首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Bovine adrenal chromaffin cells have nicotinic acetylcholine receptors (AChRs) that are activated by the splanchnic nerve, resulting in release of catecholamines from the cells. Examination of the AChRs can provide information about the regulation and turnover of synaptic components on neurons and endocrine cells. Previous studies have shown that mAb 35 recognizes the AChR on the cells. Here we show that mAb 35 can remove AChRs from the surface of the cells by antigenic modulation, and that the modulation can be used together with other methods to examine the stability and turnover of the receptors in the plasma membrane. Unexpectedly, the results indicate a disparity between the rate at which AChRs reappear on the cells and the rate at which the ACh response recovers after preexisting AChRs have been removed. Exposure of bovine adrenal chromaffin cultures to mAb 35 results in a parallel decrease in the magnitude of the nicotinic response and the number of AChRs on the cells. The decrease depends on the concentration and divalence of mAb 35, and on the time and temperature of the incubation. The antibody induces receptor aggregation in the plasma membrane under conditions where receptor loss subsequently occurs. After binding to receptor, mAb 35 appears to be internalized, degraded, and released from the cells through a temperature sensitive pathway that requires lysosomal function. These features are characteristic of antigenic modulation. Appearance of new AChRs on the cells either after antigenic modulation or after blockade of existing AChRs with monovalent antibody fragments occurs at a rate equivalent to 3% of the receptors present on control cells per hour. The rate of receptor loss from the cells was measured in the presence of either tunicamycin or puromycin to block appearance of new receptors. Both conditions indicated a receptor half-life of approximately 24 h and a rate of loss of approximately 3%/h. The finding that the rate of receptor loss equaled the rate of receptor appearance was consistent with the observation that the total number of AChRs on untreated cells did not increase with time. In the presence of tunicamycin, loss of receptor-mediated response to nicotine also occurred with a half-time of 24 h. Paradoxically, the rate of recovery of the nicotinic response, determined using two procedures, was more than twice as great as the rate at which new AChRs appeared on the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Serotonin Modulates Nicotinic Responses of Adrenal Chromaffin Cells   总被引:2,自引:0,他引:2  
Abstract: 5-Hydroxytryptamine (5-HT) specifically and reversibly inhibits nicotine-induced currents and catecholamine release in bovine adrenal chromaffin cells in culture. Pharmacological analysis indicates that the inhibition is not mediated by known 5-HT receptor subtypes. The inhibition is noncompetitive over a range of nicotine concentrations between 1 and 100 μM. Preincubation with either 5-HT or substance P significantly protects the response from nicotine-induced desensitization. It is concluded that 5-HT inhibits nicotinic acetylcholine receptors on bovine adrenal chromaffin cells, probably by binding to a noncompetitive site on the receptor itself. Because both blood and the chromaffin cells contain 5-HT, the inhibition provides an opportunity for negative control of catecholamine secretion from the adrenals.  相似文献   

3.
Bovine adrenal chromaffin cells possess both nicotinic and muscarinic cholinergic receptors, but only nicotinic receptors have heretofore appeared to mediate Ca2+-dependent exocytosis. We have now found that muscarinic receptor stimulation in bovine adrenal chromaffin cells leads to enhanced inositol phospholipid metabolism as evidenced by the rapid (less than 1 min) formation of inositol trisphosphate (IP3) and inositol bisphosphate (IP2). Muscarinic receptor-mediated accumulation of IP3 and IP2 continues beyond 1 min in the presence of LiCl and is accompanied by large increases in inositol monophosphate. Muscarinic receptor stimulation was also found to enhance nicotine-induced catecholamine secretion by 1.7-fold if muscarine was added 30 s before nicotine addition. Moreover, since the muscarinic antagonist atropine reduces acetylcholine-induced secretion, we conclude that muscarinic receptor stimulation somehow primes these cells for nicotinic receptor-mediated secretion, perhaps by causing small nonstimulatory increases in cytosolic free Ca2+ mediated by IP3. Furthermore, we show that small depolarizations of these cells with 10 mM K+, which themselves do not affect basal secretion, also enhance nicotine-induced secretion. Thus, small increases in cytosolic free Ca2+ produced either by physiologic muscarinic receptor stimulation or by small experimental depolarizations with K+ may prime the chromaffin cells for nicotinic receptor-mediated secretion.  相似文献   

