a). However, sustained PCB dechlorination has never been shown to occur in the absence of soil or sediments. Morris et al. (6) demonstrated a sediment requirement for the stimulation of PCB dechlorination within freshwater sediment slurries. Wu and Wiegel have recently described PCB-dechlorinating enrichments which required soil for the successful transfer of PCB-dechlorinating activity (9). In addition, no anaerobic microorganisms that dechlorinate PCBs have been isolated or characterized, and this may be due in part to the soil or sediment requirement. The inability to isolate dechlorinating organisms or maintain dechlorination without sediment has limited biogeochemical and physiological investigations into the mechanisms of PCB dechlorination.Dechlorination (ortho, meta, and para) of single PCB congeners has been observed following anaerobic incubation of Baltimore Harbor (BH) sediment under estuarine or marine conditions (2). While sediments from several sites within BH are contaminated with PCBs (1, 5), background contamination of sediment is not necessarily a prerequisite for the development of PCB dechlorination in laboratory microcosms. Wu et al. (8) recently demonstrated meta and ortho dechlorination of Aroclor 1260 when it was added to the same BH sediments. These results showed that more than one dechlorinating activity could be developed with these sediments. It has been proposed that discrete microbial populations are responsible for specific PCB dechlorinations (1a). Consistent with this idea, the ortho dechlorination observed with BH sediments may be catalyzed by discrete microbial populations. In addition, these organisms may be able to couple PCB dechlorination with growth. Therefore we have attempted to select for ortho PCB-dechlorinating organisms by enrichment under minimal conditions with high levels of 2,3,5,6-tetrachlorobiphenyl. We also speculated that given the proper conditions, a PCB-dechlorinating population could be maintained in an actively dechlorinating state in the absence of sediment. Here we report that a distinct PCB-dechlorinating activity, namely, ortho dechlorination, was selected for through sequential transfer initiated with sediments from BH and sustained in the absence of soil or sediment. This is the first report of sustained anaerobic PCB-dechlorinating activity in the total absence of sediment.  相似文献   

19.
We investigated whether the threshold concentration for polychlorinated biphenyl (PCB) dechlorination may be lower in biosurfactant-amended sediments compared with biosurfactant-free samples. At PCB concentrations of 40, 60, and 120 ppm, the surfactant amendment enhanced the PCB dechlorination rate at all concentrations and the rate was also faster at higher concentrations. On a congener group basis, dechlorination proceeded largely with group A (congeners with low threshold) in both surfactant-free and -amended sediments, accumulating mainly group C (residual products of dechlorination) congeners, and surfactant enhanced the dechlorination rate of group A congeners. Since the PCB threshold concentration for the inoculum in the experiment was lower than 40 ppm, we carried out another experiment using sediments with lower PCB concentrations, 10, 20, and 30 ppm. Sediments with 100 ppm were also performed to measure dechlorination at a PCB saturation concentration. Comparison between the plateaus exhibited that the extent of dechlorination below 40 ppm PCBs was much lower than that at a saturation concentration of 100 ppm. There was no significant difference in the extent of dechlorination between surfactant-free and -amended sediments. Moreover, surfactant did not change the congener specificity or broaden the congener spectrum for dechlorination at PCB concentrations below 40 ppm. Taken together, it seems that at a given PCB concentration, dechlorination characteristics of dechlorinating populations may be determined by not only the congener specificity of the microorganisms but also the affinity of dechlorinating enzyme(s) to individual PCB congeners.  相似文献   

20.
D Ye  J F Quensen  rd  J M Tiedje    S A Boyd 《Applied microbiology》1992,58(4):1110-1114
A polychlorobiphenyl (PCB)-dechlorinating inoculum eluted from upper Hudson River sediments was treated with either heat or ethanol or both. The treated cultures retained the ability to dechlorinate PCBs (Aroclor 1242) under strictly anaerobic conditions. The dechlorination activity was maintained in serial cultures inoculated with transfers of 1% inoculum when the transferred inoculum was treated each time in the same manner. No methane production was detected in any treated culture, although dechlorination of PCBs in the untreated cultures was always accompanied by methane production. All treated cultures preferentially removed meta chlorines, yielding a dechlorination pattern characterized by accumulation of certain ortho- and para-subsituted congeners such as 2-4-chlorobiphenyl (2-4-CB), 2,4-2-CB, and 2,4-4-CB. In contrast, the untreated cultures showed more extensive dechlorination activities, which almost completely removed both meta and para chlorines from Aroclor 1242. These results suggest that microorganisms responsible for the dechlorination of PCBs in the upper Hudson River sediments can be grouped into two populations according to their responses to the heat and ethanol treatments. Microorganisms surviving the heat and ethanol treatments preferentially remove meta chlorines, while microorganisms lost from the enrichment mainly contribute to the para dechlorination activity. These results indicate that anaerobic sporeformers are at least one of the physiological groups responsible for the reductive dechlorination of PCBs. The selection of a dechlorinating population by such treatments may be an important step in isolation of PCB-dechlorinating microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号