首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Neoplastic rat liver epithelial (261B) cells made permeable by electroporation released 0.2-0.3 microM Ca2+ from intracellular stores in response to 0.5 microM Ins(1,4,5)P3 stimulation. This Ca2+ release response was found to be inhibited by heparin in a dose-dependent manner (Ki of 15 micrograms/ml). Two other glycosaminoglycans, chondroitin sulfate and hyaluronic acid, showed no inhibitory effect at doses as high as 0.2 mg/ml. Passive Ca2+ release, and sequestration of Ca2+ into intracellular storage sites by the action of Ca2+-ATPase were unaffected by heparin treatment. We conclude that the inhibitory action of heparin treatment on Ca2+ mobilization in permeabilized 261B cells is mediated through its interaction at the Ins(1,4,5)P3 receptor binding site.  相似文献   

2.
D-Myo-inositol 1,4,5-trisphosphate (Ins[1,4-,5]P3) inhibits rat heart sarcolemmal Ca(2+)-ATPase activity (T. H. Kuo, Biochem. Biophys. Res. Commun. 152: 1111, 1988). We have studied the effect and mechanism of action of Ins(1,4,5)P3 and related inositol phosphates on human red cell membrane Ca(2+)-ATPase (EC 3.6.1.3) activity in vitro. At 10(-6) M, Ins(1,4,5)P3 and D-myo-inositol 4,5-bisphosphate (Ins[4,5]P2) inhibited human erythrocyte membrane Ca(2+)-ATPase activity in vitro by 42 and 31%, respectively. D-Myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 1-phosphate were not inhibitory. Enzyme inhibition by Ins(1,4,5)P3 was blocked by heparin. Exogenous purified calmodulin also stimulated red cell membrane Ca(2+)-ATPase activity; this stimulation was inhibited by Ins(1,4,5)P3. Ins(4,5)P2 and Ins(1,4,5)P3, but not Ins(1,4)P2, inhibited the binding of [125I]calmodulin to red cell membranes. Thus, specific inositol phosphates reduce plasma membrane Ca(2+)-ATPase activity and enhancement of the latter in vitro by purified calmodulin. The mechanism of these effects may in part relate to inhibition by inositol phosphates of binding of calmodulin to erythrocyte membranes.  相似文献   

3.
In a permeable neoplastic rat liver epithelial (261B) cell system, inositol 1,3,4,5-tetrakisphosphate--Ins(1,3,4,5)P4--induces sequestration of Ca2+ released by inositol 2,4,5-trisphosphate--Ins(2,4,5)P3; a non-metabolized inositol trisphosphate (InsP3) isomer--and Ca2+ added exogenously in the form of CaCl2. Studies were performed to identify the Ca2+ pool filled after Ins(1,3,4,5)P4 treatment. Both Ins(2,4,5)P3 and inositol 1,4,5-trisphosphate--Ins(1,4,5)P3--dose-dependently release Ca2+ from permeable 261B cells--Ins(1,4,5)P3 having a threefold greater potency--but differ in that Ca2+ released by Ins(1,4,5)P3 is readily sequestered, while the Ca2+ released by Ins(2,4,5)P3 is not. Maximal release of Ca2+ by 6 microM Ins(2,4,5)P3 blocked the action of Ins(1,4,5)P3, demonstrating that these two isomers influence the same intracellular Ca2+ pool through a shared membrane receptor. Addition of 2 microM Ins(2,4,5)P3 to discharge partially the Ca2+ pool reduced the amount of Ca2+ released by a maximal dose of Ins(1,4,5)P3 (2 microM). Ins(1,3,4,5)P4 combined with Ins(2,4,5)P3 produced a Ca2+ release and sequestration response, which replenished the InsP3-sensitive pool as indicated by a recovery of full Ca2+ release by 2 microM Ins(1,4,5)P3. Induction of Ca2+ sequestration by Ins(1,3,4,5)P4 occurred dose-dependently, with a half-maximal response elicited at a dose of 0.9 microM. Further studies of the effect of Ins(1,3,4,5)P4 apart from the influence of Ins(2,4,5)P3 using a model in which the Ca2+ levels are raised by an exogenous addition of CaCl2 showed that Ins(1,4,5)P3 released twice the amount of Ca2+ from the storage pool following Ins(1,3,4,5)P4-induced Ca2+ sequestration. These results demonstrate that the Ca2+ uptake induced by Ins(1,3,4,5)P4 preferentially replenishes the intracellular Ca2+ storage sites regulated by Ins(1,4,5)P3 and Ins(2,4,5)P3.  相似文献   

