首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
3.
The myc oncogene is expressed by proliferating quail embryo chondrocytes (QEC) grown as adherent cells and is repressed in QEC maintained in suspension culture. To investigate the interference of myc expression during chondrocyte differentiation, QEC were infected with a retrovirus carrying the v-myc oncogene (QEC-v-myc). Uninfected or helper virus-infected QEC were used as control. In adherent culture, QEC-v-myc displayed a chondrocytic phenotype and synthesized type II collagen and Ch21 protein, while control chondrocytes synthesized type I and type II collagen with no Ch21 protein detected as long as the attachment to the plastic was kept. In suspension culture, QEC-v-myc readily aggregated and within 1 week the cell aggregates released small single cells; still they secreted only type II collagen and Ch21 protein. In the same conditions control cell aggregates released hypertrophic chondrocytes producing type II and type X collagens and Ch21 protein. In the appropriate culture conditions, QEC-v-myc reconstituted a tissue defined as nonhypertrophic, noncalcifying cartilage by the high cellularity, the low levels of alkaline phosphatase enzymatic activity, and the absence of type X collagen synthesis and of calcium deposition. We conclude that the constitutive expression of the v-myc oncogene keeps chondrocytes in stage I (active proliferation and synthesis of type II collagen) and prevents these cells from reconstituting hypertrophic calcifying cartilage.  相似文献   

4.
An established rat cell line expressing chondrocyte properties   总被引:7,自引:0,他引:7  
Chondrocytes express a well-characterized set of marker proteins making these cells useful for studies on differentiation and regulation of gene expression. Because of the inherent instability of primary rat chondrocytes in culture, and because several rat chondrocyte genes have been cloned and characterized (including the collagen II promoter and enhancer), a rat chondrocyte cell line would be especially useful. To obtain this line we infected primary fetal rat costal chondrocytes with a recombinant retrovirus (NIH/J-2) carrying the myc and raf oncogenes, which have been shown to have an "immortalizing" function. Following infection, a rapidly proliferating clonal line was isolated that maintained a stable phenotype through 45 passages (11/2 year in culture). This line, termed IRC, grows in suspension culture as multicellular aggregates and in monolayer culture as polygonal cells which accumulate an alcian blue-stainable matrix. IRC cells synthesize high levels of cartilage proteoglycan core protein, and link protein, but show reduced collagen II expression. In addition, the cells express virally derived myc mRNA and protein, but do not express v-raf. Retinoic acid, which is a known modulator of chondrocyte phenotype, down-regulates expression of chondrocyte marker proteins, while stimulating v-myc expression by IRC cells. These data suggest that v-myc expression by chondrocytes results in rapid cell division and maintenance of many aspects of the differentiated phenotype. These "immortalized" cells, however, remain responsive to agents such as retinoic acid which modulate cell phenotype. The potential exists for development of chondrocyte cell lines from diseased cartilage, as well as from human cartilage.  相似文献   

5.
6.
《The Journal of cell biology》1994,126(5):1311-1318
Epiphyseal chondrocytes cultured in a medium containing 10% serum may be maintained as three dimensional aggregates and differentiate terminally into hypertrophic cells. There is an attendant expression of genes encoding type X collagen and high levels of alkaline phosphatase activity. Manipulation of the serum concentration to optimal levels of 0.1 or 0.01% in this chondrocyte pellet culture system results in formation of features of developing cartilage architecture which have been observed exclusively in growth cartilage in vivo. Cells are arranged in columns radiating out from the center of the tissue, and can be divided into distinct zones corresponding to the recognized stages of chondrocyte differentiation. Elimination of the optimal serum concentration in a chemically defined medium containing insulin eliminates the events of terminal differentiation of defined cartilage architecture. Chondrocytes continue to enlarge into hypertrophic cells and synthesize type X collagen mRNA and protein, but in the absence of the optimal serum concentration, alkaline phosphatase activity does not increase and the cells retain a random orientation. Addition of thyroxine to the chemically defined medium containing insulin and growth hormone results in dose-dependent increases in both type X collagen synthesis and alkaline phosphatase activity, and reproduces the optimal serum-induced morphogenesis of chondrocytes into a columnar pattern. These experiments demonstrate the critical role of thyroxine in cartilage morphogenesis.  相似文献   

