首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freezing of plant tissue adversely affects lipid composition. Immature soybean cotyledons (Glycine max L. Merr.) var. “Harosoy 63” were frozen with liquid N2, dry ice, or stored in a freezer (−20 C) before lipid extraction. The effects of freezing temperature, thawing rate, and cold storage on the lipid composition of frozen tissue revealed significantly higher levels of phosphatidic acid, and diminished levels of phosphatidylcholine, phosphatidylethanolamine, and N-acylphosphatidylethanolamine from the control. Regardless of freezing temperature, phosphatidic acid levels increased from 4.7 mole% to nearly 50 mole% of the total phospholipid when frozen tissues were stored 10 days at −20 C. During the same period, N-acylphosphatidylethanolamine decreased from 54.1 mole% to 6.6 mole% phospholipid. At least 8 mole% of the phosphatidic acid increase occurred during slow thawing of the frozen tissues. In autoclaved samples, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, and N-acylphosphatidylethanolamine levels were not different from the control. Labeling of the lipid-glycerol with 3H, and fatty acids with 14C, demonstrated the degradation product was primarily phosphatidic acid. Apparently enzymic destruction of the phospholipids occurred during freezing, cold storage, and thawing.  相似文献   

2.
The incorporation of phospholipids specifically labeled with glycerol-23H and acyl-14C by whole cell tissues of developing soybean cotyledons (Glycine max L.) reveals that phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, N-acylphosphatidylethanolamine, and phosphatidic acid can be metabolized to diglyceride. The diglyceride formed may be recylced into phospholipid or acylated to triglyceride. Diglyceride from phosphatidic acid and phosphatidylethanolamine is used readily in triglyceride biosynthesis compared to the other phospholipids. Incorporation of N-acylphosphatidylethanolamine having [9-10-3H(N)]oleic acid esterified at sn-3 in cotyledons shows rapid acyltransfer of 3H into triglyceride and therefore N-acylphosphatidylethanolamine appears to participate in triglyceride biosynthesis as an acyl donor. These studies emphasize phospholipid metabolism in developing soybean cotyledons is a dynamic process which plays a key role in triglyceride formation.  相似文献   

3.
The metabolic activity of individual lipid classes found in developing soybean cotyledons (Glycine max.) is estimated by determining the degradation rate of the compound under given conditions. Pulse-labeling and dual substrate labeling are used to evaluate this parameter. These studies indicate first order decay kinetics for phosphatidic acid, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, N-acyl-phosphatidylethanolamine, diglyceride, and zero order kinetics for triglyceride in cotyledons var. "Harosoy 63" at 30 days after flowering. Decay coefficients for acyl groups and lipid-glycerol moieties within specific lipid classes from either method are comparable. Half-life (t((1/2))) calculations from the decay coefficients indicate extremely rapid turn-over rates (0.08 to 3.4 hours at 25 C) and suggest similar turnover rates of acyl groups and lipid-glycerol in diglyceride and all phospholipids except N-acylphosphatidylethanolamine where acyl groups are replaced independent of the glycerol moiety. These experiments reveal not only different metabolic activity between lipid components of soybean cotyledons, but also describe a new method for measuring lipid turnover in plants.  相似文献   

4.
The zoospores of Blastocladiella emersonii, when derived from cultures grown on solid media, contain about 11% total lipid. This lipid was separated chromatographically on silicic acid into neutral lipid (46.6%), glycolipid (15.8%), and phospholipid (37.6%). Each class was fractionated further on columns of silicic acid, Florisil, or diethylaminoethyl-cellulose, and monitored by thin-layer chromatography. Triglycerides were the major neutral lipids, mono- and diglycosyldiglycerides were the major glycolipids, and phosphatidylcholine and phosphatidylethanolamine were the major phospholipids. Other neutral lipids and phospholipids detected were: hydrocarbons, free fatty acids, free sterols, sterol esters, diglycerides, monoglycerides, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidic acid, phosphatidylserine, and phosphatidylinositol. Palmitic, palmitoleic, stearic, oleic, gamma-linolenic, and arachidonic acids were the most frequently occurring fatty acids. When B. emersonii was grown in (14)C-labeled liquid media, lipid again accounted for 11% of both mature plants and zoospores released from them. The composition of the lipid extracted from such plants and spores was also the same; however, it differed markedly from that of the lipid in spores harvested from solid media, consisting of 28.3% neutral lipid, 12.0% glycolipid, and 59.7% phospholipid. The major lipids were again triglycerides for neutral lipids, mono- and diglycosyldiglycerides for glycolipids, and phosphatidyl choline and phosphatidylethanolamine for phospholipids.  相似文献   

