共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Pei Dong Jessica Flores Kristine Pelton Keith R. Solomon 《Journal of cellular biochemistry》2010,111(5):1367-1374
Cholesterol is essential in establishing most functional animal cell membranes; cells cannot grow or proliferate in the absence of sufficient cholesterol. Consequently, almost every cell, tissue, and animal tightly regulates cholesterol homeostasis, including complex mechanisms of synthesis, transport, uptake, and disposition of cholesterol molecules. We hypothesize that cellular recognition of cholesterol insufficiency causes cell cycle arrest in order to avoid a catastrophic failure in membrane synthesis. Here, we demonstrate using unbiased proteomics and standard biochemistry that cholesterol insufficiency causes upregulation of prohibitin, an inhibitor of cell cycle progression, through activation of a cholesterol‐responsive promoter element. We also demonstrate that prohibitin protects cells from apoptosis caused by cholesterol insufficiency. This is the first study tying cholesterol homeostasis to a specific cell cycle regulator that inhibits apoptosis. J. Cell. Biochem. 111: 1367–1374, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
3.
We previously reported that expression of human immunodeficiency virus type 1 strain NL4-3 (HIV-1(NL4-3))vpr causes cells to arrest in the G2 phase of the cell cycle. We examined the induction of cell cycle arrest by other HIV-1 isolates and by primary lentiviruses other than HIV-1. We demonstrate that the vpr genes from tissue culture-adapted or primary isolates of HIV-1 are capable of inducing G2 arrest. In addition, we demonstrate that induction of cell cycle arrest is a conserved function of members of two other groups of primate lentiviruses, HIV-2/simian immunodeficiency virus strain sm (SIVsm)/SIVmac and SIVagm. vpr from HIV-1, HIV-2, and SIVmac induced cell cycle arrest when transfected in human (HeLa) and monkey (CV-1) cells. vpx from HIV-2 and SIVmac did not induce detectable cell cycle arrest in either cell type, and SIVagm vpx was capable of inducing arrest in CV-1 but not HeLa cells. These results indicate that induction of cell cycle perturbation is a general property of lentiviruses that infect primates. The conservation of this viral function throughout evolution suggests that it plays a key role in virus-host relationships, and elucidation of its mechanism may reveal important clues about pathology induced by primary lentiviruses. 相似文献
4.
L. G. Lajtha 《In vitro cellular & developmental biology. Plant》1969,4(1):14-21
Summary Recent techniques enabled a series of quantitative studies to be made with various aspects of the stem cell functions. Results
from several laboratories appear to agree on certain main points: the existence of a pluripotential stem cell in the small
rodent, capable of forming visible colonies of hemopoietic foci in the spleen and the existence of some undifferentiated but
committed precursor cells from which the differentiating and maturing cell populations originate. There is evidence that the
primary stem cell is in a low turnover state in the normal animal, although on demand it is capable of fast and prolonged
proliferative activity. The committed undifferentiated precursor cells differ greatly, depending on which cell line they represent.
Some of these are in high turnover state in the normal animal (e.g., erythropoietin-responsive cells), others do not appear
to be capable of proliferation (e.g., focus forming cells). Perturbation of the steady states by irradiation of the animal,
or by treatment with cytotoxic drugs results in recovery patterns which yield valuable kinetic information. 相似文献
5.
6.
