首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Katahira R  Ashihara H 《Planta》2002,215(5):821-828
In order to obtain general metabolic profiles of pyrimidine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, the in situ metabolic fate of various (14)C-labelled precursors in disks from growing potato tubers was investigated. The activities of key enzymes in potato tuber extracts were also studied. The following results were obtained. Of the intermediates in de novo pyrimidine biosynthesis, [(14)C]carbamoylaspartate was converted to orotic acid and [2-(14)C]orotic acid was metabolized to nucleotides and RNA. UMP synthase, a bifunctional enzyme with activities of orotate phosphoribosyltransferase (EC 2.4.2.10) and orotidine 5'-monophosphate decarboxylase (EC 4.1.1.23), exhibited high activity. The rates of uptake of pyrimidine ribo- and deoxyribonucleosides by the disks were high, in the range 2.0-2.8 nmol (g FW)(-1) h(-1). The pyrimidine ribonucleosides, uridine and cytidine, were salvaged exclusively to nucleotides, by uridine/cytidine kinase (EC 2.7.1.48) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Cytidine was also salvaged after conversion to uridine by cytidine deaminase (EC 3.5.4.5) and the presence of this enzyme was demonstrated in cell-free tuber extracts. Deoxycytidine, a deoxyribonucleoside, was efficiently salvaged. Since deoxycytidine kinase (EC 2.7.1.74) activity was extremely low, non-specific nucleoside phosphotransferase (EC 2.7.1.77) probably participates in deoxycytidine salvage. Thymidine, which is another pyrimidine deoxyribonucleoside, was degraded and was not a good precursor for nucleotide synthesis. Virtually all the thymidine 5'-monophosphate synthesis from thymidine appeared to be catalyzed by phosphotransferase activity, since little thymidine kinase (EC 2.7.1.21) activity was detected. Of the pyrimidine bases, uracil, but not cytosine, was salvaged for nucleotide synthesis. Since uridine phosphorylase (EC 2.4.2.3) activity was not detected, uracil phosphoribosyltransferase (EC 2.4.2.9) seems to play the major role in uracil salvage. Uracil was degraded by the reductive pathway via beta-ureidopropionate, but cytosine was not degraded. The activities of the cytosine-metabolizing enzymes observed in other organisms, pyrimidine nucleoside phosphorylase (EC 2.4.2.2) and cytosine deaminase (EC 3.5.4.1), were not detected in potato tuber extracts. Operation of the de novo synthesis of deoxyribonucleotides via ribonucleotide reductase and of the salvage pathway of deoxycytidine was demonstrated via the incorporation of radioactivity from both [2-(14)C]cytidine and [2-(14)C]deoxycytidine into DNA. A novel pathway converting deoxycytidine to uracil nucleotides was found and deoxycytidine deaminase (EC 3.5.4.14), an enzyme that may participate in this pathway, was detected in the tuber extracts.  相似文献   

2.
Pyrimidine salvage pathways in adult Schistosoma mansoni   总被引:2,自引:0,他引:2  
Adult Schistosoma mansoni can utilize radiolabelled cytidine, uridine, uracil, orotate, deoxycytidine and thymidine for the synthesis of its nucleic acids. In this respect, cytidine is the most efficiently utilized pyrimidine precursor. Cytosine, thymine and orotidine are transported into the parasites but not metabolized. High performance liquid chromatography analysis of the nucleobase, nucleoside and nucleotide pools from in vivo metabolic studies and assays of enzyme activities in cell-free extracts indicate the presence of nucleoside and nucleotide kinases which phosphorylate the various nucleosides to their respective nucleoside mono-, di- and triphosphates. Uridine, thymidine and deoxyuridine can also be cleaved to their respective nucleobases by uridine phosphorylase. Uracil can be converted directly to UMP by orotate phosphoribosyltransferase or by the sequential actions of uridine phosphorylase and uridine kinase. Nucleoside 5'-monophosphates were dephosphorylated by active phosphohydrolases. All enzymes tested were found in the cytosol fraction with the exception of the phosphohydrolases which were associated mainly with the particulate fraction. No deamination of cytosine, cytidine, deoxycytidine, CMP or dCMP was detected either in vivo or in vitro. The active metabolism of cytidine and absence of deamination and phosphorolysis of cytidine derivatives in schistosomes raise the possibility of using cytidine analogues for the selective treatment of schistosomiasis.  相似文献   

