首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used circular dichroism and UV absorption spectroscopy to characterize the formation and melting behaviour of an intramolecular DNA triple helix containing parallel T*A:T and G*G:C triplets. Our approach to induce and to stabilize a parallel triplex involves the oligonucleotide 5'-d(G4A4G4[T4]C4T4C4-[T4]G4T4G4) ([T4] represents a stretch of four thymine residues). In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we have shown the following significant results. (i) While in the absence of MgCl2 this oligonucleotide adopts an intramolecular hairpin duplex structure prolonged by the single strand extremity 5'-d([T4]G4T4G4), the presence of millimolar concentrations of MgCl2generates an intramolecular triplex (via double hairpin formation). (ii) In contrast to the antiparallel triplex formed by the oligonucleotide 5'-d(G4T4G4[T4]G4A4G4[T4]C4T4C4), the parallel triplex melts in a biphasic manner (a triplex to duplex transition followed by a duplex to coil transition) and is less stable than the antiparallel one. The enthalpy change associated with triplex formation (-37 kcal/mol) is approximately half that of duplex formation (-81 kcal/mol). (iii) The parallel triple helix is disrupted by increasing the concentration of KCl(>10 mM), whereas, under the same conditions, the antiparallel triplex remains stable. (iv) Netropsin, a natural DNA minor groove-binding ligand, binds to the central site A4/T4of the duplex or triplex in an equimolar stoichiometry. Its association constant K is smaller for the parallel triplex ( approximately 1 x 10(7) M-1) than for the antiparallel one ( approximately 1 x 10(8) M-1). In contrast to the antiparallel structure, netropsin binding has no apparent effect on thermal stability of the parallel triple helix.  相似文献   

2.
Triple helix formation requires a polypurine- polypyrimidine sequence in the target DNA. Recent works have shown that this constraint can be circumvented by using alternate strand triplex-forming oligonucleotides. We have previously demonstrated that (T,G)-containing triplex- forming oligonucleotides may adopt a parallel or an antiparallel orientation with respect to an oligopurine target, depending upon the sequence and, in particular, upon the number of 5'-GpT-3' and 5'-TpG-3' steps [Sun et al. (1991) C.R. Acad. Sci. Paris Ser III, 313, 585-590]. A single (T,G)-containing oligonucleotide can therefore interact with two oligopurine stretches which alternate on the two strands of the target DNA. The (T,G) switch oligonucleotide contains a 5'-part targeted to one of the oligopurine sequences in a parallel orientation followed by a 3'-part that adopts an antiparallel orientation with respect to the second oligopurine sequence. We show that a limitation to the stability of such a triplex may arise from the instability of the antiparallel part, composed of reverse-Hoogsteen C.GxG and T.AxT base triplets. Using DNase I footprinting and ultraviolet absorption experiments, we report that a benzo[e]pyridoindole derivative [(3-methoxy- 7H-8-methyl-11-[(3'-amino-propyl) amino] benzo[e]pyrido [4,3-b]indole (BePI)], a drug interacting more tightly with a triplex than with a duplex DNA, strongly stabilizes triplexes with reverse-Hoogsteen C.GxG and T.AxT triplets thus allowing a stabilization of the triplex-forming switch (T,G) oligonucleotide on alternating oligopurine- oligopyrimidine 5'-(Pu)14(Py)14-3' duplex sequences. These results lead to an extension of the range of oligonucleotide sequences for alternate strand recognition of duplex DNA.  相似文献   

3.
The interaction of ethidium bromide (EB), a DNA intercalator, with two intramolecular triplexes 5'd(G4A4G4-[T4]-C4T4C4-[T4]-G4T4G4), 5'd(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4) ([T4] represents a stretch of 4 thymine residues) and their precursor duplexes has been investigated by circular dichroism, fluorescence and UV absorption spectroscopy. Binding of EB induces a circular dichroism band in the region around 310 nm which is positive for the duplex forms but negative for the triplex forms. We observed that the binding of EB to the duplex form does not induce the formation of the triplex structures. Thermal denaturation experiments demonstrate that EB stabilizes more the parallel triple helix than the antiparallel one. Analysis of the binding process from fluorescence measurements shows that binding constants to the triple helical forms and to the hairpin reference duplex [T4]-G4A4G4-[T4]-C4T4C4) are close. However the binding site size is larger for the triplexes (4-6 base triplets) than for the duplex (2 base pairs).  相似文献   

