首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
The human cytomegalovirus (HCMV) major immediate-early (MIE) genes, encoding IE1 p72 and IE2 p86, are activated by a complex enhancer region (base positions -65 to -550) that operates in a cell type- and differentiation-dependent manner. The expression of MIE genes is required for HCMV replication. Previous studies analyzing functions of MIE promoter-enhancer segments suggest that the distal enhancer region variably modifies MIE promoter activity, depending on cell type, stimuli, or state of differentiation. To further understand the mechanism by which the MIE promoter is regulated, we constructed and analyzed several different recombinant HCMVs that lack the distal enhancer region (-300 to -582, -640, or -1108). In human fibroblasts, the HCMVs without the distal enhancer replicate normally at high multiplicity of infection (MOI) but replicate poorly at low MOI in comparison to wild-type virus (WT) or HCMVs that lack the neighboring upstream unique region and modulator (-582 or -640 to -1108). The growth aberrancy was normalized after restoring the distal enhancer in a virus lacking this region. For HCMVs without a distal enhancer, the impairment in replication at low MOI corresponds to a deficiency in production of MIE RNAs compared to WT or virus lacking the unique region and modulator. An underproduction of viral US3 RNA was also evident at low MOI. Whether lower production of IE1 p72 and IE2 p86 causes a reduction in expression of the immediate-early (IE) class US3 gene remains to be determined. We conclude that the MIE distal enhancer region possesses a mechanism for augmenting viral IE gene expression and genome replication at low MOI, but this regulatory function is unnecessary at high MOI.  相似文献   

10.
11.
12.
13.
14.
15.
To determine the mechanisms involved in the regulation of human cytomegalovirus early gene expression, we have examined the gene that encodes the viral DNA polymerase (UL54, pol). Our previous studies demonstrated that sequences required for activation of the pol promoter by immediate-early proteins are contained within a region from -128 to +20 and that cellular proteins can bind to this activation domain. In this study, we demonstrate by competition analysis that binding of cellular proteins to pol is associated with an 18-bp region containing a single copy of a novel inverted repeat, IR1. Time course analysis indicated that viral infection increased the level of protein binding to IR1, concurrent with the activation of the pol promoter. Mutation of the IR1 element abrogated binding of cellular factors to the pol promoter and reduced by threefold the activation by immediate-early proteins. Similarly, mutation of IR1 rendered the promoter poorly responsive to activation by viral infection. Mutation of additional sequence elements in the pol promoter had little effect, indicating that IR1 plays the major role in pol promoter regulation. These studies demonstrate that the interaction between cellular factors and IR1 is important for the regulation of expression of the polymerase gene by viral proteins.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号