首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
A 50-amino acid peptide predicted by chemical modification studies of yeast hexokinase to contain an ATP-binding site has been synthesized and purified. The peptide, which includes residues from glutamate 78 at the NH2-terminal end to leucine 127 at the COOH-terminal, resides within the smaller of the two lobes found in the three-dimensional structure of yeast hexokinase. It is this region which has been reported recently to exhibit significant sequence homology with hexokinase types I and IV of higher eukaryotic cells and sequence homology with the active site of protein kinases. Similar to native yeast hexokinase, the 50-amino acid peptide interacts strongly with the fluorescent analog TNP-ATP [2',(3')-O-(2,4,6-trinitrophenyl)-adenosine-5'-triphosphate]. A 5-fold enhancement is observed when 8 microM peptide interacts with 20 microM TNP-ATP. The stoichiometry of binding is very close to 1 mol of TNP-ATP/mol peptide. Also, similar to native yeast hexokinase, the fluorescent enhancement observed upon TNP-ATP binding to the synthetic peptide is greater than that observed upon TNP-ADP binding. Finally, TNP-AMP exhibits a much lower fluorescent enhancement in the presence of hexokinase or the synthetic peptide. The additional findings that ATP can readily prevent TNP-ATP binding and that TNP-ATP can substitute for ATP as a weak substrate for hexokinase in the phosphorylation of glucose indicate that the synthetic peptide described here comprises part of the catalytic site.  相似文献   

2.
The beta subunit isolated from the chloroplast ATP synthase F1 (CF1) has a single dissociable nucleotide binding site, consistent with the proposed function of this subunit in nucleotide binding and catalysis. The beta subunit bound the nucleotide analogs trinitrophenyl-ATP (TNP-ATP) or trinitrophenyl-ADP (TNP-ADP) with nearly equal affinities (Kd = 1-2 microM) but did not bind trinitrophenyl-AMP. Both ATP and ADP effectively competed with TNP-ATP for binding. Other nucleoside triphosphates were also able to compete with TNP-ATP for binding to beta; their order of effectiveness (ATP greater than GTP, ITP greater than CTP) mimicked the normal substrate specificity of CF1. The single nucleotide binding site on the isolated beta subunit very closely resembles the low affinity catalytic site (site 3) of CF1 (Bruist, M.F., and Hammes, G. G. (1981) Biochemistry 20, 6298-6305), suggesting that tight nucleotide binding by other sites on the enzyme involves other CF1 subunits in addition to the beta subunit. The results are inconsistent with an earlier report (Frasch, W.D., Green, J., Caguial, J., and Mejia, A. (1989) J. Biol. Chem. 264, 5064-5069), which suggested more than one nucleotide binding site per beta subunit. Binding of nucleotides to the isolated beta subunit was eliminated by a brief heat treatment (40 degrees C for 10 min) of the protein. A small change in the circular dichroism spectrum of beta accompanied the heat treatment indicating that a localized (rather than global) change in the folding of beta, involving at least part of the nucleotide binding domain, had occurred. Also accompanying the loss of nucleotide binding was a loss of the reconstitutive capacity of the beta subunit. ATP protected against the effects of the heat treatment.  相似文献   