4.
Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], arising from hydrolysis of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], is proposed as the link between membrane-receptor activation and mobilization of Ca2+ from intracellular sites in hormone-secreting cells. The location of Ins(1,4,5)P3-sensitive membranes was investigated in cultured neonatal beta-cells. Membranes were obtained after lysis of cells attached to positively charged Sephadex. After lysis the presence of the enzyme markers 5'-nucleotidase, glucose-6-phosphatase, NADH-cytochrome c reductase, UDP-galactosyltransferase and succinate dehydrogenase indicated the mixed nature of the preparation. After sonication, however, UDP-galactosyltransferase and succinate dehydrogenase activities were undetectable, but 4.8% of total cellular glucose-6-phosphatase and 3.4% of total cellular NADH-cytochrome c reductase remained with 5'-nucleotidase in the preparation, indicating endoplasmic-reticulum association. ATP-dependent 45Ca2+ accumulation was shown in this preparation (410 +/- 24 pmol/mg of protein at 150 nM free Ca2+) and was inhibited by vanadate (100 microM). Ca2+ release was effected by Ins(1,4,5)P3, with half-maximal release at 0.5 +/- 0.14 microM-Ins(1,4,5)P3, t1/2 11.2 +/- 1.1 s. GTP- and guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG)-promoted release of 45Ca2+ was demonstrated in this preparation, but the kinetics of release (half-maximal Ca2+ release at 5.4 +/- 0.7 microM, with t1/2 77.3 +/- 6.9 s, and at 51.1 +/- 4.2 microM, with t1/2 19.0 +/- 2.2 s, for GTP and p[NH]ppG respectively), and the ability of neomycin sulphate to block p[NH]ppG-induced release only, are indicative of separate release mechanisms after treatment with these agents. A close association between plasma membrane and elements of the endoplasmic reticulum is indicated in this model, providing a possible mechanism for local alterations in free Ca2+ in the sub-plasma-membrane region.  相似文献   

5.
We have synthesized two photolabile arylazido-analogues of Ins(1,4,5)P3 selectively substituted at the 1-phosphate group for determination of Ins(1,4,5)P3-binding proteins. These two photoaffinity derivatives, namely N-(4-azidobenzoyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AbaIP3) and N-(4-azidosalicyl)aminoethanol-1-phospho-D-myo-inositol 4,5-bisphosphate (AsaIP3), bind to high affinity Ins(1,4,5)P3-specific binding sites at a 9-fold lower affinity (Kd = 66 and 70 nM) than Ins(1,4,5)P3 (Kd = 7.15 nM) in a fraction from rat pancreatic acinar cells enriched in endoplasmic reticulum (ER). Other inositol phosphates tested showed comparable (DL-myo-inositol 1,4,5-trisphosphothioate, Kd = 81 nM) or much lower affinities for the binding sites [Ins(1,3,4,5)P4, Kd = 4 microM; Ins(1,4)P2, Kd = 80 microM]. Binding of AbaIP3 was also tested on a microsomal preparation of rat cerebellum [Kd = 300 nM as compared with Ins(1,4,5)P3, Kd = 45 nM]. Ca2+ release activity of the inositol derivatives was tested with AbaIP3. It induced a rapid and concentration-dependent Ca2+ release from the ER fraction [EC50 (dose producing half-maximal effect) = 3.1 microM] being only 10-fold less potent than Ins(1,4,5)P3 (EC50 = 0.3 microM). From the two radioactive labelled analogues ([3H]AbaIP3 and 125I-AsIP3) synthesized, the radioiodinated derivative was used for photoaffinity labelling. It specifically labelled three proteins with apparent molecular masses of 49, 37 and 31 kDa in the ER-enriched fraction. By subfractionation of this ER-enriched fraction on a Percoll gradient the 37 kDa Ins(1,4,5)P3 binding protein was obtained in a membrane fraction which showed the highest effect in Ins(1,4,5)P3-inducible Ca2+ release (fraction P1). The other two Ins(1,4,5)P3-binding proteins, of 49 and 31 kDa, were obtained in fraction P2, in which Ins(1,4,5)P3-induced Ca2+ release was half of that obtained in fraction P1. We conclude from these data that the 37 kDa and/or the 49 and 31 kDa proteins are involved in Ins(1,4,5)P3-induced Ca2+ release from the ER of rat pancreatic acinar cells.  相似文献   