5.
The proportion of labeled 14C-glycerol incorporated into phospholipids and the fatty acid composition of three phospholipids in germinating seeds and seedlings of chilling-sensitive lima beans (Phaseolus lunatus L.) and chilling-resistant broad beans (Vicia faba L.) and peas (Pisum sativum L.) at 10 and 25 C were determined. During the imbibition of seeds (first 24 hours), lima beans were sensitive to chilling injury at 10 C and a higher proportion of label was incorporated into phosphatidylethanolamine and phosphatidylglycerol than in broad beans and peas. Broad beans and peas incorporated a higher proportion of label into phosphatidylcholine. The oleic acid content of phosphatidylcholine was higher and linolenic acid content was lower in peas and broad beans than in lima beans at 10 and 25 C. The unsaturated to saturated fatty acid ratio was much higher for the chilling-resistant seeds than for the chilling-sensitive ones. In the seedling stage, the proportion of label incorporated into the four major phospholipids was similar in the three species regardless of temperature treatment. The fatty acid content of the phospholipids examined was not different in the three species in the seedling stage.  相似文献   

6.
Quantitative analysis of phospholipids by 31P-NMR   总被引:1,自引:0,他引:1  
High-field 31P nuclear magnetic resonance spectroscopy was used to quantitate phospholipids in mixtures in organic solvents. The sample is dissolved in chloroform-methanol and analyzed at 161.7 MHz with decoupling of the protons. Signals were identified using authentic compounds, and their relative distribution was measured in mole percent. The method has good accuracy and reproducibility, and was used to analyze phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidylinositol, cardiolipin, and phosphatidic acid in egg lecithin. Four commercial egg phospholipids and the phospholipids from a total lipid extract of rat liver were analyzed. The method could be utilized to analyze phospholipids from other sources.  相似文献   

7.
The principal lipids associated with the electron transport membrane of Haemophilus parainfluenzae are phosphatidylethanolamine (78%), phosphatidylmonomethylethanolamine (0.4%), phosphatidylglycerol (18%), phosphatidylcholine (0.4%), phosphatidylserine (0.4%), phosphatidic acid (0.2%), and cardiolipin (3.0%). Phospholipids account for 98.4% of the extractible fatty acids. There are no glycolipids, plasmalogens, alkyl ethers, or lipo amino acid esters in the membrane lipids. Glycerol phosphate esters derived from the phospholipids by mild alkaline methanolysis were identified by their staining reactions, mobility on paper and ion-exchange column chromatography, and by the molar glycerol to phosphate ratios. Eleven diacyl phospholipids can be separated by two-dimensional thin-layer chromatography. Each lipid served as a substrate for phospholipase D, and had a fatty acid to phosphate ratio of 2:1. Each separated diacyl phospholipid was deacylated and the glycerol phosphate ester was identified by paper chromatography in four solvent systems. Of the 11 separated phospholipids, 3 were phosphatidylethanolamines, 2 were phosphatidylserines, and 2 were phosphatidylglycerols. Phosphatidylcholine, cardiolipin, and phosphatidic acid were found at a single location. Phosphatidylmonomethylethanolamine was found with the major phosphatidylethanolamine. Three distinct classes of phospholipids are separable according to their relative fatty acid compositions. (i) The trace lipids consist of two phosphatidylethanolamines, two phosphatidylserines, phosphatidylcholine, phosphatidic acid, and a phosphatidylglycerol. Each lipid represents less than 0.3% of the total lipid phosphate. These lipids are characterized by high proportions of the short (C(10) to C(14)) and long (C(19) to C(22)) fatty acids with practically no palmitoleic acid. (ii) The major phospholipids (93% of the lipid phosphate) are phosphatidylethanolamine, phosphatidylmonomethylethanolamine, and phosphatidylglycerol. These lipids contain a low proportion of the short (C(19)) fatty acids. Palmitic and palmitoleic acids represent over 80% of the total fatty acids. (iii) The fatty acid composition of the cardiolipin is intermediate between the other two classes. Both palmitoleic and the longer fatty acids represent a significant proportion of the total fatty acid.  相似文献   