4.
Data are presented on a triplex type with two parallel homologous strands for which triplex formation is almost as strong as duplex formation at least for some sequences and even at pH 7 and 0.2 M NaCl. The evidence mainly rests upon comparing thermodynamic properties of similar systems. A paperclip oligonucleotide d(A12C4T12C4A12) with two linkers C4 obviously can form a triplex with parallel back-folded adenine strand regions, because the single melting transition of this complex splits in two transitions by introducing mismatches only in the third strand region. Respectively, a hairpin duplex d(A12C4T12) and a single strand d(A12) form a triplex as a 1:1 complex in which the second adenine strand is parallel oriented to the homologous one in the Watson-Crick paired duplex. In this system the melting temperature T(m) of the triplex is practically the same as that of the duplex d(A12)-d(T12), at least within a complex concentration range of 0.2-4.0 microM. The melting behaviour of complexes between triplex stabilizing ligand BePI and the system hairpin duplex plus single strand supports the triplex model. Non-denaturing gel electrophoresis suggests the existence of a triplex for a system in which five of the twelve A-T*A base triads are substituted by C-G*C base triads. The recognition between any substituted Watson-Crick base pair (X-Y) in the hairpin duplex d(A4XA7C4T7YT4) and the correspondingly replaced base (Z) in the third strand d(A4ZA7) is mutually selective. All triplexes with matching base substitutions (Z = X) have nearly the same stability (T(m) values from 29 to 33.5 degrees C), whereas triplexes with non-matching substitutions (Z not equal X) show a clearly reduced stability (T(m) values from 15 to 22 degrees C) at 2microM equimolar oligonucleotide concentration. Most nucleic acid triple helices hitherto known are limited to homopurine-homopyrimidine sequences in the target duplex. A stable triplex formation is demonstrated for inhomogeneous sequences tolerating at least 50% pyrimidine content in the homologous strands. On the basis of the surprisingly similar thermodynamic parameters for duplex and triplex, and of the fact that this triplex type seems to be more stable than many other natural DNA triplexes known, and on the basis of semiempirical and molecule mechanical calculations, we postulate bridging interactions of the third strand with the two other strands in the triplex according to the recombination motif. This triplex, denoted by us 'recombination-like form', tolerates heterogeneous base sequences.  相似文献   

5.
D S Pilch  C Levenson  R H Shafer 《Biochemistry》1991,30(25):6081-6088
We have investigated the structure and physical chemistry of the d(C3T4C3).2[d(G3A4G3)] triple helix by polyacrylamide gel electrophoresis (PAGE), 1H NMR, and ultraviolet (UV) absorption spectroscopy. The triplex was stabilized with MgCl2 at neutral pH. PAGE studies verify the stoichiometry of the strands comprising the triplex and indicate that the orientation of the third strand in purine-purine-pyrimidine (pur-pur-pyr) triplexes is antiparallel with respect to the purine strand of the underlying duplex. Imino proton NMR spectra provide evidence for the existence of new purine-purine (pur.pur) hydrogen bonds, in addition to those of the Watson-Crick (W-C) base pairs, in the triplex structure. These new hydrogen bonds are likely to correspond to the interaction between third-strand guanine NH1 imino protons and the N7 atoms of guanine residues on the purine strand of the underlying duplex. Thermal denaturation of the triplex proceeds to single strands in one step, under the conditions used in this study. Binding of the third strand appears to enhance the thermal stability of the duplex by 1-3 degrees C, depending on the DNA concentration. The free energy of triplex formation (-26.0 +/- 0.5 kcal/mol) is approximately twice that of duplex formation (-12.6 +/- 0.7 kcal/mol), suggesting that the overall stability of the pur.pur base pairs is similar to that of the W-C base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Oligodeoxynucleotide (ODN) directed triplex formation has therapeutic importance and depends on Hoogsteen hydrogen bonds between a duplex DNA and a third DNA strand. T*A:T triplets are formed at neutral pH and C+*G:C are favoured at acidic pH. It is demonstrated that spermine conjugation at N4 of 5-Me-dC in ODNs 1-5 (sp-ODNs) imparts zwitterionic character, thus reducing the net negative charge of ODNs 1-5. sp-ODNs form triplexes with complementary 24mer duplex 8:9 show foremost stability at neutral pH 7.3 and decrease in stability towards lower pH, unlike the normal ODNs where optimal stability is found at an acidic pH 5.5. At pH 7.3, control ODNs 6 and 7 carrying dC or 5-Me-dC, respectively, do not show any triple helix formation. The stability order of triplex containing 5-Me-dC-N4-(spermine) with normal and mismatched duplex was found to be X*G:C approximately X*A:T > X*C:G > X*T:A. The hysteresis curve of sp-ODN triplex 3*8:9 indicated a better association with complementary duplex 8:9 as compared to unmodified ODN 6 in triplex 6*8:9. pH-dependent UV difference spectra suggest that N3 protonation is not a requirement for triplex formation by sp-ODN and interstrand interaction of conjugated spermine more than compensates for loss in stability due to absence of a single Hoogsteen hydrogen bond. These results may have importance in designing oligonucleotides for antigene applications.  相似文献   