6.
The binding of inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] to bovine liver microsomes was characterized. The Ins(1,4,5)P3 receptor of the microsomes was solubilized by 1% Triton X-100 and purified by sucrose density gradient, Heparin-Sepharose, DEAE-Toyopearl, ATP-Agarose, and Ins(1,4,5)P3-Sepharose column chromatographies. More than 1,000-fold enrichment of the Ins(1,4,5)P3-binding activity was achieved. Kd values of the binding activity were 2.8 nM in microsomes and 3.0 nM in the partially purified receptor, respectively, and the binding activity was optimal in the medium containing 100 mM KCl and at pH between 7.5 and 8.5. The presence of Ca2+ failed to inhibit the binding. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PtdIns), and phosphatidylinositol-4-monophosphate [PtdIns(4)P] showed no effect on the Ins(1,4,5)P3 binding. However, soybean phospholipids asolectin and phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] strongly inhibited the binding activity. PtdIns(4,5)P2 inhibited the activity competitively with a half-maximal inhibitory concentration of 30 micrograms/ml. The partially purified Ins(1,4,5)P3 receptor was reconstituted into proteoliposomes. Fluorescence measurements using Quin 2 indicated that Ins(1,4,5)P3 stimulated Ca2+ influx into the proteoliposomes. The EC50 of Ins(1,4,5)P3 on Ca2+ influx was 50 nM. This result strongly suggest that Ins(1,4,5)P3 binding protein of liver microsomes acts as a physiological Ins(1,4,5)P3 receptor/Ca2+ channel.  相似文献   

7.
Evidence has accumulated in support of a role for intracellularly generated inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in raising cytosol [Ca2+] when various hormones, neurotransmitters, growth factors and other stimulants act on cell surfaces. The increase in [Ca2+] that follows stimulant-receptor interaction is accompanied by rapid hydrolysis of phosphoinositides. One product, Ins(1,4,5)P3, arising from the breakdown of phosphatidylinositol 4,5-bisphosphate was shown to promote the release of Ca2+ from non-mitochondrial stores in a variety of cells. Although platelet intracellular membranes have been implicated in the control of cytosol [Ca2+] and we previously characterized a Ca2+-sequestering mechanism associated with them, we have as yet no knowledge of how this Ca2+ store is mobilized after a stimulus-receptor interaction at the platelet surface. Using free-flow electrophoresis, we isolated and purified human platelet intracellular membranes. They show high enrichment and exclusive localization of the endoplasmic-reticulum marker NADH:cytochrome c reductase, and they sequester Ca2+ by an ATP-dependent process, reaching steady-state values in 10-12 min. Saturation with Ca2+ occurs at around 10-30 microM external Ca2+. When Ins(1,4,5)P3 is added to the 45Ca-loaded vesicles, a rapid release of Ca2+ occurs (approx. 35% in 15-30s). The magnitude of the release depends upon external [Ca2+], being maximum in the range 0.3-0.8 microM and low at external [Ca2+] greater than 1 microM. After release there is a rapid re-uptake of Ca2+, with restoration of the former steady-state values within 1 min. Half-maximal release occurs at approx. 0.25 microM-Ins(1,4,5)P3. This release and re-uptake pattern is not observed with ionophore A23187 or arachidonic acid, both of which liberate Ca2+ irreversibly. Inositol 1,4-bisphosphate was ineffective in releasing Ca2+ from these intracellular membranes. The results support the role of Ins(1,4,5)P3 as a specific intracellular mediator, transducing the action of excitatory agonists acting on the platelet surface into metabolic, mechanochemical and other functional events, known to occur during platelet activation.  相似文献   