DiMascio L Voermans C Uqoezwa M Duncan A Lu D Wu J Sankar U Reya T 《Journal of immunology (Baltimore, Md. : 1950)》2007,178(6):3511-3520
The hemopoietic microenvironment consists of a diverse repertoire of cells capable of providing signals that influence hemopoietic stem cell function. Although the role of osteoblasts and vascular endothelial cells has recently been characterized, the function of the most abundant cell type in the bone marrow, the adipocyte, is less defined. Given the emergence of a growing number of adipokines, it is possible that these factors may also play a role in regulating hematopoiesis. Here, we investigated the role of adiponectin, a secreted molecule derived from adipocytes, in hemopoietic stem cell (HSC) function. We show that adiponectin is expressed by components of the HSC niche and its receptors AdipoR1 and AdipoR2 are expressed by HSCs. At a functional level, adiponectin influences HSCs by increasing their proliferation, while retaining the cells in a functionally immature state as determined by in vitro and in vivo assays. We also demonstrate that adiponectin signaling is required for optimal HSC proliferation both in vitro and in long term hemopoietic reconstitution in vivo. Finally we show that adiponectin stimulation activates p38 MAPK, and that inhibition of this pathway abrogates adiponectin's proliferative effect on HSCs. These studies collectively identify adiponectin as a novel regulator of HSC function and suggest that it acts through a p38 dependent pathway. 相似文献
7.
8.
Connell E Giniatullina A Lai-Kee-Him J Tavare R Ferrari E Roseman A Cojoc D Brisson AR Davletov B 《Journal of molecular biology》2008,380(1):42-50
Synaptotagmins are vesicular proteins implicated in many membrane trafficking events. They are highly conserved in evolution and the mammalian family contains 16 isoforms. We now show that the tandem C2 domains of several calcium-sensitive synaptotagmin isoforms tested, including Drosophila synaptotagmin, rapidly cross-link phospholipid membranes. In contrast to the tandem structure, individual C2 domains failed to trigger membrane cross-linking in several novel assays. Large-scale liposomal aggregation driven by tandem C2 domains in response to calcium was confirmed by the following techniques: turbidity assay, dynamic light-scattering and both confocal and negative stain electron microscopy. Firm cross-linking of membranes was evident from laser trap experiments. High-resolution cryo-electron microscopy revealed that membrane cross-linking by tandem C2 domains results in a constant distance of ∼9 nm between the apposed membranes. Our findings show the conserved nature of this important property of synaptotagmin, demonstrate the significance of the tandem C2 domain structure and provide a plausible explanation for the accelerating effect of synaptotagmins on membrane fusion. 相似文献
9.
This review provides insight into two clinical trials conducted with ex vivo manipulated CD34+ cells. The first was an attempt to deliver a gene therapy for treatment of HIV and the second an attempt to improve rates of hemopoietic recovery with ex vivo generated myeloid cells. 相似文献
10.
Shinichi Noda Hitoshi Ichikawa 《Biochemical and biophysical research communications》2009,383(2):210-2722
The molecular mechanisms underlying hematopoietic stem cell (HSC) aging remain to be elucidated. In this study, we investigated age-related changes in the functional and phenotypic properties of murine HSCs. Consistent with previous studies, we found that the number and frequency of CD34−/lowc-Kit+Sca-1+lineage marker− (CD34−KSL) cells, a highly enriched HSC population, significantly increased in old mice, though their repopulating ability was reduced. Continuous bromodeoxyuridine labeling revealed a significant delay in the cell cycle progression of CD34−KSL cells in old mice. This delay was also observed in young recipients transplanted with whole bone marrow cells from old mice. When cultured in vitro, CD34−KSL cells from old mice showed a greater capacity to give rise to primitive CD48−KSL cells with reduced HSC activity. Gene expression profiling identified age-related changes in the expression of several cell cycle regulatory genes, including p21/Cdkn1a and p18/Cdkn2c. These results support the notion that HSC aging is largely regulated by an intrinsic genetic program. 相似文献
11.