3.
In Neisseria meningitidis, uridine, deoxyuridine, cytosine, cytidine, or deoxycytidine could not be used by uracil-requiring mutants as pyrimidine sources. Consistent with these findings, only 5-fluorouracil of the different fluoropyrimidine bases and nucleosides showed any inhibitory effect on the growth of four prototrophic strains of N. meningitidis. Likewise, only radioactive uracil was readily incorporated into nucleic acids, whereas uptake of radioactive uridine, cytosine, or cytidine could not be demonstrated. Uracil was converted to uridine 5'-monophosphate by uracil phosphoribosyltransferase, whereas enzyme activities for conversion of cytosine or any of the nucleosides were not detectable in meningococcal extracts.  相似文献   

4.
T P West 《Microbios》1988,56(226):27-36
Pyrimidine metabolism in Pseudomonas fluorescens biotype F, and its ability to grow in liquid culture on pyrimidines and related compounds was investigated. It was found that uracil, uridine, cytosine, cytidine, deoxycytidine, dihydrouracil, dihydrothymine, beta-alanine or beta-aminoisobutyric acid could be utilized by this pseudomonad as a sole nitrogen source. Only uridine, cytidine, beta-alanine, beta-aminoisobutyric acid or ribose were capable of supporting its growth as a sole source of carbon. In solid medium, the pyrimidine analogue 5-fluorouracil or 5-fluorouridine could prevent P. fluorescens biotype F growth at a low concentration while a 20-fold higher concentration of 5-fluorocytosine, 5-fluorodeoxyuridine or 6-azauracil was necessary to block its growth. The pyrimidine salvage enzymes cytosine deaminase, nucleoside hydrolase, uridine phosphorylase, thymidine phosphorylase and cytidine deaminase were assayed. Only cytosine deaminase and nucleoside hydrolase activities could be detected under the assay conditions used. The effect of growth conditions on cytosine deaminase and nucleoside hydrolase levels in the micro-organism was explored. Cytosine deaminase activity was shown to increase if glycerol was substituted for glucose as the sole carbon source or if asparagine replaced (NH4)2SO4 as the sole nitrogen source in each respective medium. In contrast, nucleoside hydrolase activity remained virtually unchanged whether the carbon source in the medium was glucose or glycerol. A decrease in nucleoside hydrolase activity was witnessed when asparagine was present in the medium instead of (NH4)2SO4 as the sole source of nitrogen.  相似文献   

5.
Gravid Angiostrongylus cantonensis can utilize radiolabelled bicarbonate, orotate, uracil, uridine and cytidine but not cytosine, thymine and thymidine for the synthesis of RNA and DNA. In cell-free extracts of the worm, a phosphoribosyltransferase was shown to convert orotate to OMP and uracil to UMP. A similar reaction was not observed with cytosine and thymine. Uridine was readily phosphorylated by a kinase but a similar reaction for thymidine and deoxyuridine was not found. Cytidine could be phosphorylated by a kinase or be deaminated by a deaminase to uridine. No deaminase for cytosine was detected. There was also no phosphotransferase activity for pyrimidine nucleosides in the cytosolic or membrane fractions. Pyrimidine nucleosides were, in general, converted to the bases by a phosphorylase reaction but only uracil and thymine could form nucleosides in the reverse reaction. The activity of thymidylate synthetase was also measured. These results indicate that the nematode synthesizes pyrimidine nucleotides by de novo synthesis and by utilization of uridine and uracil and that cytosine and thymine nucleotides are formed mainly through UMP. The thymidylate synthetase reaction appears to be vital for the growth of the parasite.  相似文献   