7.
We have stabilized the d(A)10.2d(T)10 and d(C+LT4C+3).d(G3A4G3).d(C3T4C3) triple helices with either NaCl or MgCl2 at pH 5.5. UV mixing curves demonstrate a 1:2 stoichiometry of purine to pyrimidine strands under the appropriate conditions of pH and ionic strength. Circular dichroic titrations suggest a possible sequence-independent spectral signature for triplex formation. Thermal denaturation profiles indicate the initial loss of the third strand followed by dissociation of the underlying duplex with increasing temperature. Depending on the base sequence and ionic conditions, the binding affinity of the third strand for the duplex at 25 degrees C is two to five orders of magnitude lower than that of the two strands forming the duplex. Thermodynamic parameters for triplex formation were determined for both sequences in the presence of 50 mM MgCl2 and/or 2.0 M NaCl. Hoogsteen base pairs are 0.22-0.64 kcal/mole less stable than Watson-Crick base pairs, depending on ionic conditions and base composition. C+.G and T.A Hoogsteen base pairs appear to have similar stability in the presence of Mg2+ ions at low pH.  相似文献   

8.
G,A-containing purine oligonucleotides of various lengths form extremely stable and specific triplexes with the purine-pyrimidine stretch of the vpx gene [Svinarchuk,F., Monnot,M., Merle,A., Malvy,C. and Fermandjian,S. (1995) Nucleic Acids Res., 22, 3742--3747]. The potential application of triple-helix-forming oligonucleotides (TFO) in gene-targeted therapy has prompted us to study triplex formation mimicking potassium concentrations and temperatures in cells. Triplex formation was tested by dimethyl sulphate (DMS) footprinting, gel-retardation, UV melting studies and electron microscopy. In the presence of 10 mM MgCl2, KCl concentrations up to 150 mM significantly lowered both efficiency (triplex : initial duplex) and rate constants of triplex formation. The KCl effect was more pronounced for 11mer and 20mer TFOs than for 14mer TFO. Since the dissociation half-life for the 11mer TFO decreases from 420 min in the absence of monovalent cations to 40 min in the presence of 150 mM KCI, we suggest that the negative effect could be explained by a decrease in triplex stability. In contrast, for the 20mer TFO no dissociation of the triplex was observed during 24 h of incubation either in the absence of monovalent cations or in the presence of 150 mM KCl. We suppose that in the case of the 20mer TFO the negative effect of KCI on triplex formation is probably due to the self-association of the oligonucleotide in competitive structures such as parallel duplexes and/or tetraplexes. This negative effect may be overcome by the prior formation of a short duplex either on the 3'- or 5'-end of the 20mer TFO. We refer to these partial duplexes as 'zipper' TFOs. It was demonstrated that a 'zipper' TFO can form a triplex over the full length of the target, thus unzipping the short complementary strand. The minimal single-stranded part of the 'zipper' oligonucleotide which is sufficient to initiate triplex formation can be as short as three nucleotides at the 3'-end and six nucleotides at the 5'-end. We suggest that this type of structure may prove useful for in vivo applications.  相似文献   