8.
Hydrolysis of lipid mixtures by rat hepatic lipase   总被引:1,自引:0,他引:1  
The hydrolysis of phospholipid mixtures by purified rat hepatic lipase, also known as hepatic triglyceride lipase, was studied in a Triton X-100/lipid mixed micellar system. Column chromatography of the mixed micelles showed elution of Triton X-100 and binary lipid mixtures of phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine as a single peak. This indicated that the mixed micelles were homogenous and contained all components in the designated molar ratios. The molar ratio of Triton X-100 to lipid was kept constant at 4 to 1. Labeling one lipid with 3H and the other lipid with 14C enabled us to determine the hydrolysis of both components of these binary lipid mixed micelles. We found that the hydrolysis of phosphatidylcholine was activated by the inclusion of small amounts of phosphatidic acid (2.5-fold), phosphatidylethanolamine (1.5-fold) or phosphatidylserine (1.4-fold). The maximal activation of phosphatidylcholine hydrolysis was observed when 5 mol% of phosphatidylethanolamine, 7.5 mol% phosphatidic acid or 5 mol% phosphatidylserine was added to Triton X-100 mixed micelles. The hydrolysis of phosphatidic acid was activated 30%, and that of phosphatidylserine was inhibited 30% when the molar proportion of phosphatidylcholine was less than 50 mol%. The hydrolysis of phosphatidylethanolamine was slightly activated when the mol% of phosphatidylcholine was below 5. The hydrolysis of phosphatidylserine was inhibited by phosphatidylethanolamine when the mol% of the latter was 50 or less whereas phosphatidylethanolamine hydrolysis was not affected by phosphatidylserine. Under the conditions used sphingomyelin and cholesterol did not have a significant effect on the hydrolysis of the phospholipids studied. In agreement with our previous study (Kucera et al. (1988) J. Biol. Chem. 263, 1920-1928) these studies show that the phospholipid polar head group is an important factor which influences the action of hepatic lipase and that the interfacial properties of the substrate play a role in the expression of the activity of this enzyme. The molar ratios of phosphatidic acid, phosphatidylethanolamine and phosphatidylserine which activated phosphatidylcholine hydrolysis correspond closely to the molar ratios of these lipids found in the surface lipid film of lipoproteins e.g., high density lipoproteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The composition of the neutral lipids and the phospholipids, and the role of glucose in the lipid metabolism of prepatent (12-day-old) Hymenolepis diminuta has been studied in vitro. Triglyceride was the most abundant lipid present; substantial amounts of sterol and sterol ester, diglyceride, free fatty acids and monoglycerides were also present. The phospholipids, which were qualitatively and quantitatively similar to those of other invertebrates and vertebrates, were, in order of abundance, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphoinositide, lysophosphatidylcholine, cardiclipin, phosphatidic acid, lysophosphatidic acid and phosphatidylglycerol. Small amounts of glucose carbon were incorporated into the lipids, principally the water soluble (glycerol) moiety of the triglycerides; only traces were incorporated into the phospholipids. Small amounts of glucose were converted to inositol and galactose. The principal pathway of triglyceride synthesis is suggested to be via the α-glycerophosphate-phosphatidic acid-diglyceride pathway.  相似文献   