6.
In Bacillus subtilis, uracil (Ura), uridine (Urd), and deoxyuridine (dUrd) are metabolized through pathways similar to those of enteric bacteria. Ura is probably converted to uridine 5'-monophosphate by uridine 5'-monophosphate pyrophosphorylase. More than 95% of dUrd added to cultures is converted to Ura and deoxyribose-1-phosphate. Although dUrd kinase activity is detectable in vitro, this enzyme does not seem to play an important role in the metabolism of dUrd. The metabolism of cytosine (Cyt), cytidine (Cyd), and deoxycytidine (dCyd) in B. subtilis appears to be different from that in enteric bacteria. Cytosine cannot be used by Ura-requiring mutants as pyrimidine source. dCyd is deaminated by dCyd-Cyd deaminase or phosphorylated to dCyd nucleotides by dCyd kinase. Cyd is deaminated by dCyd-Cyd deaminase of phosphorylated by Cyd kinase. This Cyd kinase activity has never been reported for B. subtilis.  相似文献   

7.
Cell-free extracts of Mycoplasma mycoides subsp. mycoides were assayed for enzymes associated with the salvage synthesis of pyrimidine deoxyribonucleotides. They possessed kinases for deoxycytidine, (d)CMP, thymidine (deoxyuridine), dTMP, and nucleoside diphosphates; dCTPase and dUTPase; dCMP deaminase; thymidine (deoxyuridine) phosphorylase; and dUMP (dTMP) phosphatase. The existence of these enzymic activities together with ribonucleoside diphosphate reductase explains the capacity of cytidine to provide M. mycoides with deoxyribose for the synthesis of thymidine nucleotides from thymine.  相似文献   

8.
Induction studies on pyrimidine metabolizing enzymes in E. coli B have shown that the enzymes fall into three distinct groups according to their induction pattern. a) Cytidine deaminase and uridine phosphorylase, are induced by cytidine, CMP and adenosine; no induction was observed with uridine and AMP; b) thymidine phosphorylase is induced by cytidine, adenosine, all deoxyribonucleosides, CMP, deoxyribonucleotides, deoxyribose and deoxyribose-1-phosphate; c) uridine-cytidine kinase, uracil phosphoribosyltransferase, 5'-nucleotidase, thymidine kinase, are uninducible enzymes. Simultaneous addition of cytidine and glucose partially overcomes the cytidine deaminase and uridine phosphorylase induction. Cytidine deaminase reaches its maximum activity levels, in E. coli growing cells in presence of cytidine, two hours before the uridine phosphorylase activity. Maximum glucose repression of cytidine deaminase and uridine phosphorylase was obtained in correspondence of maximum cytidine induction.  相似文献   

9.
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides have been proposed from studies on its use of radioactive purines and pyrimidines. To interpret more fully the observed pattern of pyrimidine usage, cell extracts of this organism have been assayed for several enzymes associated with the salvage synthesis of pyrimidine nucleotides. M. mycoides possessed uracil phosphoribosyltransferase, uridine phosphorylase, uridine (cytidine) kinase, uridine 5'-monophosphate kinase, and cytidine 5'-triphosphate synthetase. No activity for phosphorolysis of cytidine was detected, and no in vitro conditions were found to give measurable deamination of cytidine. Of the two potential pathways for incorporation of uridine, our data suggest that this precursor would largely undergo initial phosphorolysis to uracil and ribose-1-phosphate. Conversely, cytidine is phosphorylated directly to cytidine 5'-monophosphate in its major utilization, although conversion of cytidine to uracil, uridine, and uridine nucleotide has been observed in vivo, at least when uracil is provided in the growth medium. Measurements of intracellular nucleotide contents and their changes on additions of pyrimidine precursors have allowed suggestions as to the operation of regulatory mechanisms on pyrimidine nucleotide biosynthesis in M. mycoides in vivo. With uracil alone or uracil plus uridine as precursors of pyrimidine ribonucleotides, the regulation of uracil phosphoribosyltransferase and cytidine 5'-triphosphate synthetase is probably most important in determining the rate of pyrimidine nucleotide synthesis. When cytidine supplements uracil in the growth medium, control of cytidine kinase activity would also be important in this regard.  相似文献   