9.
2D NMR has been used to examine the structure and dynamics of a 12-mer DNA duplex, d(T(1)A(2)G(3)T(4)C(5)A(6)A(7)G(8)G(9)G(10)C(11)A(12))-d(T(13)G(14)C( 15)C(16)C(17)T(18)T(19)G(20)A(21)C(22)T(23)A(24)), containing a 10R adduct at dA(7) that corresponds to trans addition of the N(6)-amino group of dA(7) to (-)-(7S,8R,9R,10S)-7,8-dihydroxy-9, 10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene [(-)-(S,R,R,S)-BP DE-2]. This DNA duplex contains the base sequence for the major dA mutational hot spot in the HPRT gene when Chinese hamster V79 cells are given low doses of the highly carcinogenic (+)-(R,S,S,R)-BP DE-2 enantiomer. NOE data indicate that the hydrocarbon is intercalated on the 5'-side of the modified base as has been seen previously for other oligonucleotides containing BP DE-2 (10R)-dA adducts. 2D chemical exchange-only experiments indicate dynamic behavior near the intercalation site especially at the 10R adducted dA, such that this base interconverts between the normal anti conformation and a less populated syn conformation. Ab initio molecular orbital chemical shift calculations of nucleotide and dinucleotide fragments in the syn and anti conformations support these conclusions. Although this DNA duplex containing a 10R dA adduct exhibits conformational flexibility as described, it is nevertheless more conformationally stable than the corresponding 10S adducted duplex corresponding to trans opening of the carcinogenic isomer (+)-(R,S,S, R)-BP DE-2, which was too dynamic to permit NMR structure determination. UV and imino proton NMR spectral observations indicated pronounced differences between these two diastereomeric 12-mer duplexes, consistent with conformational disorder at the adduct site and/or an equilibrium with a nonintercalated orientation of the hydrocarbon in the duplex containing the 10S adduct. The existence of conformational flexibility around adducts may be related to the occurrence of multiple mutagenic outcomes resulting from a single DE adduct.  相似文献   

10.
Using circular dichroism spectroscopy the ability of berenil, a minor groove binding drug, to induce triple helix formation was investigated with two oligonucleotides designed to form two intramolecular triplexes containing T*A:T and G*G:C triplets, which differ only by the orientation of their third strand: 5'-d(G4A4G4-[T4]-C4T4C4-[T4]-G4T4G4), and 5'-d(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4), where [T4] represents a stretch of four thymine residues. We demonstrate that when added to the duplex form of these oligonucleotides, berenil induces triplex structure formation only if the orientation of third strand is anti-parallel to the purine strand.  相似文献   

11.
R Cosstick  F Eckstein 《Biochemistry》1985,24(14):3630-3638
The synthesis of four oligonucleotides containing alternating phosphorothioate groups, (Rp)-and (Sp)-d[G(p(S)CpG)3p(S)C] and (Rp)- and (Sp)-d[C(p(S)GpC)p(S)G], by the phosphite approach is described. Silica gel to which 2'(3')-O-acetyluridine and 5'-succinyl groups were bound served as support for oligomer synthesis. The syntheses were carried out by dimer addition with presynthesized diastereomerically pure dinucleoside phosphorothioates as building blocks. The products were characterized by 31P NMR, nuclease P1 digestion, and oxidation to the corresponding all-phosphate-containing oligomers. The ability of each oligomer to adopt the Z conformation under high-salt conditions was screened for by circular dichroism spectroscopy. Both (Rp)-d[G(p(S)CpG)3p(S)C] and (Sp)-d[C(p(S)GpC)3p(S)G] are capable of forming Z-type structures at high NaCl concentrations. In the case of (Rp)-d[G(p(S)CpG)3p(S)C] where a phosphorothioate of the Rp configuration occurs 5' to a deoxycytidine residue, the B----Z transition is potentiated in comparison to the unmodified oligomer. (Sp)-d[G(p(S)CpG)3p(S)C] and (Rp)-d[C(p(S)GpC)3p(S)G] retain the B conformation even at high NaCl concentration.  相似文献   