8.
The abilities of D-myo-inositol phosphates (InsPs) to promote Ca2+ release and to compete for D-myo-[3H]-inositol 1,4,5-trisphosphate [( 3H]Ins(1,4,5)P3) binding were examined with microsomal preparations from rat cerebellum. Of the seven InsPs examined, only Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 stimulated the release of Ca2+. Ca2+ release was maximal in 4-6 s and was followed by a rapid re-accumulation of Ca2+ into the Ins(1,4,5)P3-sensitive compartment after Ins(1,4,5)P3, but not after Ins(2,4,5)P3 or Ins(4,5)P2. Ca2+ re-accumulation after Ins(1,4,5)P3 was also faster than after pulse additions of Ca2+, and coincided with the metabolism of [3H]Ins(1,4,5)P3. These data suggest that Ins(1,4,5)P3-induced Ca2+ release and the accompanying decrease in intraluminal Ca2+ stimulate the Ca2+ pump associated with the Ins(1,4,5)P3-sensitive compartment. That this effect was observed only after Ins(1,4,5)P3 may reflect differences in either the metabolic rates of the various InsPs or an effect of the Ins(1,4,5)P3 metabolite Ins(1,3,4,5)P4 to stimulate refilling of the Ins(1,4,5)P3-sensitive store. InsP-induced Ca2+ release was concentration-dependent, with EC50 values (concn. giving half-maximal release) of 60, 800 and 6500 nM for Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 respectively. Ins(1,4,5)P3, Ins(2,4,5)P3 and Ins(4,5)P2 also competed for [3H]Ins(1,4,5)P3 binding, with respective IC50 values (concn. giving 50% inhibition) of 100, 850 and 13,000 nM. Comparison of the EC50 and IC50 values yielded a significant correlation (r = 0.991). These data provide evidence of an association between the [3H]Ins(1,4,5)P3-binding site and the receptor mediating Ins(1,4,5)P3-induced Ca2+ release.  相似文献   

9.
The addition of anti-IgM to the immature B lymphoma cell line WEHI-231 resulted in breakdown of phosphatidylinositol 4,5-bisphosphate, generating diacylglycerol and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). These reactions have recently been demonstrated in mature resting B cells stimulated with anti-IgM, as well. In addition to Ins(1,4,5)P3, inositol tetrakisphosphate (InsP4) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) were rapidly generated in WEHI-231 cells upon stimulation of the antigen receptor with anti-IgM. These two inositol polyphosphates are probably generated from Ins(1,4,5)P3 by phosphorylation to yield InsP4 and removal of the 5-phosphate from InsP4 to yield Ins(1,3,4)P3. It is possible that these inositol polyphosphates play a second messenger role in mediating the biologic effects of antigen-receptor signaling. It had previously been shown that anti-IgM also causes an increase in cytoplasmic free calcium. Therefore, the relationship between Ca2+ elevation and phosphoinositide breakdown was investigated. Although elevation of cytoplasmic Ca2+ with ionophores can trigger phosphoinositide breakdown, this required levels of Ca2+ well beyond those normally seen in response to anti-IgM. Thus, the Ca2+ elevation seen in response to anti-IgM cannot be the event controlling phosphoinositide breakdown. WEHI-231 cells have been shown to have a calcium storage compartment that releases Ca2+ in the presence of Ins(1,4,5)P3; therefore, it is likely that anti-IgM stimulates phosphoinositide breakdown as a primary event and this leads to the elevation of cytoplasmic Ca2+.  相似文献   