4.
Src family kinases (SFKs) are abundant in chromaffin cells that reside in the adrenal medulla and respond to cholinergic stimulation by secreting catecholamines. Our previous work indicated that SFKs regulate acetylcholine- or nicotine-induced secretion, but the site of modulatory action was unclear. Using whole cell recordings, we found that inhibition of SFK tyrosine kinase activity by PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine) treatment or expression of a kinase-defective c-Src reduced the peak amplitude of nicotine-induced currents in chromaffin cells or in human embryonic kidney cells ectopically expressing functional neuronal alpha3beta4alpha5 acetylcholine receptors (AChRs). Conversely, the phosphotyrosine phosphatase inhibitor, sodium vanadate, or expression of mutationally activated c-Src resulted in enhanced current amplitudes. These results suggest that SFKs and putative phosphotyrosine phosphatases regulate the activity of AChRs by opposing actions. This proposed model was supported further by the findings that SFKs physically associate with the receptor and that the AChR is tyrosine-phosphorylated.  相似文献   

5.
Little is known about the interactions between nicotinic and muscarinic acetylcholine receptors (nAChRs and mAChRs). Here we report that methacholine (MCh), a selective agonist of mAChRs, inhibited up to 80% of nicotine-induced nAChR currents in sympathetic superior cervical ganglion neurons and adrenal chromaffin cells. The muscarine-induced inhibition (MiI) substantially reduced ACh-induced membrane currents through nAChRs and quantal neurotransmitter release. The MiI was time- and temperature-dependent. The slow recovery of nAChR current after washout of MCh, as well as the high value of Q10 (3.2), suggested, instead of a direct open-channel blockade, an intracellular metabotropic process. The effects of GTP-γ-S, GDP-β-S and pertussis toxin suggested that MiI was mediated by G-protein signalling. Inhibitors of protein kinase C (bisindolymaleimide–Bis), protein kinase A (H89) and PIP2 depletion attenuated the MiI, indicating that a second messenger pathway is involved in this process. Taken together, these data suggest that mAChRs negatively modulated nAChRs via a G-protein-mediated second messenger pathway. The time dependence suggests that MiI may provide a novel mechanism for post-synaptic adaptation in all cells/neurons and synapses expressing both types of AChRs.  相似文献   

6.
7.
Eighteen endogenous opioid peptides, all containing the sequence of either Met5- or Leu5-enkephalin, were tested for their ability to modify nicotine-induced secretion from bovine adrenal chromaffin cells. ATP released from suspensions of freshly isolated cells was measured with the luciferin-luciferase bioluminescence method as an index of secretion. None of the peptides affected 5 microM nicotine-induced ATP release at 10 nM. Three peptides inhibited secretion at 5 microM: dynorphin1-13, dynorphin1-9, and rimorphin inhibited by 65%, 37%, and 29% respectively. Use of peptidase inhibitors (bestatin, thiorphan, bacitracin, or 1,10-phenanthroline) did not result in any of the other peptides showing potent actions on the nicotinic response, although bestatin and thiorphan did enhance the inhibitory actions of dynorphin1-13 and dynorphin1-9 by 20-30%. Nicotine-induced secretion of endogenous catecholamines from bovine chromaffin cells cultured for 3 days was also studied to assess any selective actions of the peptides on adrenaline or noradrenaline cell types. Dynorphin1-13 was 1,000-fold more potent than Leu5-enkephalin at inhibiting endogenous catecholamine secretion. Dynorphin1-13 was slightly more potent at inhibiting noradrenaline release than adrenaline release whereas Leu5-enkephalin showed the opposite selectivity. The structure-activity relationships of opioid peptide actions on the chromaffin cell nicotinic response are discussed in relation to the properties of the adrenal opioid binding sites.  相似文献   