12.
The effects of counter ion on a nucleic acid duplex stability were investigated. Since a linear free energy relationship for the thermostability of oligonucleotide duplexes between those in 1 M and in 100 mM NaCl-phosphate buffer were observed regardless of whether they are DNA-DNA, RNA-RNA or RNA-DNA duplexes, simple prediction systems for [Delta] G degrees 37as well as T mvalues in 100 mM NaCl-phosphate buffer were established. These predictions were successful with an average error of only 2.4 degrees C for T mand 5. 7% for G degrees 37values. The number of Na+newly bound to a duplex when the duplex forms (-[Delta] n) was significantly influenced by the base composition, and -[Delta] n for d(GCCAGTTAA)/d(TTAACTGGC) was different for MgCl2, CaCl2, BaCl2and MnCl2(from 0.70 to 0.76 with the same order of the duplex stability). Almost no additive effects on the duplex stability was observed for NaCl and MgCl2, suggesting a competitive binding for these cations. The sequence-dependent manner of [Delta] n suggests the presence of preferential base pairs or nearest-neighbor base pairs for the cation binding, which would affect nearest-neighbor parameters.  相似文献   

13.
The conformation of the trans-anti-(1S,2R,3S,4R)-N(2)-[1-(1,2,3,4-tetrahydro-2,3,4-trihydroxybenz[a]anthracenyl)]-2'-deoxyguanosyl adduct in d(G(1)G(2)C(3)A(4)G(5)X(6)T(7)G(8)G(9)T(10)G(11)).d(C(12)A(13)C(14)C(15)A(16)C(17)C(18)T(19)G(20)C(21)C(22)), bearing codon 12 of the human N-ras protooncogene (underlined), was determined. This adduct had S stereochemistry at the benzylic carbon. Its occurrence in DNA is a consequence of trans opening by the deoxyguanosine amino group of (1R,2S,3S,4R)-1,2-epoxy-1,2,3,4-tetrahydrobenz[a]anthracenyl-3,4-diol. The resonance frequencies, relative to the unmodified DNA, of the X(6) H1' and H6 protons were shifted downfield, whereas those of the C(18) and T(19) H1', H2', H2' ', and H3' deoxyribose protons were shifted upfield. The imino and amino resonances exhibited the expected sequential connectivities, suggesting no interruption of Watson-Crick pairing. A total of 426 interproton distances, including nine uniquely assigned BA-DNA distances, were used in the restrained molecular dynamics calculations. The refined structure showed that the benz[a]anthracene moiety bound in the minor groove, in the 5'-direction from the modified site. This was similar to the (+)-trans-anti-benzo[a]pyrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon [Cosman, M., De Los Santos, C., Fiala, R., Hingerty, B. E., Singh, S. B., Ibanez, V., Margulis, L. A., Live, D., Geacintov, N. E., Broyde, S., and Patel, D. J. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1914-1918]. It differed from the (-)-trans-anti-benzo[c]phenanthrene-N(2)-dG adduct having S stereochemistry at the benzylic carbon, which intercalated in the 5'-direction [Lin, C. H., Huang, X., Kolbanovskii, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N. E., and Patel, D. J. (2001) J. Mol. Biol. 306, 1059-1080]. The results provided insight into how PAH molecular topology modulates adduct structure in duplex DNA.  相似文献   