3.
The C-terminal two-thirds of the rat liver ATP synthase beta subunit has been overexpressed and exported to the Escherichia coli periplasm under the direction of the alkaline phosphatase (phoA) promoter and leader peptide. The processed soluble protein contains the 358 amino acids from glutamate 122 to the rat liver beta C-terminal serine 479, including all the regions that have been predicted by chemical and genetic modification studies to be involved in nucleotide, Pi, and Mg2+ binding. Through a simple sequence of Tris/EDTA/lysozyme treatment, osmotic lysis, and alkaline pH washes, the processed beta subunit fragment can be prepared in greater than 95% purity and at a yield of greater than 20 mg/liter of culture. It interacts with 2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate (TNP-ATP) which exhibits a strong enhancement of fluorescence upon binding. A similar enhancement is observed upon interaction with TNP-ADP. Enhancement observed with both TNP-nucleotides is markedly reduced by prior addition of either ATP or ADP and almost completely prevented by the ATP synthase inhibitor 7-chloro-4-nitrobenz-2-oxa-1,3-diazole. Both TNP-ATP and TNP-ADP bind at a stoichiometry of approximately 1 mol of nucleotide/mol of beta subunit fragment. Under the same conditions, TNP-AMP does not exhibit a fluorescence enhancement. This work demonstrates that, in the absence of interaction with other ATP synthase subunits, the rat liver beta subunit sequence from glutamate 122 to the C terminus exhibits no more than one readily detectable nucleotide binding domain. This success in producing a "functional" beta subunit fragment has significance for the pursuit of genetic and physical studies focused on the structure and function of the rat liver ATP synthase beta subunit.  相似文献   

4.
The predicted amino acid sequence of the alpha subunit of the rat liver mitochondrial ATP synthase has been obtained by sequencing a cDNA for the alpha subunit. Analysis of the sequence shows that it contains the A and B consensus sequences found in many nucleotide-binding proteins. Twelve amino acids of the rat liver alpha subunit differ from the sequence of the bovine heart alpha subunit; four of these involve differences in charge. The rat liver alpha subunit, from arginine 15 to the C-terminal proline 510, has been overexpressed in Escherichia coli using the alkaline phosphatase promoter (phoA) and leader peptide to direct the export of the expressed protein to the bacterial periplasm. By treating the cells with lysozyme, osmotic shock, and alkaline pH washes, the alpha subunit can be extracted in high yield (greater than 25 mg/liter) and in a high state of purity. The expressed alpha subunit remains soluble at pH 9.5 or greater and precipitates when treated with Mg2+ ions at low millimolar concentration. The bacterially expressed alpha subunit interacts with 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), resulting in a marked fluorescence enhancement upon binding. An enhancement of fluorescence is also observed upon the interaction of the alpha subunit with TNP-ADP. Preincubating the alpha subunit with 1.5 mM ATP significantly reduces the fluorescence enhancement seen with TNP-ATP. The alpha subunit binds TNP-ATP with an apparent Kd in the low micromolar range (1-5 microM) and binds TNP-ADP with an affinity at least 10-fold lower. This work shows that the rat liver alpha subunit can be overexpressed in E. coli to yield a large amount of functional protein. With the acquisition of the overexpressed alpha subunit, it is now possible to test the reconstitution of ATPase activity from a mixture of recombinant and rat liver-derived subunits and to test the formation of complexes by the overexpressed alpha and beta subunits of the rat liver F1-ATPase.  相似文献   

5.
The beta subunit of the rat liver mitochondrial ATP synthase contains a glycine-rich amino acid sequence implicated in binding nucleotides by its similarity to a sequence found in many other nucleotide-binding proteins. A C-terminal three-quarter-length rat liver beta subunit fragment (Glu122 through Ser479), containing this homology region, interacts with adenine nucleotides (Garboczi, D.N., Hullihen, J.H., and Pedersen, P.L. (1988) J. Biol. Chem. 263, 15694-15698). Here we directly test the involvement of the glycine-rich region in nucleotide binding by altering its amino acid sequence through mutation or deletion. Twenty-one mutations within the glycine-rich region of the beta subunit cDNA were randomly generated. Wild-type and mutant beta subunit proteins were purified from overexpressing Escherichia coli strains. The mutant proteins were screened for changes in their interaction with 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), a fluorescent nucleotide analog. Only one mutant protein bearing two amino acid changes (Gly153----Val, Gly156----Arg) exhibited a fluorescence enhancement higher than that of the wild-type "control." Further analysis of this protein revealed a lower affinity for TNP-ATP (Kd = 10 microM) compared with wild type (Kd = 5 microM). In addition, a mutant from which amino acids Gly149-Lys214 had been deleted was prepared. This mutant protein, which lacks the entire glycine-rich region, also displayed a marked reduction in affinity for TNP-ATP (Kd greater than 60 microM). Prior addition of 0.5 mM ATP significantly reduced the binding of TNP-ATP to both the double and deletion mutants. The altered interaction of nucleotide with both glycine-rich region mutants points to the involvement of this region in the binding site. Further, this work shows that a beta subunit protein that lacks the glycine-rich homology region can still interact with nucleotide, indicating that one or more additional regions of this subunit contribute to the nucleotide binding site.  相似文献   