8.
A carboxypeptidase B-like enzyme is involved in processing of proenkephalin in adrenal medulla. Nicotine stimulated the co-release of this enzyme with (Met)enkephalin pentapeptide from bovine chromaffin cells in primary culture. The ratio of enzyme activity/immunoreactivity was determined for the released carboxypeptidase to provide an index of the level of enzyme activity per unit number of enzyme molecules. The ratio for the Co++-stimulated carboxypeptidase secreted into the cell culture medium upon nicotinic stimulation was 10.1 +/- 1.02 (pmol Met-enkephalin formed per ng carboxypeptidase immunoreactivity), while the Co++-stimulated carboxypeptidase in the soluble and membrane components of purified chromaffin granules had lower ratios of 5.46 +/- 0.70 and 1.07 +/- 0.13, respectively. Hexamethonium, a nicotinic receptor antagonist, blocked the nicotine-induced release of the carboxypeptidase processing enzyme and (Met)enkephalin. These data suggest that a pool of carboxypeptidase enzyme molecules at a high state of activation are present in functionally mature granules whose contents are released by nicotinic receptor stimulation.  相似文献   

9.
As part of our studies on the functional role of the cytoskeleton in exocytosis we have reported (Cheek, T.R., and Burgoyne, R.D. (1986) FEBS Lett. 207, 110-114) that a calcium-independent transient disassembly of cortical actin filaments occurs on activation of the chromaffin cell nicotinic receptor but not when the cell is exposed to 55 mM K+. In order to determine whether this actin disassembly is required, in conjunction with a rise in intracellular Ca2+, to elicit a maximum secretory response from these cells, we have examined the relationship between actin disassembly, the elevation in intracellular Ca2+, and secretion in detail. The results show that the dose dependence of nicotine-induced secretion and actin disassembly are essentially identical with maximal effects at a dose of nicotine that produced a submaximal rise in intracellular Ca2+. Intracellular cAMP, elevated by three independent means, did not inhibit 55 mM K+-induced secretion but inhibited nicotine-induced secretion. Forskolin inhibited actin disassembly while not affecting the rise in intracellular Ca2+. These results demonstrate that a close inter-relationship exists between the secretory response and actin disassembly and provide further evidence suggesting that actin disassembly could be required in addition to the rise in intracellular Ca2+ in order to elicit a maximal secretory response in chromaffin cells. In addition, the results point to a role for cAMP in the regulation of stimulus-induced actin disassembly.  相似文献   

10.
The activity of alpha-conotoxin (alpha-CTX) ImI, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX ImI was a potent inhibitor of the neuronal nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 microM, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. Alpha-CTX ImI also inhibited nicotine-evoked 45Ca2+ uptake but not 45Ca2+ uptake stimulated by 56 mM K+. In contrast, alpha-CTX ImI had no effect at the neuromuscular junction over the concentration range 1-20 microM. Bovine chromaffin cells are known to contain the alpha3beta4, alpha7, and (possibly) alpha3beta4alpha5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha7 nicotinic receptors are not involved. We propose that alpha-CTX Iml interacts selectively with the functional (alpha3beta4 or alpha3beta4alpha5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.  相似文献   