10.
An enzyme which catalyses the ATP-dependent phosphorylation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] was purified approx. 180-fold from rat brain cytosol by (NH4)2SO4 precipitation, chromatography through hydroxyapatite, anion-exchange fast protein liquid chromatography and gel-filtration chromatography. Gel filtration on Sepharose 4B CL gives an Mr of 200 x 10(3) for the native enzyme. The inositol tetrakisphosphate (InsP4) produced by the enzyme has the chromatographic, chemical and metabolic properties of Ins(1,3,4,5)P4. Ins(1,4,5)P3 3-kinase displays simple Michaelis-Menten kinetics for both its substrates, having Km values of 460 microM and 0.44 microM for ATP and Ins(1,4,5)P3 respectively. When many of the inositol phosphates known to occur in cells were tested, only Ins(1,4,5)P3 was a substrate for the enzyme; the 2,4,5-trisphosphate was not phosphorylated. Inositol 4,5-bisphosphate and glycerophosphoinositol 4,5-bisphosphate were phosphorylated much more slowly than Ins(1,4,5)P3. CTP, GTP and adenosine 5'-[gamma-thio]triphosphate were unable to substitute for ATP. When assayed under conditions of first-order kinetics, Ins(1,4,5)P3 kinase activity decreased by about 40% as the [Ca2+] was increased over the physiologically relevant range. This effect was insensitive to the presence of calmodulin and appeared to be the result of an increase in the Km of the enzyme for Ins(1,4,5)P3. Preincubation with ATP and the purified catalytic subunit of cyclic AMP-dependent protein kinase did not affect the rate of phosphorylation of Ins(1,4,5)P3 when the enzyme was assayed at saturating concentrations of Ins(1,4,5)P3 or at concentrations close to its Km for this substrate.  相似文献   

11.
The ability of D-6-deoxy-myo-inositol 1,4,5-trisphosphate [6-deoxy-Ins(1,4,5)P3], a synthetic analogue of the second messenger D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], to mobilise intracellular Ca2+ stores in permeabilised SH-SY5Y neuroblastoma cells was investigated. 6-Deoxy-Ins(1,4,5)P3 was a full agonist (EC50 = 6.4 microM), but was some 70-fold less potent than Ins (1,4,5)P3 (EC50 = 0.09 microM), indicating that the 6-hydroxyl group of Ins(1,4,5)P3 is important for receptor binding and stimulation of Ca2+ release, but is not an essential structural feature. 6-Deoxy-Ins(1,4,5)P3 was not a substrate for Ins (1,4,5)P3 5-phosphatase, but inhibited both the hydrolysis of 5-[32P]+ Ins (1,4,5)P3 (Ki 76 microM) and the phosphorylation of [3H]Ins(1,4,5)P3 (apparent Ki 5.7 microM). 6-Deoxy-Ins (1,4,5)P3 mobilized Ca2+ with different kinetics to Ins(1,4,5)P3, indicating that it is probably a substrate for Ins (1,4,5)P3 3-kinase.  相似文献   

12.
After 2 days of incubation of AR42J pancreatoma cells with 400 microM [3H]inositol, the specific radioactivity of [3H]phosphatidylinositol 4,5-bisphosphate and the specific radioactivity of [3H]inositol were similar, indicating that isotopic equilibrium had been achieved. The inositol 1,4,5-trisphosphate (1,4,5-IP3) level in cells was estimated to be approximately 2 microM and was increased by substance P receptor activation to about 25 microM. HPLC analysis of [3H]inositol phosphates indicated that only 1,4,5-IP3, inositol 1,4-bisphosphate, and inositol 4-monophosphate were increased upon receptor activation. There was no increase in inositol 1,3,4,5-tetrakisphosphate (1,3,4,5-IP4), or in any of its metabolites. Incubation of [3H]1,4,5-IP3 with a cell homogenate did not result in the formation of [3H]1,3,4,5-IP4. Therefore, it appears that 1,4,5-IP3 3-kinase is either not present or not functional under these assay conditions. Substance P increased cytosolic calcium levels in fura-2-loaded cells from about 600 nM to 2.5 microM. This increase in Ca2+ was partially attenuated in the absence of extracellular calcium, indicating that in AR42J cells, substance P stimulation appears to activate calcium signaling through both Ca2+ entry and intracellular Ca2+ release. These modes of Ca2+ mobilization occur without an increase in 1,3,4,5-IP4 or any of its metabolites.  相似文献   