Markel TA Wang Y Herrmann JL Crisostomo PR Wang M Novotny NM Herring CM Tan J Lahm T Meldrum DR 《American journal of physiology. Heart and circulatory physiology》2008,295(6):H2308-H2314
Bone marrow mesenchymal stem cells (MSCs) may be a novel treatment modality for organ ischemia, possibly through the release of beneficial paracrine factors. However, an age threshold likely exists as to when MSCs gain their beneficial protective properties. We hypothesized that 1) VEGF would be a crucial stem cell paracrine mediator in providing postischemic myocardial protection and 2) small-interfering (si)RNA ablation of VEGF in adult MSCs (aMSCs) would equalize the differences observed between aMSC- and neonatal stem cell (nMSC)-mediated cardioprotection. Female adult Sprague-Dawley rat hearts were subjected to ischemia-reperfusion injury via Langendorff-isolated heart preparation (15 min equilibration, 25 min ischemia, and 60 min reperfusion). MSCs were harvested from adult and 2.5-wk-old neonatal mice and cultured under normal conditions. VEGF was knocked down in both cell lines by VEGF siRNA. Immediately before ischemia, one million aMSCs or nMSCs with or without VEGF knockdown were infused into the coronary circulation. The cardiac functional parameters were recorded. VEGF in cell supernatants was measured via ELISA. aMSCs produced significantly more VEGF than nMSCs and were noted to increase postischemic myocardial recovery compared with nMSCs. The knockdown of VEGF significantly decreased VEGF production in both cell lines, and the pretreatment of these cells impaired stem cell-mediated myocardial function. The knockdown of VEGF in adult stem cells equalized the myocardial functional differences observed between adult and neonatal stem cells. Therefore, VEGF is a critical paracrine mediator in facilitating postischemic myocardial recovery and likely plays a role in mediating the observed age threshold during stem cell therapy. 相似文献
12.
14.
Pefani DE Dimaki M Spella M Karantzelis N Mitsiki E Kyrousi C Symeonidou IE Perrakis A Taraviras S Lygerou Z 《The Journal of biological chemistry》2011,286(26):23234-23246
15.
The nature of the hemopoietic stem cell compartment has been the subject of much controversy. Data are presented to support the concept of a 'continuum' model of the stem cell compartment. The important characteristics of this model are that within the continuum there are cells with varying proliferative capacities. As cells move through the compartment, their proliferative capacity becomes more limited, their likelihood to be in cycle increases, and their commitment to a specific differentiated pathway increases. Experiments with busulfan, cyclophosphamide, 5-flurouracil, and BCNU demonstrate defects in proliferative potential of the surviving CFU-S population. These defects persist throughout the life of the animal without any evidence of recovery. The clinical implications of late stem cell failure may be important as a consideration in the use of cytotoxic agents. 相似文献
16.
While it is accepted that hemopoietic stem cells (HSC) are located in a three-dimensional microenvironment, termed a niche, the cellular and extracellular composition, as well as the multifaceted effects the components of the niche have on HSC regulation, remains undefined. Over the past four decades numerous advances in the field have led to the identification of roles for some cell types and propositions of potentially a number of HSC niches. We present evidence supporting the roles of multiple cell types and extracellular matrix molecules in the HSC niche, as well as discuss the potential significant overlap and intertwining of previously proposed distinct HSC niches. 相似文献
17.
18.
19.
Ease of DNA unwinding is a conserved property of yeast replication origins. 总被引:24,自引:6,他引:24 下载免费PDF全文
Autonomously replicating sequence (ARS) elements function as plasmid replication origins. Our studies of the H4 ARS and ARS307 have established the requirement for a DNA unwinding element (DUE), a broad easily-unwound sequence 3' to the essential consensus that likely facilitates opening of the origin. In this report, we examine the intrinsic ease of unwinding a variety of ARS elements using (1) a single-strand-specific nuclease to probe for DNA unwinding in a negatively-supercoiled plasmid, and (2) a computer program that calculates DNA helical stability from the nucleotide sequence. ARS elements that are associated with replication origins on chromosome III are nuclease hypersensitive, and the helical stability minima correctly predict the location and hierarchy of the hypersensitive sites. All well-studied ARS elements in which the essential consensus sequence has been identified by mutational analysis contain a 100-bp region of low helical stability immediately 3' to the consensus, as do ARS elements created by mutation within the prokaryotic M13 vector. The level of helical stability is, in all cases, below that of ARS307 derivatives inactivated by mutations in the DUE. Our findings indicate that the ease of DNA unwinding at the broad region directly 3' to the ARS consensus is a conserved property of yeast replication origins. 相似文献