11.
Abstract: There is increasing evidence that members of the natriuretic peptide family display sympathoinhibitory activity, but it remains uncertain which receptor pathway is implicated. We performed cyclic GMP production studies with chromaffin cells treated with either atrial natriuretic factor (ANF) or C-type natriuretic peptide (CNP) and found that these cells specifically express the ANF-R1C but not the ANF-R1A receptor subtype. Evidence for the existence of ANF-R2 receptors was obtained from patch-clamp experiments where C-ANF, an ANF-R2-specific agonist, inhibited nicotinic currents in single isolated chromaffin cells. Involvement of ANF-R2 receptors in the modulation of nicotinic currents was further supported by the significant loss of this inhibitory activity after the cleavage of the disulfide-bridged structure of C-ANF. This linearized form of C-ANF also displayed a lower binding affinity for ANF-R2 receptors. Like the patch-clamp studies, secretion experiments demonstrated that both CNP and C-ANF are equally effective in reducing nicotine-evoked catecholamine secretion by cultured chromaffin cells, raising the possibility that this effect of CNP is predominantly mediated by the ANF-R2 and not the ANF-R1C receptors. Finally, this response appears to be specific to nicotinic agonists because neither histamine- nor KCI-induced secretions were affected by natriuretic peptides. In the present study, we report (1) the presence of ANF-R1C and ANF-R2 receptor subtypes in bovine chromaffin cells, (2) the inhibition by natriuretic peptides of nicotinic whole-cell currents as well as nicotine-induced catecholamine secretion, (3) the possible mediation of these effects by the ANF-R2 class of receptors, and (4) the specificity of this inhibition to nicotinic agonists. Because bovine chromaffin cells release ANF, BNP, and CNP together with catecholamines, all three peptides might exert negative feedback regulation of catecholamine secretion in an autocrine manner by interacting with the nondiscriminating ANF-R2 receptor subtype.  相似文献   

12.
Prostaglandin E (PGE) receptor is coupled to a pertussis toxin-insensitive GTP-binding protein in bovine adrenal medulla, but PGE receptor partially purified from bovine adrenal medulla was functionally reconstituted with Gi into phospholipid vesicles (Negishi, M., Ito, S., Yokohama, H., Hayashi, H., Katada, T., Ui, M., and Hayaishi, O. (1988) J. Biol. Chem. 263, 6893-6900). We demonstrate here that PGE2 inhibited forskolin-induced accumulation of cAMP in cultured bovine chromaffin cells. In plasma membranes prepared from bovine adrenal medulla, PGE2 inhibited forskolin-stimulated adenylate cyclase activity in a GTP-dependent manner. This inhibitory action of PGE2 was abolished by treatment of the membrane with pertussis toxin. Reconstitution of the membranes ADP-ribosylated by pertussis toxin with Gi purified from bovine brain restored the potency of PGE2 to inhibit the adenylate cyclase activity. Inhibition of forskolin-induced cAMP accumulation by PGE2 was also abolished by exposure to the toxin in the cells, indicating that PGE receptors are coupled to Gi. In contrast, PGE2 stimulated the formation of inositol phosphates in chromaffin cells, but this effect was not affected by treatment of the cells with pertussis toxin, suggesting that the PGE receptors are coupled to phosphoinositide metabolism via a pertussis toxin-insensitive G-protein. Both the inhibitory action of cAMP accumulation and stimulation of phosphoinositide metabolism were specific for PGE1 and PGE2, and the Scatchard plot analysis of PGE2 binding to the membrane showed a single high-affinity binding site (Kd = 2 nM). In bovine adrenal chromaffin cells PGE2 enhanced catecholamine release in the presence of ouabain by stimulation of phosphoinositide metabolism (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). We further examined the modulation of catecholamine release by PGE2 through its inhibitory coupling to the adenylate cyclase system. Prior exposure of chromaffin cells to forskolin or dibutyryl-cAMP reduced nicotine-stimulated catecholamine release, and PGE2 attenuated forskolin-induced inhibition of catecholamine release stimulated by nicotine, but not dibutyryl-cAMP-induced inhibition. In the absence of evidence that PGE receptor subtypes exist, these results suggest that the PGE receptor is coupled to two signal transduction systems leading to inhibition of cAMP accumulation via Gi and to production of inositol phosphates via a pertussis toxin-insensitive G-protein, both of which may modulate catecholamine release from bovine chromaffin cells.  相似文献   