6.
7.
The stoichiometry of nucleotide binding to the isolated alpha- and beta-subunits of Escherichia coli F1-ATPase was investigated using two experimental techniques: (a) titration with fluorescent trinitrophenyl (TNP) derivatives of AMP, ADP, and ATP and (b) the centrifuge column procedure using the particular conditions of Khananshvili and Gromet-Elhanan (Khananshvili, D., and Gromet-Elhanan, Z. (1985) FEBS Lett. 178, 10-14). Both procedures showed that alpha-subunit contains one nucleotide-binding site, confirming previous work. TNP-ADP and TNP-ATP bound to a maximal level of 1 mol/mol beta-subunit, consistent with previous equilibrium dialysis studies which showed isolated beta-subunit bound 1 mol of ADP or ATP per mol (Issartel, J. P., and Vignais, P. V. (1984) Biochemistry 23, 6591-6595). However, binding of only approximately 0.1 mol of ATP or ADP per mol of beta-subunit was detected using centrifuge columns. Our results are consistent with the conclusion that each of the alpha- and beta-subunits contains one nucleotide-binding domain. Because the subunit stoichiometry is alpha 3 beta 3 gamma delta epsilon, this can account for the location of the six known nucleotide-binding sites in E. coli F1-ATPase. Studies of in vitro assembly of isolated alpha-, beta-, and gamma- subunits into an active ATPase showed that ATP, GTP, and ITP all supported assembly, with half-maximal reconstitution of ATPase occurring at concentrations of 100-200 microM, whereas ADP, GDP, and IDP did not. Also TNP-ATP supported assembly and TNP-ADP did not. The results demonstrate that (a) the nucleotide-binding site on beta-subunit has to be filled for enzyme assembly to proceed, whereas occupancy of the alpha-subunit nucleotide-binding site is not required, and (b) that enzyme assembly requires nucleoside triphosphate.  相似文献   

8.
The N-terminal domain of NrtC, the ATP-binding subunit of nitrate/nitrite ABC-transporter in the cyanobacterium Phormidium laminosum, has been expressed in Escherichia coli as a histidine-tagged fusion protein (His(6)NrtC1). Binding of ATP to the pure His(6)NrtC1 was characterized using the nucleotide analogue TNP-ATP [2'(3')-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate]. Fluorescence assays showed that His(6)NrtC1 specifically binds Mg(2+) TNP-ATP with high affinity, binding being dependent on protein concentration. The presence of ATP prevents the covalent modification of His(6)NrtC1 by fluorescein 5'-isothiocyanate (FITC), suggesting that this probe reacts at the nucleotide-binding site of NrtC. The active form of the truncated NrtC is a dimer that shows high affinity for TNP-ATP (K(d)=0.76+/-0.1 microM). Evidence for the presence of two nucleotide-binding sites per dimer protein is given. Our results indicate that nucleotide binding is strongly dependent on the dimerization of NrtC and that the N-terminal domain of the protein contains the binding site for ATP. No ATPase activity catalyzed in vitro by the truncated subunit was detected.  相似文献   