10.
Pyrimidine salvage pathways are vital for all bacteria in that they share in the synthesis of RNA with the biosynthetic pathway in pyrimidine prototrophs, while supplying all pyrimidine requirements in pyrimidine auxotrophs. Salvage enzymes that constitute the pyrimidine salvage pathways were studied in 13 members of Pseudomonas and former pseudomonads. Because it has been established that all Pseudomonas lack the enzyme uridine/cytidine kinase (Udk) and all contain uracil phosphoribosyl transferase (Upp), these two enzymes were not included in this experimental work. The enzymes assayed were: cytosine deaminase [Cod: cytosine + H2O → uracil + NH3], cytidine deaminase [Cdd: cytidine + H2O → uridine + NH3], uridine phosphorylase [Udp: uridine + Pi ↔ uracil + ribose – 1 - P], nucleoside hydrolase [Nuh: purine/pyrimidine nucleoside + H2O → purine/pyrimidine base + ribose], uridine hydrolase [Udh: uridine/cytidine + H2O → uracil/cytosine + ribose]. The assay work generated five different Pyrimidine Salvage Groups (PSG) designated PSG1 – PSG5 based on the presence or absence of the five enzymes. These enzymes were assayed using reverse phase high-performance liquid chromatography techniques routinely carried out in our laboratory. Escherichia coli was included as a standard, which contains all seven of the above enzymes.  相似文献   

11.
Pyrimidine synthesis in Burkholderia cepacia ATCC 25416   总被引:1,自引:0,他引:1  
K. LI AND T.P. WEST. 1995. Pyrimidine synthesis in the food spoilage agent Burkholderia cepacia ATCC 25416 was investigated. The five de novo pathway enzymes of pyrimidine biosynthesis were found to be active in B. cepacia ATCC 25416 and growth of this strain on uracil had an effect on the de novo enzyme activities. The in vitro regulation of aspartate transcarbamoylase activity in B. cepacia ATCC 25416 was studied and its activity was inhibited by PPi, ATP, GTP, CTP and UTP. The enzymes cytidine deaminase, uridine phosphorylase and cytosine deaminase were found to be active in the salvage of pyrimidines in ATCC 25416. Overall, de novo pyrimidine synthesis in B. cepacia ATCC 25416 was regulated at the level of enzyme activity and its pyrimidine salvage enzymes differed from those found in B. cepacia ATCC 17759.  相似文献   

12.
Pyrimidine metabolism by intracellular Chlamydia psittaci.   总被引:2,自引:1,他引:1       下载免费PDF全文
Pyrimidine metabolism was studied in the obligate intracellular bacterium Chlamydia psittaci AA Mp in the wild type and a variety of mutant host cell lines with well-defined mutations affecting pyrimidine metabolism. C. psittaci AA Mp cannot synthesize pyrimidines de novo, as assessed by its inability to incorporate aspartic acid into nucleic acid pyrimidines. In addition, the parasite cannot take UTP, CTP, or dCTP from the host cell, nor can it salvage exogenously supplied uridine, cytidine, or deoxycytidine. The primary source of pyrimidine nucleotides is via the salvage of uracil by a uracil phosphoribosyltransferase. Uracil phosphoribosyltransferase activity was detected in crude extracts prepared from highly purified C. psittaci AA Mp reticulate bodies. The presence of CTP synthetase and ribonucleotide reductase is implicated from the incorporation of uracil into nucleic acid cytosine and deoxycytidine. Deoxyuridine was used by the parasite only after cleavage to uracil. C. psittaci AA Mp grew poorly in mutant host cell lines auxotrophic for thymidine. Furthermore, the parasite could not synthesize thymidine nucleotides de novo. C. psittaci AA Mp could take TTP directly from the host cell. In addition, the parasite could incorporate exogenous thymidine and thymine into DNA. Thymidine kinase activity and thymidine-cleaving activity were detected in C. psittaci AA Mp reticulate body extract. Thus, thymidine salvage was totally independent of other pyrimidine salvage.  相似文献   

13.
Using 5-fluoropyrimidine analogues, high-performance liquid chromatography (HPLC), and the feeding of pyrimidine compounds to pyrimidine auxotrophs, the pathways for salvage of exogenous pyrimidine nucleosides and bases in Streptomyces were established. Selection for resistance to the analogues resulted in the isolation of strains of S. griseus lacking the following enzyme activities: uracil phosphoribosyltransferase (upp) and cytidine deaminase (cdd). The conversion of substrates in the pathway was followed using reverse-phase HPLC. The strains deficient in salvage enzymes were also verified by this method. In addition, feeding of exogenous pyrimidines to strains lacking the biosynthetic pathway confirmed the salvage pathway. Data from the analogue, HPLC, and feeding experiments showed that Streptomyces recycles the pyrimidine base uracil, as well as the nucleosides uridine and cytidine. Cytosine is not recycled due to a lack of cytosine deaminase.  相似文献   