10.
Plasma membranes were isolated by aqueous two-phase-partitioning from sunflower ( Helianthus annuus cv. Isabel) seedlings grown both under field irrigation and dryland conditions. Water-stressed plants showed a decrease in the leaf water potential and in the osmotic potential at full turgor, with the turgor pressure remaining at positive values. Dryland conditions also induced a reduction in the bulk modulus of elasticity. Plasma membranes of irrigated plants were characterized by high contents of phospholipids (68% of total lipids), free sterols (15. 7%) and glycolipids (9. 1%), mainly glycosphingolipids and steryl glycosides. Diacylglycerols, triacylglycerols and free fatty acids were also present. The major phospholipids were phosphatidylcholine and phosphatidylethanolamine with smaller amounts of phosphatidylinositol and phosphatidylglycerol. Following water stress, the plasma membranes showed a reduction of about 24 and 31% in total lipids and phospholipids, respectively. Also the amounts of glycolipids and diacylglycerols decreased significantly upon water stress. There was no change in free fatty acids, however, and triacylglycerols and free sterols increased. As a consequence, the free sterol to phospholipid molar ratio increased from 0. 4 to 0. 7 under water deficit conditions. The ratio of phosphatidylcholine to phosphatidylethanolamine increased from 1. 1 (control plants) to 1. 6 (water-stressed plants), while phosphatidic acid rose to 4% of total phospholipids. Dehydration did not result in any substantial change in the unsaturation level of the individual lipid classes, however. The results show that dryland conditions resulted in a marked alteration in the lipid composition of the sunflower leaf plasma membrane  相似文献   

11.
S Wang  E Martin  J Cimino  G Omann  M Glaser 《Biochemistry》1988,27(6):2033-2039
A resonance energy transfer method was developed to study the distribution of phospholipids around integral membrane proteins. The method involved measuring the extent of energy transfer from tryptophan residues of the proteins to different phospholipids labeled with a dansyl moiety in the fatty acid chain. No specific interactions were observed between gramicidin and dansyl-labeled phosphatidylcholine, phosphatidylethanolamine, or phosphatidic acid. The results were consistent with a random distribution of each phospholipid in the bilayer in the presence of gramicidin. However, a redistribution of both gramicidin and dansyl-labeled phospholipids was easily observed when a phase separation was induced by adding Ca2+ to vesicles made up of phosphatidylcholine and phosphatidic acid. Polarization measurements showed that in the presence of Ca2+ a rigid phosphatidic acid rich region and a more fluid phosphatidylcholine-rich region were formed. Energy-transfer measurements from gramicidin to either dansylphosphatidylcholine or dansylphosphatidic acid showed gramicidin preferentially partitioned into the phosphatidylcholine-rich regions. Energy-transfer measurements were also carried out with D-beta-hydroxybutyrate dehydrogenase reconstituted in a vesicle composed of phosphatidylcholine, phosphatidylethanolamine, and phosphatidic acid. Although the enzyme has a specific requirement for phosphatidylcholine for activity, the extent of energy transfer decreased in the order dansylphosphatidic acid, dansylphosphatidylcholine, dansylphosphatidylethanolamine. Thus, the enzyme reorganized the phospholipids in the vesicle into a nonrandom distribution.  相似文献   

12.
Plasma membranes were isolated from roots of bean (Phaseolus vulgaris L.) plants cultured on phosphate sufficient or phosphate deficient medium. The phospholipid composition of plasma membranes was analyzed and compared with that of the microsomal fraction. Phosphate deficiency had no influence on lipid/protein ratio in microsomal as well as plasma membrane fraction. In phosphate deficient roots phospholipid content was lower in the plasma membrane, but did not change in the microsomal fraction. Phosphatidylcholine and phosphatidylethanolamine were two major phospholipids in plasmalemma and microsomal membranes (80 % of the total). After two weeks of phosphate starvation a considerable decrease (about 50 %) in phosphatidylcholine and phosphatidylethanolamine in microsomal membranes was observed. The decline in two major phospholipids was accompanied by an increase in phosphatidic acid and lysophosphatidylcholine content. The effect of alterations in plasma membrane phospholipids on membrane function e.g. nitrate uptake is discussed.  相似文献   

13.
A comparative study of the mycelial lipid composition of a wild strain (V35) and one unsaturated fatty acid auxotroph (UFA2) of Aspergillus niger has been performed. The lipid composition of both strains are qualitatively the same but quantitatively different. All the strains contain the following phospholipids: cardiolipin, phosphatidylethanolamine, phosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylcholine, and phosphatidylserine; and triglycerides, diglycerides, monoglycerides, ergosterol, and sterol esters as the neutral lipids; mono- and di-galactosyl diglyceride as the major glycolipids along with small amounts of the corresponding mannose analogs. Phosphatidylethanolamine and phosphatidylcholine constitute the bulk of the phospholipids. The mutant (UFA2) contains a higher level of glycerides and lower levels of sterol (both free and esterified form), phospholipids, and glycolipids than the wild type. Aspergillus niger contains C16 to C18 saturated and unsaturated fatty acids. Small amounts of long-chain (C20 to C24) and short-chain (C10 to C14) saturated and unsaturated acids are also present. Linoleic, oleic, and palmitic are the major acids, stearic and linolenic acids being minor ones. UFA2 grows only in the presence of unsaturated fatty acid (C16 or C18) and accumulates a higher concentration of supplemented acid which influences its fatty acid profile.  相似文献   