13.
14.
Adenylyl cyclase in rat adipose cells is stimulated by ligands for Rs receptors (e.g. isoproterenol) and inhibited by ligands for Ri receptors (e.g. adenosine). In contrast, Rs receptors mediate inhibition and Ri receptors mediate augmentation of insulin-stimulated glucose transport activity by a process independent of changes in cellular cAMP-dependent protein kinase activity [Kuroda M., Honnor R. C., Cushman S. W., Londos C. and Simpson I. A. (1987) J. biol. Chem. 262, 245-253]. The present study examines the possible role of G-proteins in the regulation of insulin-stimulated glucose transport activity by Rs and Ri receptors. First, conditions were established that permit intoxication of isolated rat adipocytes by cholera and pertussis toxins without compromising cell integrity. Effectiveness of toxin treatment was monitored by examining adenylyl cyclase activity in isolated plasma membranes. Secondly, neither toxin interfered with the ability of a maximal concentration insulin to initiate the glucose transport response. Thirdly, pertussis toxin eliminated the augmenting effects of adenosine on insulin-stimulated glucose transport activity, but enhanced the inhibitory effects of isoproterenol. Findings with ligands for other Ri receptors (nicotinic acid and prostaglandin E2) mirrored those with adenosine. Finally, cholera toxin elicited a modest depression of transport activity, and only in the absence of an Ri ligand (e.g. adenosine). Furthermore, in contrast to the enhanced stimulation of adenylyl cyclase by isoproterenol and GTP, cholera toxin eliminated the inhibitory effect of isoproterenol on transport activity. The augmentative effects of adenosine on transport activity were unchanged. Measurements of (-/+cAMP) cAMP-dependent protein kinase activity ratios reinforce the notion that modulation of glucose transport activity is independent of changes in cAMP. We conclude that regulation of glucose transport activity by Rs and Ri receptors is mediated by the G-proteins, Gs and Gi (or other toxin substrates), respectively. Inasmuch as such regulation occurs at the plasma membrane and appears to be cAMP-independent, it is suggested that glucose transporters may be direct targets for receptor: G-protein interactions.  相似文献   

15.
Nicotinic acetylcholine receptors (AChRs) are pentameric ligand-gated ion channels that mediate fast synaptic transmission at the neuromuscular junction (NMJ). After assembly in the endoplasmic reticulum (ER), AChRs must be transported to the plasma membrane through the secretory apparatus. Little is known about specific molecules that mediate this transport. Here we identify a gene that is required for subtype-specific trafficking of assembled nicotinic AChRs in Caenorhabditis elegans. unc-50 encodes an evolutionarily conserved integral membrane protein that localizes to the Golgi apparatus. In the absence of UNC-50, a subset of AChRs present in body-wall muscle are sorted to the lysosomal system and degraded. However, the trafficking of a second AChR type and of GABA ionotropic receptors expressed in the same muscle cells is not affected in unc-50 mutants. These results suggest that, in addition to ER quality control, assembled AChRs are sorted within the Golgi system by a mechanism that controls the amount of cell-surface AChRs in a subtype-specific way.  相似文献   

16.
Sex steroids affect adrenal chromaffin cell function. In the present work, we have examined the expression and functional significance of membrane androgen receptor sites in normal rat adrenal chromaffin cells and in the PC12 rat pheochromocytoma cell line which can differentiate to either a neuronal or to an epithelial phenotype and expresses membrane estrogen receptor sites. Our data are as follows: (a) no cytosolic androgen receptors were found in both normal chromaffin and PC12 cells; (b) both types of chromaffin cells expressed high affinity membrane testosterone binding sites; (c) activation of these sites increased cytosolic Ca2+, decreased catecholamine secretion and induced apoptosis; (d) NGF-induced neuronal differentiation of PC12 cells resulted in the suppression of the number of membrane testosterone sites. In conclusion, our data provide evidence for the existence of specific membrane testosterone receptors on adrenal chromaffin cells via which androgens, (some of them originating in the cortex) modulate their function. Neuronal differentiation of chromaffin cells results in a significant attenuation of these effects, via suppression of the expression of membrane androgen receptors suggesting, that the latter are specific for epithelioid chromaffin cells.  相似文献   