7.
Isolated chondrocytes form aggregates in suspension culture that maintain chondrocyte phenotype in a physiological pericellular environment. The molecular mechanisms involved in chondrocyte aggregation have not been previously identified. Using this novel suspension culture system, we performed mRNA and protein expression analysis along with immunohistochemistry for potential cell adhesion molecules and extracellular matrix integrin ligands. Inhibition of aggregation assays were performed using specific blocking agents. We found that: (i) direct cell-cell interactions were not involved in chondrocyte aggregation, (ii) chondrocytes in aggregates were surrounded by a matrix rich in collagen II and cartilage oligomeric protein (COMP), (iii) aggregation depends on a beta1-integrin, which binds a triple helical GFOGER sequence found in collagens, (iv) integrin alpha10-subunit is the most highly expressed alpha-subunit among those tested, including alpha5, in aggregating chondrocytes. Taken together, this body of evidence suggests that the main molecular interaction involved in aggregation of phenotypically stable chondrocytes is the alpha10beta1-collagen II interaction.  相似文献   

8.
Apoptosis of terminally differentiated chondrocytes allows the replacement of growth plate cartilage by bone. Despite its importance, little is known about the regulation of chondrocyte apoptosis. We show that overexpression of annexin V, which binds to the cytoplasmic domain of beta5 integrin and protein kinase C alpha (PKCalpha), stimulates apoptotic events in hypertrophic growth plate chondrocytes. To determine whether the balance between the interactions of annexin V/beta5 integrin and annexin V/active PKCalpha play a role in the regulation of terminally differentiated growth plate chondrocyte apoptosis, a peptide mimic of annexin V (Penetratin (Pen)-VVISYSMPD) that binds to beta5 integrin but not to PKCalpha was used. This peptide stimulated apoptotic events in growth plate chondrocytes. Suppression of annexin V expression using small interfering ribonucleic acid decreased caspase-3 activity and increased cell viability in Pen-VVISYSMPD-treated growth plate chondrocytes. An activator of PKC resulted in a further decrease of cell viability and further increase of caspase-3 activity in Pen-VVISYSMPD-treated growth plate chondrocytes, whereas inhibitors of PKCalpha led to an increase of cell viability and decrease of caspase-3 activity of Pen-VVISYSMPD-treated cells. These findings suggest that binding of annexin V to active PKCalpha stimulates apoptotic events in growth plate chondrocytes and that binding of annexin Vto beta5 integrin controls these interactions and ultimately apoptosis.  相似文献   

9.
In this study we describe the collagen pattern synthesized by differentiating fetal human chondrocytes in vitro and correlate type X collagen synthesis with an intracellular increase of calcium and with matrix calcification. We show that type II collagen producing fetal human epiphyseal chondrocytes differentiate in suspension culture over agarose into hypertrophic cells in the absence of ascorbate, in contrast to chicken chondrocytes which have been shown to require ascorbate for hypertrophic differentiation. Analysis of the collagen synthesis by metabolic labeling and immunoprecipitation as well as by immunofluorescence double staining with anti type I, II or X collagen antibodies revealed that type X collagen synthesis was initiated during the third week. After 4 weeks culture over agarose we identified cells staining for both type I and X collagen, indicating further differentiation of chondrocytes to a new type of 'post-hypertrophic' cell. This cell type, descending from a type X collagen producing chondrocyte, is different from the previously described 'dedifferentiated' or 'modulated' types I and III collagen producing cell derived from a type II collagen producing chondrocyte. The appearance of type I collagen synthesis in agarose cultures was confirmed by metabolic labeling and immunoprecipitation and challenges the current view that the chondrocyte phenotype is stable in suspension cultures. An increase in the intracellular calcium concentration from 100 to 250 nM was measured about one week after onset of type X collagen synthesis. First calcium deposits were detected by alizarine red S staining in type X collagen positive cell nodules after 4 weeks, again in the absence of ascorbate. From these observations we conclude a sequence of events ultimately leading to matrix calcification in chondrocyte nodules in vitro that begins with chondrocyte hypertrophy and the initiation of type X collagen synthesis, followed by the increase of intracellular calcium, the deposition of calcium mineral, and finally by the onset of type I collagen synthesis.  相似文献   