14.
N-acylethanolamine phospholipid metabolism in normal and ischemic rat brain   总被引:6,自引:0,他引:6  
N-Acylethanolamine phospholipids accumulate in rat brain during post-decapitative ischemia. Small amounts of these phospholipids consisting primarily of diacyl and alkenylacyl species can be detected within 15 min of ischemia and they increase linearly for 60 min. This ischemia-induced synthesis is more pronounced in developing rat brain (approx. 5.0 nmol/h per mumol lipid P) than in adult brain (0.4 nmol). Pulse labeling experiments with subcellular preparations of 10-day-old rat brain indicate a precursor-product relationship between ethanolamine phospholipids and their N-acyl analogs. N-Acylation of endogenous substrates occurs with both microsomes and mitochondria, exhibits a pH optimum of 10 and requires 1 mM Ca2+ for maximal (0.2 mM Ca2+ for half maximal) activity. Cell-free preparations of both developing and adult rat brain contain a phosphodiesterase which hydrolyzes N-acylphosphatidylethanolamine to phosphatidic acid and N-acylethanolamine. The latter is further hydrolyzed to fatty acid and ethanolamine by an amidohydrolase. [1-3H]Ethanolamine, injected intracerebrally or intraperitoneally into 13- and 18-day-old rats, is incorporated into brain ethanolamine phospholipids. Since small amounts of radioactivity are also associated with N-acylethanolamine phospholipids 5 and 24 h after injection of the substrate, it appears that these phospholipids may occur at a very low level as a natural lipid constituent of rat brain.  相似文献   

15.
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry is an established tool for the analysis of proteins, whereas it gained by far less interest in the field of lipid analysis. This method works well with phospholipids as well as organic cell extracts and provides high sensitivity and reproducibility. The aim of the present paper is to extend our previous studies to the analysis of lysophospholipids and phospholipid mixtures. To study the suitability of MALDI-TOF mass spectrometry for the analysis of lysophospholipids, different phospholipids like phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidic acid, and phosphatidylinositol as well as their mixtures were digested with phospholipase A(2). Positive and negative ion mass spectra of all phospholipids before and after digestion were recorded. In all these cases, the molecular ions of the expected digestion products could be detected and only a very small extent of further fragmentation was observed. On the other hand, spectra of phospholipid mixtures containing phosphatidylcholine were strongly dominated by phosphatidylcholine and lysophosphatidylcholine signals, which prevented the detection of further phospholipids even if those lipids were present in comparable amounts. This is of paramount interest for the analysis of tissue and cell extracts.  相似文献   

16.
The incorporation of [14C]-glycerol 3-phosphate and [3H]-palmitate into phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and triacylglycerols by lung microsomes from ventilated and unventilated rabbits was measured. Unventilated lung microsomes showed an impairment of the "de novo" synthesis of phosphatidic acid and, therefore, a general decrease of glycerolipids synthesized from glycerol 3-phosphate. The incorporation of [3H]-palmitate into phosphatidic acid was considerably lower than the incorporation of [14C]-glycerol 3-phosphate by lung microsomes from both ventilated and unventilated rabbits, and the 3H/14C molar ratio did not change during incubation time. These observations suggest the preferential utilization of endogenous fatty acids by acyltransferases involved in the formation of phosphatidic acid. The activities of the enzymes implicated in the synthesis of phosphatidylcholine from lysophosphatidylcholine remained unchanged in lung from both ventilated and unventilated rabbits.  相似文献   