14.
The nucleoside analogs 7-(2'-deoxy-alpha-D-ribofuranosyl)hypoxanthine (alpha7H,1), 7-(2'-deoxy-beta-D-ribofuranosyl)hypoxanthine (beta7H,2) and 7-7-(2'-O-methyl-beta-D- ribofuranosyl)hypoxanthine (beta7HOMe,3) were prepared and incorporated into triplex forming oligodeoxynucleotides, designed to bind to DNA in the parallel (pyrimidine.purine-pyrimidine) motif. By DNase I footprinting techniques and UV-melting curve analysis it was found that, at pH 7. 0, the 15mer oligonucleotides d(TTTTTMeCTXTMeCTMeCTMeCT) (MeC = 5-methyl-deoxycytidine, X =beta7H,beta7HOMe) bind to a DNA target duplex forming a H.G-C base triple with equal to slightly increased (10-fold) stability compared to a control oligodeoxynucleotide in which the hypoxanthine residue is replaced by MeC. Remarkably, triple-helix formation is specific to G-C base pairs and up to 40 microM third strand concentration, no stable triplex exhibiting H.A-T, H.T-A or H.C-G base arrangements could be found (target duplex concentration approximately 0.1 nM). Multiply substituted sequences containing beta7H residues either in an isolated [d(TTTTTbeta7HTbeta7HTbeta7HTbeta7HTbeta7HT)] or in a contiguous [d(TTTbeta7Hbeta7Hbeta7Hbeta7HTTTTbeta7HTTT)] manner still form triplexes with their targets of comparable stability as the control (MeC-containing) sequences at pH 7.0 and high salt or spermine containing buffers. General considerations lead to a structural model in which the recognition of the G-C base pair by hypoxanthine takes place via only one H-bond of the N-H of hypoxanthine to N7 of guanine. This model is supported by a molecular dynamics simulation. A general comparison of the triplex forming properties of oligonucleotides containing beta7H with those containing MeC or N7-2'-deoxyguanosine (N7G) reveals that monodentate recognition in the former case can energetically compete with bidentate recognition in the latter two cases.  相似文献   

15.
Kim JO  Lee YA  Yun BH  Han SW  Kwag ST  Kim SK 《Biophysical journal》2004,86(2):1012-1017
Circular dichroism (CD) spectra of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) that are associated with various duplex and triplex AT oligomers were investigated in this study. A strong positive CD was apparent for both the TMPyP complexed with duplex d[(A-T)(12)](2), d(A)(12).d(T)(12) and triplex d(A)(12).d[(T)(12)](2) at a low mixing ratio. As the mixing ratio increased, bisignate excitonic CD was produced for TMPyP complexed with duplexes, whereas the positive CD signal remained the same for the TMPyP-d(A)(12).d[(T)(12)](2) complex. This difference in the CD spectrum in the presence of duplex and triplex oligomers indicates that the moderate stacking of TMPyP occurs at the major groove of the duplex and the monomeric binding occurs in (or near) the minor groove. When TMPyP forms a complex with duplex d[(A-T)(6)](2) only excitonic CD was observed, even at a very low mixing ratio. Therefore, at least seven or more basepairs are required for TMPyP to exhibit a monomeric CD spectrum. After close analysis of the CD spectrum, the TMPyP-poly[d(A-T)(2)] complex could be explained by a combination of the CD spectrum of the monomeric, moderately stacked, and extensively stacked TMPyP.  相似文献   

16.
A synthetic DNA triple helix sequence was formed by annealing a pyrimidinic 21 mer single strand sequence onto the complementary purinic sequence centred on a 27 mer duplex DNA. Melting of the third strand was monitored by UV spectrophotometry in the temperature range 10-90 degrees C. The T(m) of the triplex, 37 degrees C, was well separated from the onset of duplex melting. When the same triple helix was formed on the duplex bearing one nick in the center of the pyrimidinic sequence the T(m) of the triplex was shifted to approximately 32 degrees C and overlapped the melting of the duplex. We have used fluorescence polarization anisotropy (FPA) measurements of ethidium bromide (EB) intercalated in duplex and triplex samples to determine the hydrodynamic parameters in the temperature range 10-40 degrees C. The fluorescence lifetime of EB in the samples of double and triple stranded DNA is the same (21.3 +/- 0.5 ns) at 20 degrees C, indicating that the geometries of the intercalation sites are similar. The values for the hydration radii of the duplex, normal triplex, and nicked triplex samples were 10.7 +/- 0.2, 12.2 +/- 0.2, and 12.0 +/- 0.2 A. FPA measurements on normal triplex DNA as a function of temperature gave a melting profile very similar to that derived by UV absorption spectroscopy. For the triplex carrying a nick, the melting curve obtained using FPA showed a clear shift compared with that obtained for the normal triplex sample. The torsional rigidity of the triplex forms was found to be higher than that of the duplex form.  相似文献   