9.
The fluorescent ATP derivative 2',3'-O-(2,4,6-trinitrocyclohexadienylidine) adenosine 5'-triphosphate (TNP-ATP) binds specifically with enhanced fluorescence to the ATP site of purified eel electroplax sodium-potassium adenosine triphosphatase, (Na,K)-ATPase. A single homogeneous high affinity TNP-ATP binding site with a KD of 0.04 to 0.09 microM at 3 degrees C and 0.2 to 0.7 microM at 21 degrees-25 degrees C was observed in the absence of ligands when binding was measured by fluorescence titration or with [3H]TNP-ATP. ATP and other nucleotides competed with TNP-ATP for binding with KD values similar to those previously determined for binding to the ATP site. Binding stoichiometries determined from Scatchard plot intercepts gave one TNP-ATP site/175,000 g of protein (range: 1.64 X 10(5) to 1.92 X 10(5) when (Na,K)-ATPase protein was determined by quantitative amino acid analysis. The ratio of [3H]ouabain sites to TNP-ATP sites was 0.91. These results are inconsistent with "half-of-sites" binding and suggest that there is one ATP and one ouabain site/alpha beta protomer. (Na,K)-ATPase maintained a high affinity for TNP-ATP regardless of the ligands present. K+ increased the KD for TNP-ATP about 5-fold and Na+ reversed the effect of K+. The effects of Na+, K+, and mg2+ on ATP binding at 3 degrees C were studied fluorimetrically by displacement of TNP-ATP by ATP. The results are consistent with competition between ATP and TNP-ATP for binding at a single site regardless of the metallic ions present. The derived KD values for ATP were : no ligands, 1 microM; 20 mM NaCl, 3-4 microM; 20 mM KCl, 15-19 microM; 20 mM Kcl + 4 mM MgCl2, 70-120 microM. These results suggests that a single ATP site exhibits a high or low affinity for ATP depending on the ligands present, so that high and low affinity ATP sites observed kinetically are interconvertible and do not co-exist independently. We propose that during turnover the affinity for ATP changes more than 100-fold owing to the conformational changes associated with ion binding, translocation, and release.  相似文献   

10.
P J Jackson  D A Harris 《FEBS letters》1988,229(1):224-228
The specific, mitochondrial ATP synthase protein (IF1) was covalently cross-linked to its binding site on the catalytic sector of the enzyme (F1-ATPase). The cross-linked complex was selectively cleaved, leaving IF1 intact to facilitate the subsequent purification of the F1 fragment to which IF1 was cross-linked. This fragment was identified by sequence analysis as comprising residues 394-459 on the F1 beta-subunit, near the C-terminus. This finding is discussed in the light of secondary structure predictions for both IF1 and the F1 beta-subunit, and sequence homologies between mitochondrial and other ATP synthases.  相似文献   

11.
The human erythrocyte glucose transport protein (GluT1) is an adenine nucleotide binding protein. When complexed with cytosolic ATP, GluT1 exhibits increased affinity for the sugar export site ligand cytochalasin B, prolonged substrate occlusion, reduced net sugar import capacity, and diminished reactivity with carboxyl terminal peptide-directed antibodies. The present study examines the kinetics of nucleotide interaction with GluT1. When incorporated into resealed human red blood cell ghosts, (2,3)-trinitrophenyl-adenosine-triphosphate (TNP-ATP) mimics the ability of cytosolic ATP to promote high-affinity 3-O-methylglucose uptake. TNP-ATP fluorescence increases upon interaction with purified human red cell GluT1. TNP-ATP binding to GluT1 is rapid (t(1/2) approximately 0.5 s at 50 microM TNP-ATP), cooperative, and pH-sensitive and is stimulated by ATP and by the exit site ligand cytochalasin B. Dithiothreitol inhibits TNP-ATP binding to GluT1. GluT1 preirradiation with saturating, unlabeled azidoATP enhances subsequent GluT1 photoincorporation of [gamma-32P]azidoATP. Reduced pH enhances azidoATP photoincorporation into isolated red cell GluT1 but inhibits ATP modulation of sugar transport in resealed red cell ghosts and in GluT1 proteoliposomes. We propose that cooperative nucleotide binding to reductant-sensitive, oligomeric GluT1 is modulated by a proton-sensitive saltbridge. The effects of ATP on GluT1-mediated sugar transport may be determined by the number of ATP molecules complexed with the transporter.  相似文献   