13.
C. reinhardtii sheds its flagella in response to acidification. Previously, we showed correlations between pH shock, deflagellation, and inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] production, but 100% of cells deflagellated by 5 s, which was the earliest that Ins(1,4,5)P3 accumulation could be accurately measured by techniques available to us at that time (Quarmby, L. M., Y. G. Yueh, J. L. Cheshire, L. R. Keller, W. J. Snell, and R. C. Crain. J. Cell Biol. 1992. 116:737-744). To learn about the causal relationship between Ins(1,4,5)P3 accumulation and deflagellation, we extended these studies to early times using a continuous-flow rapid-quench device. Within 1 s of acidification to pH 4.3-4.5, 100% of cells deflagellated. A transient peak of Ins(1,4,5)P3 was observed 250-350 ms after pH shock, preceding deflagellation. Preincubation with 10 microM neomycin, which prevents hydrolysis of phosphatidylinositol 4,5-bisphosphate, inhibited both the transient production of Ins(1,4,5)P3 and the subsequent deflagellation. The nonspecific Ca2+ channel blockers La3+ and Cd2+ prevented flagellar excision induced by mastoparan without inhibiting rapid Ins(1,4,5)P3 production. Likewise, the Ins(1,4,5)P3-gated channel inhibitors ruthenium red and heparin blocked deflagellation in response to mastoparan. These studies were extended to mutants defective in flagellar excision. Fa-1, a mutant defective in flagellar structure, produced Ins(1,4,5)P3 but failed to deflagellate. These results support a model in which acid pH activates a putative cellular receptor leading to G-protein dependent activation of phospholipase C and accumulation of Ins(1,4,5)P3. These events are upstream of Ins(1,4,5)P3-dependent Ca2+ entry from the medium, and of deflagellation.  相似文献   

14.
Inositol phosphate (InsP) responses to receptor activation are assumed to involve phospholipase C cleavage of phosphatidylinositol 4,5-bisphosphate to generate Ins(1,4,5)P(3). However, in [(3)H]inositol-labeled rat neonatal cardiomyocytes (NCM) both initial and sustained [(3)H]InsP responses to alpha(1)-adrenergic receptor stimulation with norepinephrine (100 microM) were insensitive to the phosphatidylinositol 4,5-bisphosphate-binding agent neomycin (5 mM). Introduction of 300 microM unlabeled Ins(1,4, 5)P(3) into guanosine 5'-3-O-(thio)triphosphate (GTPgammaS)-stimulated, permeabilized [(3)H]inositol-labeled NCM increased [(3)H]Ins(1,4,5)P(3) slightly but did not significantly reduce levels of its metabolites [(3)H]Ins(1,4)P(2) and [(3)H]Ins(4)P, suggesting that these [(3)H]InsPs are not formed principally from [(3)H]Ins(1,4,5)P(3). In contrast, the calcium ionophore A23187 (10 microM) provoked [(3)H]InsP responses in intact NCM which were sensitive to neomycin, and elevation of free calcium in permeabilized NCM led to [(3)H]InsP responses characterized by marked increases in [(3)H]Ins(1,4,5)P(3) (2.9 +/- 0.2% of total [(3)H]InsPs after 20 min of high Ca(2+) treatment in comparison to 0. 21 +/- 0.05% of total [(3)H]InsPs accumulated after 20 min of GTPgammaS stimulation). These data provide evidence that Ins(1,4, 5)P(3) generation is not a major contributor to G protein-coupled InsP responses in NCM, but that substantial Ins(1,4,5)P(3) generation occurs under conditions of Ca(2+) overload. Thus in NCM, Ca(2+)-induced Ins(1,4,5)P(3) generation has the potential to worsen Ca(2+) overload and thereby aggravate Ca(2+)-induced electrophysiological perturbations.  相似文献   

15.
Stimulation of human platelets by thrombin leads to rises of both inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) within 10 s. The mass of Ins(1,4,5)P3 was measured in platelet extracts after conversion to [3-32P]Ins(1,3,4,5)P4 with Ins(1,4,5)P3 3-kinase and [gamma-32P]ATP. Basal levels were equivalent to 0.2 microM and rose to 1 microM within 10 s of stimulation by thrombin. The mass of Ins(1,3,4)P3 was more than 10-fold greater than that of Ins(1,4,5)P3 between 10 and 60 s of thrombin stimulation. These results indicate that the majority of InsP3 liberated by phospholipase C in stimulated platelets must be the non-cyclic Ins(1,4,5)P3 in order to allow rapid phosphorylation by Ins(1,4,5)P3 3-kinase to Ins(1,3,4,5)P4 and then dephosphorylation to Ins(1,3,4)P3 by 5-phosphomonoesterase. A significant proportion of the InsP3 extracted from thrombin-stimulated platelets under neutral conditions is resistant to Ins(1,4,5)P3 3-kinase but susceptible after acid treatment, implying the presence of inositol 1,2-cyclic 4,5-trisphosphate (Ins(1,2cyc4,5)P3. The relative proportion of Ins(1,2cyc4,5)P3 increases with time. We suggest that such gradual accumulation is attributable to the relative insensitivity of this compound to hydrolytic and phosphorylating enzymes. Therefore, early Ca2+ mobilization in platelets is more likely to be effected by Ins(1,4,5)P3 than by Ins(1,2cyc4,5)P3.  相似文献   