10.
Mouse endochondral chondrocytes were immortalized with a temperature- sensitive simian virus 40 large tumor antigen. Several clonal isolates as well as pools of immortalized cells were characterized. In monolayer cultures at the temperature permissive for the activity of the large tumor antigen (32 degrees C), the cells grew continuously with a doubling time of approximately 2 d, whereas they stopped growing at nonpermissive temperatures (37 degrees C-39 degrees C). The cells from all pools and from most clones expressed the genes for several markers of hypertrophic chondrocytes, such as type X collagen, matrix Gla protein, and osteopontin, but had lost expression of type II collagen mRNA and failed to be stained by alcian blue which detects cartilage- specific proteoglycans. The cells also contained mRNAs for type I collagen and bone Gla protein, consistent with acquisition of osteoblastic-like properties. Higher levels of mRNAs for type X collagen, bone Gla protein, and osteopontin were found at nonpermissive temperatures, suggesting that the expression of these genes was upregulated upon growth arrest, as is the case in vivo during chondrocyte hypertrophy. Cells also retained their ability to respond to retinoic acid, as indicated by retinoic acid dose-dependent and time- dependent increases in type X collagen mRNA levels. These cell lines, the first to express characteristic features of hypertrophic chondrocytes, should be very useful to study the regulation of the type X collagen gene and other genes activated during the last stages of chondrocyte differentiation.  相似文献   

11.
Growth plate abnormalities, associated with impaired hypertrophic chondrocyte apoptosis, are observed in humans and animals with abnormalities of vitamin D action and renal phosphate reabsorption. Low circulating phosphate levels impair hypertrophic chondrocyte apoptosis, whereas treatment of these cells with phosphate activates the mitochondrial apoptotic pathway. Because phosphate-mediated apoptosis of chondrocytes is differentiation-dependent, studies were performed to identify factors that contribute to hypertrophic chondrocyte apoptosis. An increase in the percentage of cells with low mitochondrial membrane potential, evaluated by JC-1 fluorescence, was observed during hypertrophic differentiation of primary murine chondrocytes in culture. This percentage was further increased by treatment of hypertrophic, but not proliferative, chondrocytes with phosphate. Phosphate-mediated apoptosis was observed as early as 30 min post-treatment and was dependent upon Erk1/2 phosphorylation. Inhibition of Erk1/2 phosphorylation in vivo confirmed an important role for this signaling pathway in regulating hypertrophic chondrocyte apoptosis in growing mice. Murine embryonic metatarsals cultured under phosphate-restricted conditions demonstrated a 2.5-fold increase in parathyroid hormone-related protein mRNA expression accompanied by a marked attenuation in phospho-Erk immunoreactivity in hypertrophic chondrocytes. Thus, these investigations point to an important role for phosphate in regulating mitochondrial membrane potential in hypertrophic chondrocytes and growth plate maturation by the parathyroid hormone-related protein signaling pathway.  相似文献   

12.
Matrix Gla protein (MGP) is a 14-kD extracellular matrix protein of the mineral-binding Gla protein family. Studies of MGP-deficient mice suggest that MGP is an inhibitor of extracellular matrix calcification in arteries and the epiphyseal growth plate. In the mammalian growth plate, MGP is expressed by proliferative and late hypertrophic chondrocytes, but not by the intervening chondrocytes. To investigate the functional significance of this biphasic expression pattern, we used the ATDC5 mouse chondrogenic cell line. We found that after induction of the cell line with insulin, the differentiating chondrocytes express MGP in a stage-specific biphasic manner as in vivo. Treatment of the ATDC5 cultures with MGP antiserum during the proliferative phase leads to their apoptosis before maturation, whereas treatment during the hypertrophic phase has no effect on chondrocyte viability or mineralization. After stable transfection of ATDC5 cells with inducible sense or antisense MGP cDNA constructs, we found that overexpression of MGP in maturing chondrocytes and underexpression of MGP in proliferative and hypertrophic chondrocytes induced apoptosis. However, overexpression of MGP during the hypertrophic phase has no effect on chondrocyte viability, but it does reduce mineralization. This work suggests that coordinated levels of MGP are required for chondrocyte differentiation and matrix mineralization.  相似文献   