17.
We have targeted the d[G(AG)5] · d[C(TC)5] duplex for triplex formation at neutral pH with either d[G(AG)5] or d[G(TG)5]. Using a combination of gel electrophoresis, uv and CD spectra, mixing and melting curves, along with DNase I digestion studies, we have investigated the stability of the 2:1 pur*pur · pyr triplex, d[G(AG)5] * d[G(AG)5] · d[C(TC)5], in the presence of MgCl2. This triplex melts in a monophasic fashion at the same temperature as the underlying duplex. Although the uv spectrum changes little upon binding of the second purine strand, the CD spectrum shows significant changes in the wavelength range 200–230 nm and about a 7 nm shift in the positive band near 270 nm. In contrast, the 1:1:1 pur/pyr*pur · pyr triplex, d[G(TG)5] * d[G(AG)5] · d[C(TC)5], is considerably less stable thermally, melting at a much lower temperature than the underlying duplex, and possesses a CD spectrum that is entirely negative from 200 to 300 nm. Ethidium bromide undergoes a strong fluorescence enhancement upon binding to each of these triplexes, and significantly stabilizes the pur/pyr*pur · pyr triplex. The uv melting and differential scanning calorimetry analysis of the alternating sequence duplex and pur*pur · pyr triplex shows that they are lower in thermodynamic stability than the corresponding 10-mer d(G3A4G3) · d(C3T4C3) duplex and its pur*pur · pyr triplex under identical solution conditions. © 1997 John Wiley & Sons, Inc.  相似文献   

18.
Homo-purine (d-TGAGGAAAGAAGGT) and homo-pyrimidine (d-CTCCTTTCTTCC) oligomers have been designed such that they are complementary in parallel orientation. When mixed in a 1:1 molar ratio, the system adopts an antiparallel duplex at neutral pH with three mismatched base pairs. On lowering the pH below 5.5, a new complex is formed. The NMR results show the coexistence of a intermolecular pyrimidine.purine:pyrimidine DNA triplex and a single stranded oligopurine at this pH. The triplex is stabilized by five T.A:T, four C+.G:C and two mismatched triads, namely, C+.G-T and T.A-C. This triplex is further stabilized by a Hoogsteen C+.G base-pair on one end. Temperature dependence of the imino proton resonances reveals that the triplex dissociates directly into single strands around 55 degrees C, without duplex intermediates. Parallel duplexes are not formed under any of the conditions employed in this study.  相似文献   

19.
20.
Benzo[a]pyrene (BP) is an environmental genotoxin, which, following metabolic activation to 7,8-diol 9,10-epoxide (BPDE) derivatives, forms covalent adducts with cellular DNA. A major fraction of adducts are derived from the binding of N2 of guanine to the C10 position of BPDE. The mutagenic and carcinogenic potentials of these adducts are strongly dependent on the chirality at the four asymmetric benzylic carbon atoms. We report below on the combined NMR-energy minimization refinement characterization of the solution conformation of (-)-trans-anti-[BP]G positioned opposite C and flanked by G.C base pairs in the d(C1-C2-A3-T4-C5-[BP]G6-C7-T8-A9-C10-C11).d(G12-G13-T14++ +-A15-G16-C17- G18-A19-T20-G21-G22) duplex. Two-dimensional NMR techniques were applied to assign the exchangeable and non-exchangeable protons of the benzo[a]pyrenyl moiety and the nucleic acid in the modified duplex. These results establish Watson-Crick base pair alignment at the [BP]G6.C17 modification site, as well as the flanking C5.G18 and C7.G16 pairs within a regular right-handed helix. The solution structure of the (-)-trans-anti-[BP]G.C 11-mer duplex has been determined by incorporating intramolecular and intermolecular proton-proton distances defined by lower and upper bounds deduced from NOE buildup curves as constraints in energy minimization computations. The BP ring spans both strands of the duplex in the minor groove and is directed toward the 3'-end of the modified strand in the refined structure. One face of the BP ring of [BP]G6 stacks over the C17 residue across from it on the partner strand while the other face is exposed to solvent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号