16.
Inositol-polyphosphate-induced Ca2+ mobilization was investigated in saponin-permeabilized SH-SY5Y human neuroblastoma cells. Ins(1,4,5)P3 induced a dose-related release from intracellular Ca2+ stores with an EC50 (concn. giving half-maximal effect) of 0.1 microM and a maximal release of 70%. Ins(1,3,4)P3, DL-Ins(1,4,5,6)P4 and Ins(1,3,4,5,6)P5 did not evoke Ca2+ mobilization in these cells when used at concentrations up to 10 microM. However, Ins(1,3,4,5)P4 was found to release Ca2+ in a dose-related manner, but the response was dependent on the source of Ins(1,3,4,5)P4 used. When commercially available D-Ins(1,3,4,5)P4 was used, the EC50 and maximal response values were 1 microM and 50% respectively, compared with values for chemically synthesized DL-Ins(1,3,4,5)P4 of 2 microM and 25%. The enhanced maximal response of commercial D-Ins(1,3,4,5)P4 was decreased by pretreatment with rat brain crude Ins(1,4,5)P3 3-kinase and was therefore concluded to be indicative of initial Ins(1,4,5)P3 contamination of the Ins(1,3,4,5)P4 preparation. When metabolism of DL-Ins(1,3,4,5)P4 (10 microM) in these cells at 25 degrees C was investigated by h.p.l.c., substantial amounts of Ins(1,4,5)P3 (0.2 microM) and Ins(1,3,4)P3 (0.8 microM) were found to be produced within 3 min. Analysis of DL-Ins(1,3,4,5)P4 incubation with cells at 4 degrees C, however, indicated that metabolism had been arrested ([3H]Ins(1,4,5)P3 detection limits were estimated to be approx. 0.01 microM). When chemically synthesized DL-Ins(1,3,4,5)P4 and incubation conditions of low temperature were used, the Ca2(+)-releasing properties of this compound were established to be 1 microM and 19% for the EC50 and maximal response values respectively. The results obtained strongly suggest that Ins(1,3,4,5)P4 alone has the ability to release intracellular Ca2+. However, in the presence of sub-maximal concentrations of Ins(1,4,5)P3, Ca2+ release appears to be synergistic with Ins(1,3,4,5)P4, but at supramaximal concentrations not even additive effects are observed.  相似文献   

17.
The ability of two fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. DL-2-deoxy-2-fluoro-scyllo-Ins(1,4,5)P3 (2F-Ins(1,4,5)P3) and DL-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 (2,2-F2-Ins(1,4,5)P3) were full agonists (EC50s 0.77 and 0.41 microM respectively) and slightly less potent than D-Ins(1,4,5)P3 (EC50 0.13 microM), indicating that the axial 2-hydroxyl group of Ins(1,4,5)P3 is relatively unimportant in receptor binding and stimulation of Ca2+ release. Both analogues mobilized Ca2+ with broadly similar kinetics and were substrates for Ins(1,4,5)P3 3-kinase but, qualitatively, were slightly poorer than Ins(1,4,5)P3. 2F-Ins(1,4,5)P3 was a weak substrate for Ins(1,4,5)P3 5-phosphatase but 2,2-F2-Ins(1,4,5)P3 was apparently not hydrolysed by this enzyme, although it inhibited its activity potently (Ki = 26 microM).  相似文献   