17.
The TE671 human medulloblastoma cell line expresses a variety of characteristics of human neurons. Among these characteristics is the expression of membrane-bound high-affinity binding sites for alpha-bungarotoxin, which is a potent antagonist of functional nicotinic acetylcholine receptors on these cells. These toxin binding sites represent a class of nicotinic receptor isotypes present in mammalian brain. Treatment of TE671 cells during proliferative growth phase with nicotine or carbamylcholine, but not with muscarine or d-tubocurarine, induced up to a five-fold increase in the density of radiolabeled toxin binding sites in crude membrane fractions. This effect was blocked by co-incubation with the nicotinic antagonists d-tubocurarine and decamethonium, but not by mecamylamine or by muscarinic antagonists. Following a 10-13 h lag phase upon removal of agonist, recovery of the up-regulated sites to control values occurred within an additional 10-20 h. These studies indicate that the expression of functional nicotinic acetylcholine receptors on TE671 cells is subject to regulation by nicotinic agonists. Studies of the murine CNS have consistently indicated nicotine-induced up-regulation of nicotinic acetylcholine receptors, thereby supporting the identification of the toxin binding site on these cells as the functional nicotinic receptor. Although a mechanism for this effect is not apparent, nicotine-induced receptor blockade does not appear to be involved.  相似文献   

18.
J A Purifoy  R W Holz 《Life sciences》1984,35(18):1851-1857
The ability of ketamine, phencyclidine and analogues to alter catecholamine secretion from cultured bovine adrenal chromaffin cells was investigated. Both ketamine and phencyclidine specifically inhibited nicotinic agonist-induced secretion at concentrations which did not alter secretion induced by elevated K+ depolarization. The inhibition of nicotinic agonist-induced secretion was not overcome by increasing concentrations of nicotinic agonist. The effects of stereoisomer pairs of phencyclidine-like drugs - dexoxadrol, levoxadrol and (+)PCMP, (-)PCMP - did not reveal stereospecificity for the inhibition, in contrast to the stereospecific behavioral effects of the drugs. The local anesthetic lidocaine (0.3 mM) also noncompetitively inhibited nicotinic agonist-induced secretion without inhibiting elevated K+-induced secretion. The data indicate that ketamine and phencyclidine at clinically relevant concentrations specifically inhibit the adrenal chromaffin cell nicotinic receptor at a site similar to or identical with the site of action of local anesthetic. Although the nicotinic receptor inhibition is probably not related to the anesthetic and behavioral effects of ketamine and phencyclidine, it is likely that the centrally mediated increase in sympathetic nervous system activity which is characteristic of these drugs is moderated by the peripheral blocking effects on catecholamine secretion from the adrenal medulla.  相似文献   

19.
20.
Cells of the adrenal medulla release not only catecholamines but also high concentrations of neuropeptides and nucleotides. Chromaffin cells, like many neuronal cells, have a diversity of receptors: adrenergic receptors, peptide receptors, histamine receptors, and dopamine receptors. We recently reported that these cells have nucleotide receptors that can mediate inhibition of the secretory response. The present studies show that adenosine, in the presence of enabling concentrations of forskolin, can potently enhance response to nicotinic stimulation. Neither adenosine nor forskolin alone produces a significant effect. A marked rise in intracellular cyclic AMP (cAMP) concentration is associated with the enhancement of secretion caused by forskolin plus adenosine. A phosphodiesterase inhibitor, Ro 20-1724, used together with forskolin produces significant increases in both cellular cAMP content and catecholamine secretion. However, the adenosine agonist 5'-N-ethylcarboxyadenosine elevates cellular cAMP content in the presence of forskolin without having any positive effect on secretion. This finding suggests that the rise in cAMP level may not be the sole cause of the increase in secretion by adenosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号