13.
This study attempts to characterize cystatin 10 (Cst10), which we recently identified as a novel protein implicated in endochondral ossification. Expression of Cst10 was specific to cartilage, localized in the cytosol of prehypertrophic and hypertrophic chondrocytes of the mouse growth plate. In the mouse chondrogenic cell line ATDC5, Cst10 expression preceded type X collagen expression and increased in synchrony with maturation. When we compared ATDC5 cells transfected with Cst10 cDNA with cells transfected with a mock vector, hypertrophic maturation and mineralization of chondrocytes were promoted by Cst10 gene overexpression in that type X collagen expression was observed earlier, and alizarin red staining was stronger. On the other hand, type II collagen expression and Alcian blue staining, both of which are markers of the early stage of chondrocyte differentiation, were similar in both cells. Overexpression of the Cst10 gene also caused fragmentation of nuclei, the appearance of annexin V, a change in the mitochondrial membrane potential, and activation of caspases. These results strongly suggest that Cst10 may play an important role in the last steps of the chondrocyte differentiation pathway as an inducer of maturation, followed by apoptosis of chondrocytes.  相似文献   

14.
15.
Calcium induces differentiation of primary human salivary acinar cells   总被引:5,自引:0,他引:5  
We previously reported that connective tissue growth factor/hypertrophic chondrocyte-specific gene product 24 (CTGF/Hcs24) stimulated the proliferation and differentiation of rabbit growth cartilage (RGC) cells in vitro. In this study, we investigated the effects of CTGF/Hcs24 on the proliferation and differentiation of rabbit articular cartilage (RAC) cells in vitro. RAC cells transduced by recombinant adenoviruses generating mRNA for CTGF/Hcs24 synthesized more proteoglycan than the control cells. Also, treatment of RAC cells with recombinant CTGF/Hcs24 (rCTGF/Hcs24) increased DNA and proteoglycan syntheses in a dose-dependent manner. Northern blot analysis revealed that the rCTGF/Hcs24 stimulated the gene expression of type II collagen and aggrecan core protein, which are markers of chondrocyte maturation, in both RGC and RAC cells. However, the gene expression of type X collagen, a marker of hypertrophic chondrocytes, was stimulated by rCTGF/Hcs24 only in RGC cells, but not in RAC cells. Oppositely, gene expression of tenascin-C, a marker of articular chondrocytes, was stimulated by rCTGF/Hcs24 in RAC cells, but not in RGC cells. Moreover, rCTGF/Hcs24 effectively increased both alkaline phosphatase (ALPase) activity and matrix calcification of RGC cells, but not of RAC cells. These results indicate that CTGF/Hcs24 promotes the proliferation and differentiation of articular chondrocytes, but does not promote their hypertrophy or calcification. Taken together, the data show that CTGF/Hcs24 is a direct growth and differentiation factor for articular cartilage, and suggest that it may be useful for the repair of articular cartilage.  相似文献   