12.
Outwardly rectifying 30-50-pS Cl- channels mediate cell volume regulation and transepithelial transport. Several recent reports indicate that rectifying Cl- channels are blocked after addition of ATP to the extracellular bath (Alton, E. W. F. W., S. D. Manning, P. J. Schlatter, D. M. Geddes, and A. J. Williams. 1991. Journal of Physiology. 443:137-159; Paulmichl, M., Y. Li, K. Wickman, M. Ackerman, E. Peralta, and D. Clapham. 1992. Nature. 356:238-241). Therefore, we decided to conduct a more detailed study of the ATP binding site using a higher affinity probe. We tested the ATP derivative, 2',3',O-(2,4,6- trinitrocyclohexadienylidene) adenosine 5'-triphosphate (TNP-ATP), which has a high affinity for certain nucleotide binding sites. Here we report that TNP-ATP blocked colonic Cl- channels when added to either bath and that blockade was consistent with the closed-open-blocked kinetic model. The TNP-ATP concentration required for a 50% decrease in open probability was 0.27 microM from the extracellular (cis) side and 20 microM from the cytoplasmic (trans) side. Comparison of the off rate constants revealed that TNP-ATP remained bound 28 times longer when added to the extracellular side compared with the cytoplasmic side. We performed competition studies to determine if TNP-ATP binds to the same sites as ATP. Addition of ATP to the same bath containing TNP-ATP reduced channel amplitude and increased the time the channel spent in the open and fast-blocked states (i.e., burst duration). This is the result expected if TNP-ATP and ATP compete for block, presumably by binding to common sites. In contrast, addition of ATP to the bath opposite to the side containing TNP-ATP reduced amplitude but did not alter burst duration. This is the result expected if opposite-sided TNP- ATP and ATP bind to different sites. In summary, we have identified an ATP derivative that has a nearly 10-fold higher affinity for reconstituted rectifying colonic Cl- channels than any previously reported blocker (Singh, A. K., G. B. Afink, C. J. Venglarik, R. Wang, and R. J. Bridges. 1991. American Journal of Physiology. 260 [Cell Physiology. 30]:C51-C63). Thus, TNP-ATP should be useful in future studies of ion channel nucleotide binding sites and possibly in preliminary steps of ion channel protein purification. In addition, we have obtained good evidence that there are at least two nucleotide binding sites located on opposite sides of the colonic Cl- channel and that occupancy of either site produces a blocked state.  相似文献   

13.
Dimethylsulfoxide (Me2SO; 30%, v/v) promotes the formation of ATP from ADP and phosphate catalyzed by soluble mitochondrial F1 ATPase. The effects of this solvent on the adenine nucleotide binding properties of beef-heart mitochondrial F1 ATPase were examined. The ATP analog adenylyl-5'-imidodiphosphate bound to F1 at 1.9 and 1.0 sites in aqueous and Me2SO systems, respectively, with a KD value of 2.2 microM. Lower affinity sites were present also. Binding of ATP or adenylyl-5'-imidodiphosphate at levels near equimolar with the enzyme occurred to a greater extent in the absence of Me2SO. Addition of ATP to the nucleotide-loaded enzyme resulted in exchange of about one-half of the bound ATP. This occurred only in an entirely aqueous medium. ATP bound in Me2SO medium was not released by exogenous ATP. Comparison of the effect of different concentrations of Me2SO on ADP binding to F1 and ATP synthesis by the enzyme showed that binding of ADP was diminished by concentrations of Me2SO lower than those required to support ATP synthesis. However, one site could still be filled by ADP at concentrations of Me2SO optimal for ATP synthesis. This site is probably a noncatalytic site, since the nucleotide bound there was not converted to ATP in 30% Me2SO. The ATP synthesized by F1 in Me2SO originated from endogenous bound ADP. We conclude that 30% Me2SO affects the adenine nucleotide binding properties of the enzyme. The role of this in the promotion of the formation of ATP from ADP and phosphate is discussed.  相似文献   