18.
Factors underlying the transience of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] accumulation following muscarinic stimulation of RINm5F cells were examined. Transience was not due to a protein kinase C-mediated stimulation of Ins(1,4,5)P3 dephosphorylation, since pretreatment of cells with tetradecanoyl-phorbol acetate (TPA) did not alter the rate of this conversion. However, preincubation with TPA did inhibit carbamoylcholine-stimulated Ins(1,4,5)P3 formation. In permeabilized cells, the conversion of Ins(1,4,5)P3 to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] was slightly enhanced in the presence of TPA or cyclic AMP, but much more markedly by raising the Ca2+ concentration from 10(-7) M to 10(-6) or 10(-5) M. In intact cells the most rapid rate of accumulation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 occurred in the first 2 s following stimulation, whereas the levels of inositol 1,4-bisphosphate were not increased until after 5 s. This suggests that Ins(1,4,5)P3 kinase is chiefly responsible for the early disposal of Ins(1,4,5)P3 following cellular stimulation. The results are consistent with the proposal that the transient accumulation of Ins(1,4,5)P3 is due both to its enhanced metabolism via the Ca2+-calmodulin-sensitive Ins(1,4,5)P3 kinase, as well as a down-regulation of phosphatidylinositol 4,5-bisphosphate hydrolysis.  相似文献   

19.
The ability of two enantiomeric fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. (-)-D-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 [D-2,2-F2-Ins(1,4,5)P3] was a full agonist [EC50 0.21 microM] and slightly less potent than D-Ins(1,4,5)P3 [EC50 0.13 microM]. (+)-L-2,2-F2Ins(1,4,5)P3 was a very poor agonist, confirming the stereospecificity of the Ins(1,4,5)P3 receptor. D-2,2-F2-Ins(1,4,5)P3 mobilized Ca2+ with broadly similar kinetics to Ins(1,4,5)P3 and was a substrate for Ins(1,4,5)P3 3-kinase inhibiting Ins(1,4,5)P3 phosphorylation (apparent Ki = 10.2 microM) but was recognised less well than Ins(1,4,5)P3. L-2,2-F2-Ins(1,4,5)P3 was a potent competitive inhibitor of 3-kinase (Ki = 11.9 microM). Whereas D-2,2-F2-Ins(1,4,5)P3 was a good substrate for Ins(1,4,5)P3 5-phosphatase, L-2,2-F2Ins(1,4,5)P3 was a relatively potent inhibitor (Ki = 19.0 microM).  相似文献   

20.
The agonist-dependent hydrolysis of inositol phospholipids was investigated by studying the breakdown of prelabelled lipid or by measuring the accumulation of inositol phosphates. Stimulation of insect salivary glands with 5-hydroxytryptamine for 6 min provoked a rapid disappearance of [3H]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and [3H]phosphatidylinositol 4-phosphate (PtdIns4P) but had no effect on the level of [3H]phosphatidylinositol (PtdIns). The breakdown of PtdIns(4,5)P2 was associated with a very rapid release of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which reached a peak 5 1/2 times that of the resting level after 5 s of stimulation. This high level was not maintained but declined to a lower level, perhaps reflecting the disappearance of PtdIns(4,5)P2. 5-Hydroxytryptamine also induced a rapid and massive accumulation of inositol 1,4-bisphosphate [Ins(1,4)P2]. The fact that these increases in Ins(1,4,5)P3 and Ins(1,4)P2 precede in time any increase in the level of inositol 1-phosphate or inositol provides a clear indication that the primary action of 5-hydroxytryptamine is to stimulate the hydrolysis of PtdIns(4,5)P2 to yield diacylglycerol and Ins(1,4,5)P3. The latter is then hydrolysed by a series of phosphomonoesterases to produce Ins(1,4)P2, Ins1P and finally inositol. The very rapid agonist-dependent increases in Ins(1,4,5)P3 and Ins(1,4)P2 suggests that they could function as second messengers, perhaps to control the release of calcium from internal pools. The PtdIns(4,5)P2 that is used by the receptor mechanism represents a small hormone-sensitive pool that must be constantly replenished by phosphorylation of PtdIns. Small changes in the size of this small energy-dependent pool of polyphosphoinositide will alter the effectiveness of the receptor mechanism and could account for phenomena such as desensitization and super-sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号