14.
The anabolism of pyrimidine ribo- and deoxyribonucleosides from uracil and thymine was investigated in phytohemagglutinin-stimulated human peripheral blood lymphocytes and in a Burkitt's lymphoma-derived cell line (Raji). We studied the ability of these cells to synthesize pyrimidine nucleosides by ribo- and deoxyribosyl transfer between pyrimidine bases or nucleosides and the purine nucleosides inosine and deoxyinosine as donors of ribose 1-phosphate and deoxyribose 1-phosphate, respectively: these reactions involve the activities of purine-nucleoside phosphorylase, and of the two pyrimidine-nucleoside phosphorylases (uridine phosphorylase and thymidine phosphorylase). The ability of the cells to synthesize uridine was estimated from their ability to grow on uridine precursors in the presence of an inhibitor of pyrimidine de novo synthesis (pyrazofurin). Their ability to synthesize thymidine and deoxyuridine was estimated from the inhibition of the incorporation of radiolabelled thymidine in cells cultured in the presence of unlabelled precursors. In addition to these studies on intact cells, we determined the activities of purine- and pyrimidine-nucleoside phosphorylases in cell extracts. Our results show that Raji cells efficiently metabolize preformed uridine, deoxyuridine and thymidine, are unable to salvage pyrimidine bases, and possess a low uridine phosphorylase activity and markedly decreased (about 1% of peripheral blood lymphocytes) thymidine phosphorylase activity. Lymphocytes have higher pyrimidine-nucleoside phosphorylases activities, they can synthesize deoxyuridine and thymidine from bases, but at high an non-physiological concentrations of precursors. Neither type of cell is able to salvage uracil into uridine. These results suggest that pyrimidine-nucleoside phosphorylases have a catabolic, rather than an anabolic, role in human lymphoid cells. The facts that, compared to peripheral blood lymphocytes, lymphoblasts possess decreased pyrimidine-nucleoside phosphorylases activities, and, on the other hand, more efficiently salvage pyrimidine nucleosides, are consistent with a greater need of these rapidly proliferating cells for pyrimidine nucleotides.  相似文献   

15.
Summary Strains of Escherichia coli have been selected, which contain mutations in the udk gene, encoding uridine kinase. The gene has been located on the chromosome as cotransducible with the his gene and shown to be responsible for both uridine and cytidine kinase activities in the cell.An additional mutation in the cdd gene (encoding cytidine deaminase) has been introduced, thus rendering the cells unable to metabolize cytidine. In these mutants exogenously added cytidine acts as inducer of nucleoside catabolizing enzymes indicating that cytidine per se is the actual inducer.When the udk, cdd mutants are grown on minimal medium the enzyme levels are considerably higher than in wild type cells. Evidence is presented indicating that the high levels are due to intracellular accumulation of cytidine, which acts as endogenous inducer.Abbreviations and Symbols FU 5-fluorouracil - FUR 5-fluorouridine - FUdR 5-fluoro-2'deoxyuridine - FCR 5-fluorocytidine - FCdR 5-fluorodeoxycytidine - THUR 3, 4, 5, 6-tetrahydrouridine - UMP uridine monophosphate - CMP cytidine monophosphate - dUMP deoxyuridine monophosphate. Genes coding for: cytidine deaminase - edd uridine phosphorylase - udp thymidine phosphorylase - tpp purmnucleoside phosphorylase - pup uridine kinase (=cytidine kinase) - udk UMP-pyrophosphorylase - upp. CytR regulatory gene for cdd, udp, dra, tpp, drm and pup Enzymes EC 2.4.2.1 Purine nucleoside phosphorylase or purine nucleoside: orthophosphate (deoxy)-ribosyltransferase - EC 2.4.2.4 thymidine phosphorylase or thymidine: orthophosphate deoxyribosyltransferase - EC 2.4.2.3 uridine phosphorylase or uridine: orthophosphate ribosyltransferase - EC 3.5.4.5 cytidine deaminase or (deoxy)cytidine aminohydrolase - EC 4.1.2.4 deoxyriboaldolase or 2-deoxy-D-ribose-5-phosphate: acetaldehydelyase - EC 2.4.2.9 UMP-pyrophosphorylase or UMP: pyrophosphate phosphoribosyltransferase - EC 2.7.1.48 uridine kinase or ATP: uridine 5-phosphotransferase  相似文献   