14.
ATP-sensitive potassium (K(ATP)) channels are expressed in many excitable, as well as epithelial, cells and couple metabolic changes to modulation of cell activity. ATP regulation of K(ATP) channel activity may involve direct binding of this nucleotide to the pore-forming inward rectifier (Kir) subunit despite the lack of known nucleotide-binding motifs. To examine this possibility, we assessed the binding of the fluorescent ATP analogue, 2',3'-O-(2,4,6-trinitrophenylcyclo-hexadienylidene)adenosine 5'-triphosphate (TNP-ATP) to maltose-binding fusion proteins of the NH(2)- and COOH-terminal cytosolic regions of the three known K(ATP) channels (Kir1.1, Kir6.1, and Kir6.2) as well as to the COOH-terminal region of an ATP-insensitive inward rectifier K(+) channel (Kir2.1). We show direct binding of TNP-ATP to the COOH termini of all three known K(ATP) channels but not to the COOH terminus of the ATP-insensitive channel, Kir2.1. TNP-ATP binding was specific for the COOH termini of K(ATP) channels because this nucleotide did not bind to the NH(2) termini of Kir1.1 or Kir6.1. The affinities for TNP-ATP binding to K(ATP) COOH termini of Kir1.1, Kir6.1, and Kir6.2 were similar. Binding was abolished by denaturing with 4 m urea or SDS and enhanced by reduction in pH. TNP-ATP to protein stoichiometries were similar for all K(ATP) COOH-terminal proteins with 1 mol of TNP-ATP binding/mole of protein. Competition of TNP-ATP binding to the Kir1.1 COOH terminus by MgATP was complex with both Mg(2+) and MgATP effects. Glutaraldehyde cross-linking demonstrated the multimerization potential of these COOH termini, suggesting that these cytosolic segments may directly interact in intact tetrameric channels. Thus, the COOH termini of K(ATP) tetrameric channels contain the nucleotide-binding pockets of these metabolically regulated channels with four potential nucleotide-binding sites/channel tetramer.  相似文献   

15.
It has recently been reported that insulin-degrading enzyme (IDE) contains an allosteric site which binds polyanions such as ATP and PPPi. This site is distinct from the catalytic site where homotrophic allosteric effects are produced. In this study, we have characterized the binding of ATP to this anion binding site using the fluorescent ATP analog 2',3'-O-(2,4,6-trinitrophenyl)-adenosine triphosphate (TNP-ATP), which exhibits a higher affinity to the enzyme than ATP itself. TNP-ATP binding to IDE was accompanied by a more than 4-fold increase in fluorescence. The dissociation constant (K(D)) of TNP-ATP was determined as 1.15 microM, while the activation constant (K(A)) was determined to be 1.6 microM. Competition experiments were used to show that ATP (Ki = 1.3 mM) and PPPi (Ki = 0.9mM) bind with a higher affinity than ADP (2.2 mM) and AMP (4.0 mM). Adenosine did not bind to the anion binding site.  相似文献   