16.
17.
Expression of the human chondrocyte phenotype in vitro   总被引:9,自引:0,他引:9  
Summary We report a culture scheme in which human epiphyseal chondrocytes lose their differentiated phenotype in monolayer and subsequently reexpress the phenotype in an agarose gel. The scheme is based on a method using rabbit chondrocytes. Culture in monolayer allowed small quantities of cells to be amplified and provided a starting point to study expression of the differentiated human chondrocyte phenotype. The cells cultured in monolayer produced type I procollagen, fibronectin, and small noncartilaginous proteoglycans. Subsequent culture in agarose was associated with the acquisition of typical chondrocyte ultrastructural features and the synthesis of type II collagen and cartilage-specific proteoglycans. The switch from the nonchondrocyte to the differented chondrocyte phenotype occurred under these conditions between 1 and 2 wk of agarose culture and was not necessarily homogeneous throughout a culture. This culture technique will facilitate direct investigation of human disorders of cartilage that have been addressed in the past by alternative approaches. This research is supported in part by research grants from the National Institutes of Health, (HD 20691) Bethesda, MD, and Shriners of North America (15953).  相似文献   

18.
Hyaluronan (HA) is one of the major extracellular matrix components in cartilage. In addition to the biomechanical functions, HA has various important roles in the differentiation of chondrocytes. The purpose of this study was to clarify the nature of HA synthesis during chondrocyte differentiation. Growth plate chondrocytes were isolated from rabbit ribs and cultured in chondrocyte differentiation medium. The amount of HA and HA synthase (HAS) mRNA levels were analyzed for each stage of chondrocyte differentiation by means of high-performance liquid chromatography (HPLC) and real-time PCR, respectively. The distribution of HA in cultured chondrocytes was observed by histochemical staining. The amount of HA, ranging widely in size, was increased substantially during the hypertrophic stage. The expression levels of HAS2 and HAS3 mRNAs were low during the matrix-forming stage. HAS2 mRNA level was substantially enhanced at the pre-hypertrophic stage, whereas HAS3 mRNA level exhibited a slight increase. HAS1 mRNA was not detected. The intensity of HA staining was high around the hypertrophic chondrocytes. These results suggest that HA metabolism in chondrocyte differentiation is regulated by the selective expression of HASs, and HAS2 and the related large size-HA may have a certain association with the hypertrophic changes of chondrocytes.  相似文献   

19.
In bone forming cartilage in vivo, cells undergo terminal differentiation, whereas most of the cells in normal articular cartilage do not. Chondrocyte hypertrophy can be induced also in vitro by diffusible signals. We have identified growth factors or hormones acting individually on 17-d chick embryo sternal chondrocytes cultured in agarose gels under strictly serum-free conditions. Insulin-like growth factor I or insulin triggered the first steps of chondrocyte maturation, i.e., cell proliferation and increased matrix deposition while the chondrocytic phenotype was maintained. However, cells did not progress to the hypertrophic stage. Proliferation and stimulated collagen production was preceded by a lag period, indicating that synthesis of other components was required before cells became responsive to insulin-like growth factor I or insulin. Very small amounts of FBS exerted effects similar to those of insulin-like growth factor I or insulin. However, FBS could act directly and elicited hypertrophy when constituting greater than 1% of the culture media. Basic FGF has been claimed to be the most potent chondrocyte mitogen, but had negligible effects under serum-free conditions. The same is true for PDGF, a major serum-mitogen. Under the direction of thyroxine, cells did not proliferate but became typical hypertrophic chondrocytes, extensively synthesizing collagen X and alkaline phosphatase.  相似文献   

20.
Retinoic acid has been shown to cause chondrocytes in culture to flatten and to inhibit the synthesis of cartilage specific components. Since the biochemical expression of chondrocytes is considered to be dependent on cell shape, it has been proposed that retinoic acid acts on these cells primarily by causing a change in cell morphology. This hypothesis was tested by culturing chick sternal chondrocytes suspended in methyl cellulose, which prevents cell flattening. Cultures were labeled with [35S]methionine and differentiation was assessed by polyacrylamide gel electrophoresis. The results showed that retinoic acid-treated chondrocytes in suspension remained rounded but synthesized proteins characteristic of flattened or dedifferentiated chondrocytes. Chondrocytes exposed to retinoic acid in suspension became fibroblastic when placed in monolayer culture in the absence of retinoic acid. This effect was irreversible after 2 weeks of culture. These results suggest that retinoic acid has a direct molecular or biochemical effect on the chondrocyte and that the cell shape change is secondary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号