16.
Concanavalin A-induced proliferation of rat T-lymphocytes is completely inhibited by 10?5 M pyrazofurin, a potent inhibitor of pyrimidine de novo synthesis, as judged by cell viability and [3H]thymidine incorporation. Proliferation is completely restored by 5 × 10?5 M uridine. Cytidine, deoxycytidine, deoxyuridine and thymidine 10 × 10?5 M each, fail to re-establish proliferation but produce an isotropic dilution of [3H]thymidine uptake in DNA. Bases (cytosine, uracil and thymine) neither restore proliferation nor induce isotopic dilution. The unexpected inability of cytidine to reverse de novo pyrimidine synthesis inhibition suggests a lack of cytidine deaminase activity in rat T-lymphocytes. This is confirmed by a direct sensitive radioisotopic assay (<0.001 nmol.min?1.10?6 cells).  相似文献   

17.
Biosynthesis and scavenging of pyrimidines by pathogenic mycobacteria   总被引:1,自引:0,他引:1  
Mycobacterium microti incorporated a wide range of exogenously supplied pyrimidines into its nucleic acids. M. avium incorporated a relatively narrow range of pyrimidines but both M. avium and M. microti when recovered after growth in vivo incorporated a slightly wider range of pyrimidines than the same strains grown in vitro. M. microti and M. leprae could not take up uridine nucleotides directly but could utilize the pyrimidines by hydrolysing them to uridine and then taking up the uridine. Pyrimidine biosynthesis, judged by the ability to incorporate carbon from CO2 or aspartate into pyrimidines was readily detected in non-growing suspensions of M. microti and M. avium harvested from Dubos medium, which does not contain pyrimidines. The biosynthetic activity was diminished in mycobacteria grown in vivo when there is likely to be a source of pyrimidines which they might use. Relative activities for pyrimidine biosynthesis de novo in M. microti were 100 for cells isolated from Dubos medium, 6 for cells isolated from Dubos medium containing the pyrimidine cytidine and 11 from cells recovered after growth in mice. In contrast, relative activities for a scavenging reaction, uracil incorporation, were 100, 71 and 59, respectively. Three key enzymes in the pathway of pyrimidine biosynthesis de novo were detected in M. microti and M. avium. Two, dihydroorotate synthase and orotate phosphoribosyltransferase appeared to be constitutive in M. microti and M. avium. Aspartate transcarbamoylase activity was higher in these mycobacteria grown in vivo than in Dubos medium but it was repressed in M. microti or M. avium grown in Dubos medium in the presence of 50 microM-pyrimidine. Aspartate transcarbamoylase was strongly inhibited by the feedback inhibitors ATP, CTP and UTP. Enzymes for scavenging pyrimidines were detected at low specific activities in all mycobacteria studied. Activities of phosphoribosyltransferases, enzymes that convert bases directly to nucleotides, were not related to the ability of intact mycobacteria to take up pyrimidine bases while activities of pyrimidine nucleoside kinases were generally related to the ability of intact mycobacteria to take up nucleosides. Phosphoribosyltransferase activity for uracil, cytosine, orotic acid and--in organisms grown in Dubos medium with 50 microM-uridine-thymine, as well as kinases for uridine, deoxyuridine, cytidine and thymidine were detected in M. microti. However, M. avium only contained uracil and orotate phosphoribosyltransferase, uridine, cytidine and thymidine kinase, and additionally deoxyuridine kinase when grown axenically with 50 microM-uracil, reflecting its more limited abilities in pyrimidine scavenging.  相似文献   