16.
It was previously reported that 2',3'-O-(2,4,6-trinitrocyclohexadienylidene) (TNP)-nucleotides bind with high affinity to the sarcoplasmic reticulum Ca-ATPase (Dupont, Y., Chapron, Y., and Pougeois, R. (1982) Biochem. Biophys. Res. Commun. 106, 1272-1279 and Watanabe, T., and Inesi, G. (1982) J. Biol. Chem. 257, 11510-11516). Here we report a study of the Ca-ATPase nucleotide binding sites using TNP-nucleotides. Competition at equilibrium between TNP-nucleotides and ATP was measured in the absence of calcium; it was found that TNP-nucleotides and ATP competitively bind to two classes of sites of equal concentration (3.5 nmol/mg). The ATP dissociation constants for the two classes of sites were found to be sensitive to H+ and Mg2+ concentrations. In the absence of Mg2+ (independently of pH) or at acid pH (independently of Mg2+ concentration), the nucleotide sites behave like one single family of sites of intermediate affinity (Kd = 20 microM). They split into two classes of sites of high (Kd = 2-4 microM) and low (Kd greater than 1 mM) affinity at pH values higher than neutral and in the presence of Mg2+. The calcium-activated ATP hydrolysis is accelerated by TNP-ATP (or TNP-AMP-PNP) binding on the phosphorylated enzyme. It is concluded 1) that the Ca-ATPase enzyme possesses two classes of ATP binding sites, 2) that the affinity of these two sites and the nature of their interaction is modulated by the H+ and Mg2+ concentrations, and 3) that the hydrolytic activity of the high affinity ATP binding site is activated by ATP or TNP-AMP-PNP (or TNP-ATP) binding in a low affinity ATP binding site.  相似文献   

17.
The interaction of 2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate (TNP-ATP) and TNP-ADP to F1-ATPase from a thermophilic bacterium PS3 (TF1) was investigated. When TNP-ADP or TNP-ATP was added to the isolated alpha or beta subunit of TF1, characteristic difference spectra were generated for each subunit. Difference spectra generated on addition of these analogs to TF1 resembled those observed for the beta subunit, indicating TNP analogs bind to the beta subunits in the molecule of TF1. Results of equilibrium dialysis showed that TNP-ADP binds to a single high affinity site on TF1 in the presence of Mg2+ with a dissociation constant of 2.2 nM. When TNP-ATP was added to TF1 in a substoichiometric molar ratio, it rapidly bound to TF1 and was slowly hydrolyzed. The hydrolysis proceeded nearly to completion without showing stable equilibrium between bound species of TNP-ATP and TNP-ADP. Similar to beef heart mitochondrial F1, this hydrolysis was greatly accelerated by the chase-addition of 100 microM ATP. However, the hydrolyzed product, TNP-ADP, remained bound on the beta subunit even after the chase.  相似文献   

18.
The fluorescent nucleotide 2',3'-trinitrophenyl-ATP (TNP-ATP) binds at the triphosphate substrate binding site of the large (Klenow) fragment of DNA polymerase I (Pol I) as detected by direct binding studies measuring the increase in fluorescence of this ligand (n = 1.0, KD = 0.07 microM). The enzyme-TNP-ATP complex binds Mg2+ and Mn2+ tightly (KD = 0.05 microM) as measured by an increase in fluorescence on titrating with these metals. The substrate dGTP competitively displaces TNP-ATP from the enzyme (KD = 5.7 microM) de-enhancing the fluorescence. The polymerase reaction is half-maximally inhibited by 0.8 microM TNP-ATP in the presence of dATP (10 microM) as substrate. A region of the amino acid sequence of Pol I (peptide I) consisting of residues 728-777 has been synthesized and found to contain significant secondary structure by CD both in water and 50% methanol/water. In water at 3 degrees C, peptide I binds the substrate analog TNP-ATP (KD = 0.03 microM) with a stoichiometry of 0.2. In 50% methanol at 3 degrees C, peptide I binds TNP-ATP with a higher stoichiometry than in water, consistent with a 1:1 complex, but biphasically (16% of the peptide, KD = 0.09 microM; 84% of the peptide, KD = 5.0 microM), and competitively binds the Pol I substrates dATP, TTP, and dGTP (KD = 230-570 microM). Evidence from size exclusion high performance liquid chromatography suggests that these two forms of the peptide are monomer and dimer, respectively. Significantly, the peptide I-TNP-ATP complex binds duplex DNA, tightly (KD = 0.1-0.5 microM) and stoichiometrically, and single stranded DNA more weakly. The peptide I-duplex DNA complex binds both TNP-ATP (KD = 0.5-1.5 microM) and Pol I substrates (KD = 350-2100 microM) stoichiometrically. In a control experiment, a second peptide, peptide II, based on residues 840-888 of the Pol I sequence, retains secondary structure, as detected by CD, but displays no binding of TNP-ATP. The ability of peptide I, which represents only 8% of the large fragment of Pol I, to bind both substrates and duplex DNA indicates that residues 728-777 constitute a major portion of the substrate binding site of this enzyme.  相似文献   