17.
Carbons from choline present in the phospholipids of Pseudomonas aeruginosa   总被引:1,自引:0,他引:1  
The phospholipid composition of Pseudomonas aeruginosa grown in a mineral medium with choline as the carbon source was: phosphatidylethanolamine, 71.6±1.4%; phosphatidylglycerol, 11.8±0.4%; diphosphatidylglycerol, 0.8±0.4%; phosphatidic acid, 2.4±0.6%; lysophosphatidylethanolamine, 1.6±0.3%; phosphatidylcholine 7.9±0.3%; lysophosphatidylcholine, 3.9±0.7%. The molar ratio between the acidic and the neutral phospholipids was 0.18. Radiolabeling experiments with [methyl-14C]choline or [1,2-14C]choline carried out in cell suspension from bacteria that were grown in the presence of choline as the sole carbon source demonstrated that the carbons of the N-methyl groups of choline contributed to the synthesis of fatty acids while the carbons comprising the backbone of choline were used for the synthesis of glycerol.  相似文献   

18.
Brain phospholipid composition and the [32P]orthophosphate incorporation into brain phospholipids of control and rats treated for 3 days with thioacetamide were studied. Brain phospholipid content, phosphatidylcholine, phosphatidylethanolamine, lysolecithin and phosphatidic acid did not show any significant change by the effect of thioacetamide. In contrast, thioacetamide induced a significant decrease in the levels of phosphatidylserine, sphingomyelin, phosphatidylinositol and diphosphatidylglycerol. After 75 minutes of intraperitoneal label injection, specific radioactivity of all the above phospholipids with the exception of phosphatidylethanolamine and phosphatidylcholine significantly increased. After 13 hours of isotope administration the specific radioactivity of almost all studied phospholipid classes was elevated, except for phosphatidic acid, the specific radioactivity of which did not change and for diphosphatidylglycerol which showed a decrease in specific radioactivity. These results suggest that under thioacetamide treatment brain phospholipids undergo metabolic transformations that may contribute to the hepatic encephalopathy induced by thioacetamide.  相似文献   

19.
The interaction of the major acidic bovine seminal plasma protein, PDC-109, with dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by spin-label electron spin resonance spectroscopy. Studies employing phosphatidylcholine spin labels, bearing the spin labels at different positions along the sn-2 acyl chain indicate that the protein penetrates into the hydrophobic interior of the membrane and interacts with the lipid acyl chains up to the 14th C atom. Binding of PDC-109 at high protein/lipid ratios (PDC-109:DMPC = 1:2, w/w) results in a considerable decrease in the chain segmental mobility of the lipid as seen by spin-label electron spin resonance spectroscopy. A further interesting new observation is that, at high concentrations, PDC-109 is capable of (partially) solubilizing DMPC bilayers. The selectivity of PDC-109 in its interaction with membrane lipids was investigated by using different spin-labeled phospholipid and steroid probes in the DMPC host membrane. These studies indicate that the protein exhibits highest selectivity for the choline phospholipids phosphatidylcholine and sphingomyelin under physiological conditions of pH and ionic strength. The selectivity for different lipids is in the following order: phosphatidylcholine approximately sphingomyelin > or = phosphatidic acid (pH 6.0) > phosphatidylglycerol approximately phosphatidylserine approximately and rostanol > phosphatidylethanolamine > or = N-acyl phosphatidylethanolamine > cholestane. Thus, the lipids bearing the phosphocholine moiety in the headgroup are clearly the lipids most strongly recognized by PDC-109. However, these studies demonstrate that this protein also recognizes other lipids such as phosphatidylglycerol and the sterol androstanol, albeit with somewhat reduced affinity.  相似文献   

20.
A membrane preparation from porcine platelets catalyzed the hydrolysis of [2-3H]glycerol-labeled lysophosphatidylinositol to form monoacylglycerol and inositol phosphates. The hydrolysis was optimal at pH 9. The addition of Ca2+ did not enhance the hydrolysis, but the enzyme was inhibited completely by EGTA. The EGTA-inactivated enzyme was partially reactivated by Ca2+; Mn2+, Mg2+, and Zn2+ were much less effective or ineffective for the reactivation. The phospholipase C was apparently specific for lysophosphatidylinositol; phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidic acid, and lysophosphatidic acid were not hydrolyzed at significant rates under the conditions used. Phospholipase C with these properties has not been reported previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号