18.
The nucleoside triphosphate pools of two cytidine auxotrophic mutants of Salmonella typhimurium LT-2 were studied under different conditions of pyrimidine starvation. Both mutants, DP-45 and DP-55, are defective in cytidine deaminase and cytidine triphosphate (CTP) synthase. In addition, DP-55 has a requirement for uracil (uridine). Cytidine starvation of the mutants results in accumulation of high concentrations of uridine triphosphate (UTP) in the cells, while the pools of CTP and deoxy-CTP drop to undetectable levels within a few minutes. Addition of deoxycytidine to such cells does not restore the dCTP pool, indicating that S. typhimurium has no deoxycytidine kinase. From the kinetics of UTP accumulation during cytidine starvation, it is concluded that only cytidine nucleotides participate in the feedback regulation of de novo synthesis of UTP; both uridine and cytidine nucleotides participate in the regulation of UTP synthesis from exogenously supplied uracil or uridine. Uracil starvation of DP-55 in presence of cytidine results in extensive accumulation of CTP, suggesting that CTP does not regulate its own synthesis from exogenous cytidine. Analysis of the thymidine triphosphate (dTTP) pool of DP-55 labeled for several generations with (32)P-orthophosphate and (3)H-uracil in presence of (12)C-cytidine shows that only 20% of the dTTP pool is derived from uracil (via the methylation of deoxyuridine monophosphate); 80% is apparently synthesized from a cytidine nucleotide.  相似文献   

19.
Giardia lamblia, an aerotolerant anaerobe, respires in the presence of oxygen by a flavin, iron-sulfur protein-mediated electron transport system. Glucose appears to be the only sugar catabolized by the Embden-Meyerhof-Parnas and hexose monophosphate pathways, and energy is produced by substrate level phosphorylation. Substrates are incompletely oxidized to CO2, ethanol and acetate by nonsedimentable enzymes. The lack of incorporation of inosine, hypoxanthine, xanthine, formate or glycine into nucleotides indicates an absence of de novo purine synthesis. Only adenine, adenosine, guanine and guanosine are salvaged, and no interconversion of these purines was detected. Salvage of these purines and their nucleosides is accomplished by adenine phosphoribosyltransferase, adenosine hydrolase, guanosine phosphoribosyltransferase and guanine hydrolase. The absence of de novo pyrimidine synthesis was confirmed by the lack of incorporation of bicarbonate, orotate and aspartate into nucleotides, and by the lack of detectable levels of the enzymes of de novo pyrimidine synthesis. Salvage appears to be accomplished by the action of uracil phosphoribosyltransferase, uridine hydrolase, uridine phosphotransferase, cytidine deaminase, cytidine hydrolase, cytosine phosphoribosyltransferase and thymidine phosphotransferase. Nucleotides of uracil may be converted to nucleotides of cytosine by cytidine triphosphate synthetase, but thymidylate synthetase and dihydrofolate reductase activities were not detected. Uptake of pyrmidine nucleosides, and perhaps pyrimidines, appears to be accomplished by carrier-mediated transport, and the common site for uptake of uridine and cytidine is distinct from the site for thymidine. Thymine does not appear to be incorporated into nucleotide pools. Giardia trophozoites appear to rely on preformed lipids rather than synthesizing them de novo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Toxoplasma gondii: the biochemical basis of resistance to emimycin   总被引:1,自引:0,他引:1  
Emimycin was a potent and selective inhibitor of the growth and nucleic acid synthesis of Toxoplasma gondii in human fibroblasts. An emimycin-resistant mutant of T. gondii lost the pyrimidine salvage enzyme uracil phosphoribosyltransferase, the same enzyme absent in parasites resistant to fluorodeoxyuridine. The mutant resistant to emimycin was completely cross-resistant to fluorodeoxyuridine. Emimycin was as good a substrate as uracil for the uracil phosphoribosyltransferase of T. gondii. [3H]Emimycin supplied in the medium of cultures with actively growing intracellular parasites was converted to emimycin riboside-5'-phosphate in the soluble pool of T. gondii. All other emimycin analogs of uracil-containing nucleotides were also formed but little emimycin riboside diphosphate-N-acetylhexosamine was found. [3H]Emimycin was not converted to analogs of the cytidine nucleotides. When intracellular T. gondii were treated with a concentration of [3H]emimycin that partially inhibited parasite RNA synthesis, much less [3H]emimycin was incorporated into RNA than would be predicted by the amount of intracellular [3H]emimycin riboside triphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号