19.
Corvest V  Sigalat C  Haraux F 《Biochemistry》2007,46(29):8680-8688
The mechanism of yeast mitochondrial F1-ATPase inhibition by its regulatory peptide IF1 was investigated with the noncatalytic sites frozen by pyrophosphate pretreatment that mimics filling by ATP. This allowed for confirmation of the mismatch between catalytic site occupancy and IF1 binding rate without the kinetic restriction due to slow ATP binding to the noncatalytic sites. These data strengthen the previously proposed two-step mechanism, where IF1 loose binding is determined by the catalytic state and IF1 locking is turnover-dependent and competes with IF1 release (Corvest, V., Sigalat, C., Venard, R., Falson, P., Mueller, D. M., and Haraux, F. (2005) J. Biol. Chem. 280, 9927-9936). They also demonstrate that noncatalytic sites, which slightly modulate IF1 access to the enzyme, play a minor role in its binding. It is also shown that loose binding of IF1 to MgADP-loaded F1-ATPase is very slow and that IF1 binding to ATP-hydrolyzing F1-ATPase decreases nucleotide binding severely in the micromolar range and moderately in the submillimolar range. Taken together, these observations suggest an outline of the total inhibition process. During the first catalytic cycle, IF1 loosely binds to a catalytic site with newly bound ATP and is locked when ATP is hydrolyzed at a second site. During the second cycle, blocking of ATP hydrolysis by IF1 inhibits ATP from becoming entrapped on the third site and, at high ATP concentrations, also inhibits ADP release from the second site. This model also provides a clue for understanding why IF1 does not bind ATP synthase during ATP synthesis.  相似文献   

20.
EnvZ is a histidine protein kinase important for osmoregulation in bacteria. While structural data are available for this enzyme, the nucleotide binding pocket is not well characterized. The ATP binding domain (EnvZB) was expressed, and its ability to bind nucleotide derivatives was assessed using equilbrium and stopped-flow fluorescence spectroscopy. The fluorescence emission of the trinitrophenyl derivatives, TNP-ATP and TNP-ADP, increase upon binding to EnvZB. The fluorescence enhancements were quantitatively abolished in the presence of excess ADP, indicating that the fluorescent probes occupy the nucleotide binding pocket. Both TNP-ATP and TNP-ADP bind to EnvZB with high affinity (K(d) = 2-3 microM). The TNP moiety attached to the ribose ring does not impede access of the fluorescent nucleotide into the binding pocket. The association rate constant for TNP-ADP is 7 microM(-1) s(-1), a value consistent with those for natural nucleotides and the eucaryotic protein kinases. Using competition experiments, it was found that ATP and ADP bind 30- and 150-fold more poorly, respectively, than the corresponding TNP-derivatized forms. Surprisingly, the physiological metal Mg(2+) is not required for ADP binding and only enhances ATP affinity by 3-fold. Although portions of the nucleotide pocket are disordered, the recombinant enzyme is highly stable, unfolding only at temperatures in excess of 70 degrees C. The unusually high affinity of the TNP derivatives compared to the natural nucleotides suggests that hydrophobic substitutions on the ribose ring enforce an altered binding mode that may be exploited for drug design strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号